Allergic Sensitization Driving Immune Phenotyping and Disease Severity in a Mouse Model of Asthma
Eléonore Dijoux, Martin Klein, Barbara Misme-Aucouturier, Marie-Aude Chemina, Marion de Carvalho, Louise Collin, Dorian Hassoun, Erwan Delage, Mathilde Gourdel, Gervaise Loirand, et al.

To cite this version:
Eléonore Dijoux, Martin Klein, Barbara Misme-Aucouturier, Marie-Aude Chemina, Marion de Carvalho, et al.. Allergic Sensitization Driving Immune Phenotyping and Disease Severity in a Mouse Model of Asthma. Allergy, Asthma & Immunology Research, 2023, 15 (2), pp.e9. 10.4168/aaair.2023.15.e9 . hal-03953921

HAL Id: hal-03953921
https://hal.inrae.fr/hal-03953921
Submitted on 24 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
ABSTRACT

Purpose: Asthma is a frequent chronic inflammatory bronchial disease affecting more than 300 million patients worldwide, 70% of whom are secondary to allergy. The diversity of asthmatic endotypes contributes to their complexity. The inter-relationship between allergen and other exposure and the airway microbiome adds to the phenotypic diversity and defines the natural course of asthma. Here, we compared the mouse models of house dust mite (HDM)-induced allergic asthma.

Methods: Mice were sensitized with HDM via the oral, nasal or percutaneous routes. Lung function, barrier integrity, immune response and microbiota composition were analyzed.

Results: Severe impairment of respiratory function was observed in the mice sensitized by the nasal and cutaneous paths. It was associated with epithelial dysfunction characterized by an increased permeability secondary to junction protein disruption. Such sensitization paths induced a mixed eosinophilic and neutrophilic inflammatory response with high interleukin (IL)-17 airway secretion. In contrast, orally sensitized mice showed a mild impairment of respiratory function. Epithelial dysfunction was mild with increased mucus production, but preserved epithelial junctions. Regarding lung microbiota, sensitization provoked a significant loss of diversity. At the genus level, Cutibacterium, Acinetobacter, Streptococcus and Lactobacillus were found to be modulated according to the sensitization pathway. An increase in the anti-inflammatory microbiota metabolites was observed in the oral-sensitization group.

Conclusions: Our study highlights the strong impact of the sensitization route on the pathophysiology and the critical phenotypic diversity of allergic asthma in a mouse model.

Keywords: Respiratory function; barrier integrity; endotypes; lung microbiota
INTRODUCTION

Asthma is an inflammatory disease of the airways which leads to recurrent episodes of cough, dyspnea, wheezing and chest tightness. The pathogenesis of allergic asthma, which accounts for up to 70% of cases, involves exposure to allergens and mediation by immunoglobulin E (IgE). However, the immunopathological mechanism, initially mediated by IgE, is much more complex, and includes inflammatory mediators and cytokines, with a predominance of T helper 2 lymphocytes (Th2 cells). Given that the development of asthma is not confined to young children and occurs at all ages, it is important to determine whether and how exposure history affects the sensitizing responses to allergens. Heterogeneity in clinical presentations of asthma prevents the development of a pertinent experimental animal model. Indeed, animal models of asthma are typically based on artificial routes of sensitization (e.g., intraperitoneal injection) and well-studied synthetic adjuvants (e.g., alum) that induce Th2-dominant, eosinophilic airway inflammation after allergen re-exposure. More recent approaches through airway exposure have shown that allergic sensitization occurs when allergens are administered with an adjuvant such as LPS, whereas administration of a protein alone causes a suppressive and tolerogenic response to allergens. In naive hosts, subtle differences in the dose and timing of adjuvant exposure can translate into significant differences in the quality and quantity of mucosal effector responses induced following allergen re-exposure typically involving Th2- or Th2/Th17-dependent airway inflammation. In contrast, the tolerogenic response involves IL-10-producing dendritic cells, regulatory T cells (Tregs) and limited inflammation. The microbiota has been identified as a key factor in many chronic inflammatory diseases including asthma. In fact, the lung microbiota shows different compositions of bacterial populations, which are correlated with the degree of asthma severity. This interaction is based on bacterial metabolite communication through short free fatty acids, such as butyrate. Most asthma models with mice use ovalbumin as a foreign sensitizing protein associated with an adjuvant. Nevertheless, we and others have developed house dust mite (HDM) models of allergic asthma without adjuvants to mimic sensitization in a closer manner to the clinical features of human asthma. Therefore, models with oral, cutaneous or respiratory sensitization, which are more clinically relevant routes involved in the pathogenesis of human allergic asthma, have been used. Our group demonstrated that cutaneous sensitization induces a mixed Th2/Th17 allergic asthma endotype associated with mixed neutrophilic and eosinophilic airway inflammation. Nevertheless, there have been few studies about the influence of sensitization route on the asthma phenotype associated with an impact on the immune response, lung barrier function and microbiota dysbiosis. Here, we compared mouse models of HDM-induced allergic asthma via different routes in regard to clinical features of asthma, immune responses, lung barrier and dysbiosis.

MATERIALS AND METHODS

Animal model
BALB/c By J female mice were obtained from Charles River (Lyon, France). These mice were housed in ventilated cages in the IRS-1 Experimental Therapeutics Unit with free access to water and a standard diet (SAFE A04) with a dark/light cycle of 12:12 hours. The total extract of HDMs was obtained from Stallergen Greer (Antony, France).
BALB/c By J female mice, aged 7 weeks, were sensitized once a week for four weeks with HDM diluted in phosphate-buffered saline (PBS) as described (Fig. 1A). Based on our previous work and on the literatures, we used different doses of HDM to sensitize animals according to different sensitization routes in order to reach comparable amount of allergen to pass through the epithelial barrier: oral (20 mg of HDMs diluted in 200 µL of PBS), nasal (250 µg of HDMs diluted with 40 µL of PBS) or percutaneous (500 µg of HDMs diluted with 20 µL of DMSO 70%). After the sensitization phase, the mice were challenged twice intranasally (250 µg of HDM diluted with 40 µL of PBS), regardless of the initial route of sensitization to induce potent allergic reactions as previously described. The control (CTL) mice received PBS alone. The final analysis was performed 24 hours after the last challenge.

Airway hyperresponsiveness (AHR) measurement

After the first challenge, the enhanced pause (Penh) variable was measured by whole body plethysmography (emka TECHNOLOGIES, Paris, France). A conscious mouse was kept alone in a plethysmography chamber, and the airways flow and pressure were measured before and after nebulization of increasing concentration of methacholine (Mch) from 0 to 40 mg/mL. To confirm AHR, airway resistance was evaluated using the force oscillation technique (emka TECHNOLOGIES). After mice were anesthetized and intubated, airway resistance and compliance were measured before and after nebulization of increasing concentrations of Mch from 0 to 20 mg/mL.
Tracheal resistance
Tracheas were extracted from the mice and fit in Ussing chambers (Physiologic Instruments, San Diego, CA, USA). The spontaneous transepithelial potential difference (PD) was measured, and the tissue was adjusted at zero voltage by continuously introducing an appropriate short-circuit current with an automatic voltage clamp (Physiologic Instruments). Tissue ion resistance (1/G), where G is conductance, was measured from the potential difference and short-circuit current according to Ohm’s law using the Acquire and Analyze software (Physiologic Instruments).

Bronchial contraction
Bronchi were extracted from the lung and fit in a Mulvany myograph chamber (Scintica, London, England). Bronchial contraction viability was determined first through an acetylcholine challenge. The maximal temporary bronchial contraction was evaluated with a Mch challenge.

Histology
Lungs were fixed in 4% paraformaldehyde in PBS for at least 48 hours, embedded in paraffin, cut and stained by MicropiCell Platform (SFR Bonamy, IRS-UN, Nantes, France). Periodic acid-Schiff (PAS) and hematoxylin-phloxine-saffron (HPS) staining were used to assess mucus production and inflammatory infiltrate/epithelial integrity, respectively. Bronchial smooth muscle hyperplasia was analyzed by transgelin staining (anti-TAGLN/transgelin antibody [ab14106]; Abcam, Cambridge, UK). Large lung scans were performed with a Nikon Eclipse Ti2 microscope (NIS-Element). The histological score was based on the following criteria: integrity and hyperplasia of the lung epithelium (measure of the increase in epithelial thickness), lung inflammatory infiltrate (observation of inflammatory infiltrate or nodules), presence of mucus cells and mucus production, and bronchial smooth muscle remodeling (measure of the increase in smooth muscle thickness). Each of the 4 criteria was graded on a 5-point scale with a relative comparison to CTL mice, for a final score of 20 points.

Bronchoalveolar lavage (BAL)
BAL was obtained by filling airways with 5×1 mL of PBS buffer. BAL was centrifuged to pellet cells that were counted and analyzed by flow cytometry. The pellet was suspended in prelysis buffer and proteinase K, and immediately frozen at –80 °C for microbiota DNA extraction. The supernatant was kept for microbiota metabolite and cytokine analyses. BAL cytokine quantification was processed with Bio-plex Pro™ Mouse Cytokine Grp1 Panel 23-Plex (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions using the Bioplex® 200 system of Bio-Rad.

Analysis of microbiota composition
Bacterial DNA was extracted from BAL pellets according to the manufacturer’s instructions (genomic DNA from tissue, NucleoSpin™ Tissue; Macherey-Nagel, Düren, Germany). The microbiota composition was analyzed by 16S sequencing with permission from Biofortis (Saint-Herblain, France). Raw sequencing data were obtained from a single Illumina MiSeq run as 250 bp paired-end reads targeting the V3-V4 region (Primers: Bakt_341F 5′-CCTACGGGNGGCWGCAG-3′, Bakt_805R 5′-GACTACHVGGGTATCTAATCC-3) of the 16S rDNA gene. Reads were processed with microSysMics (https://bio.tools/microSysMics), a workflow built around the QIIME2 toolbox, chaining softwares in order to automatize metabarcoding analysis. PCR primers and remaining Illumina adapters were removed with Cutadapt. Amplicon sequence variants (ASVs) inference and count estimation were
performed with dada2 using a trimming length of 220 and default parameters. We used a Naive Bayes Classifier pre-trained on the SILVA 99% reference database (release 138) to assign ASVs to taxa.

Analysis of microbiota metabolites

First, in silico analysis of microbiota metabolite production was performed based on 16S sequencing results. Based on these results, all of the different families of metabolites identified were investigated by mass spectrometry.

Flow cytometry

Lungs were removed and crushed with a Tenbroeck tissue grinder (Wheaton™; DWK Life Sciences, Mainz, Germany) to obtain a single-cell suspension. The lung pellet was suspended in 1 mL of RBC Lysis Buffer (eBioscience™; Thermo Fisher Scientific, Waltham, MA, USA) to lyse erythrocytes for 8 minutes at room temperature, mixed with 9 mL of fluorescence-activated cell sorting (FACS) buffer (Dulbecco's Phosphate Buffered Saline without Ca²⁺ and Mg²⁺, 1% ethylenediaminetetraacetic acid, 1% fetal bovine serum). The lung cell pellet was suspended in 600 µL of FACS buffer. Total cells were counted on KOVA slides. BAL cells were stained with the following surface markers: CD3-PerCP Cy5.5, CD4-APC Cy7, CCR3-Alexa647, F4/80-FITC, Ly6G-BV421, Siglec F-BV510 and Ly6C-PE. T-cell lymphocytes in the lung were stained with the following surface markers: CD3-PerCP Cy5.5, CD4-APC Cy7, CD8-FITC and CD25-BV510. The cells were fixed and permeabilized using the Cytofix/Cytoperm Kit (BD Biosciences, Franklin Lakes, NJ, USA) and stained with Fox P3-Alexa647, GATA3-PE-Cy7 and RORγT-PE. The cells were identified by flow cytometry on a Fortessa X20 cytometer (BD Biosciences). Data were acquired using DIVA software (BD Biosciences) and analyzed with FlowJo (TreeStar, V10.5.3).

Real-time quantitative polymerase chain reaction (RT-qPCR)

Lungs were dissociated in lysis buffer using a TissueLyser II (Qiagen, Hilden, Germany) 2 times for 3 minutes at 30 Hz with one bead mill. Total RNA was extracted with the NucleoSpin RNA/Protein Mini kit for RNA and protein purification (Macherey-Nagel). RNA quality was determined by measuring the 260/230 and 260/280 ratios with a Nanodrop system (Thermo Fisher Scientific). Twenty micrograms of total mRNA were reverse transcribed into cDNA with the High-Capacity cDNA Reverse Transcription kit of Applied Biosystems (Waltham, MA, USA) on a GeneAmp PCR system 9700. cDNA was stored at −20°C until use. RT-qPCR was performed in 384-well plates in triplicate with TaqMan™ Universal PCR Master Mix (Thermo Fisher Scientific). RT-qPCR was performed on a 7900HT Fast Real Time PCR System thermocycler. The following genes were assessed: zonula occludens-1 (ZO-1, Mm01320638_m1; Thermo Fisher Scientific), occludin (Mm00500912_m1; Thermo Fisher Scientific), E-cadherin (Mm01247357_m1; Thermo Fisher Scientific), vimentin (Vim, Mm01333430_m1; Thermo Fisher Scientific), mucin 2 (Muc2, Mm00458310_g1; Thermo Fisher Scientific), mucin 5AC (Muc5ac, Mm01276731_g1; Thermo Fisher Scientific). Glyceraldehyde 3-phosphate dehydrogenase (Mm99999915_g1; Thermo Fisher Scientific) was used as a housekeeping control. The results were analyzed with the 2−ΔΔCt method with CTL mice as the calibrator.

Enzyme-linked immunosorbent assay (ELISA)

Blood was collected by cardiac puncture and serum was collected. Specific Derf1 IgE was quantified in serum by indirect ELISAs. Ninety-six-well plates were coated with 2.5 µg/mL natural Derf1 (NA-DF1; Indoor Biotechnologies Ltd., Cardiff, UK) and left overnight at 4°C. Then, the wells were washed with PBS-0.1% Tween and saturated with PBS-0.1% Tween-0.5% gelatin (PBS-T-G) for 2 hours at 37°C, washed, filled with serum diluted by 40x in PBS-T-G and
incubated overnight at 4°C. Specific Derf1 IgE was revealed with anti-mouse IgE (CliniSciences, Nanterre, France) coupled to AP. Substrate MUPs (Merck, Sigma-Aldrich, St. Louis, MO, USA) were added for 1 hour 30 minutes at room temperature in the dark, and fluorescence was measured at 360 nm excitation and 440 nm emission with a Varioskan LUX 3020-956 (Thermo Fisher Scientific). Relative fluorescence was determined compared to that of the CTL mice.

Statistical analysis

Data were analyzed using GraphPad Prism 6.0 (La Jolla, CA, USA). Values are expressed as the mean ± standard error of mean, and were compared using nonparametric analysis of variance with a Kruskal-Wallis test. A P value of less than 0.05 was considered significant.

Ethics approval and consent to participate

All experiments followed ethical rules, and the protocol was approved by the ethics committee on Animals Experimentation Pays de Loire (accreditation number 17265).

RESULTS

The oral route is less effective in inducing allergic lung dysfunction in asthma than the other routes

To evaluate the impact of the sensitization route on the development of allergic asthma features in mice, we used models generated by HDM sensitization via the oral (PerOS), nasal (iN) or cutaneous (PerC) route (Fig. 1A). We first measured the impact on respiratory function in response to Mch (Fig. 1B). Following exposure to high dose of Mch, an increase in the Penh was observed in the sensitized mice compared to the CTL mice, regardless of the sensitization route. Then, we measured the lung resistance of the small airways and demonstrated an increase in lung resistance in the sensitized mice (Fig. 1C). Interestingly, the mice sensitized via the nasal or cutaneous route displayed a more increase in lung resistance compared to the orally sensitized mice, suggesting more severe lung dysfunction. To determine whether the sensitization route could also affect epithelial physiology, we measured tracheal electrical resistance in an Ussing chamber (Fig. 1D). We showed that tracheal resistance was increased in the iN and PerC groups compared to the CTL mice. However, the PerOS group displayed tracheal resistance similar to that of the CTL group. Airway smooth muscle (ASM) responses were characterized *in vitro* in isolated trachea (Fig. 1E). In accordance with airways resistance, ASM contraction in response to Mch was increased in the sensitized mice compared to the CTL mice. Taken together, our results indicated modulation of respiratory dysfunction toward a more severe phenotype in the percutaneously or nasally sensitized mice compared to the orally sensitized mice.

The sensitization route differentially affects the anatomic lung structure and epithelium integrity

To determine the impact of the sensitization route on macroscopic asthma features and bronchial epithelium integrity, we performed histological staining of the bronchi (Fig. 2A). Our results showed an increase in the histological score in the sensitized mice compared to the CTL mice, regardless of the sensitization route in terms of epithelial thickness, inflammatory infiltration, mucus production and smooth muscle thickness (Supplementary Fig. S1A-D). Epithelial barrier integrity was evaluated by the lung expression of the tight junction proteins, ZO-1, vimentin (Vim), E-cadherin (E-cad) and mucin 5AC (MUC5AC) (Fig. 2B). Surprisingly, ZO-1 expression was found to be similar in the iN, PerOS and CTL groups, but significantly
reduced in the PerC group compared to the other groups, suggesting a more damaged epithelium integrity. In contrast, we found an increase in Vimentin expression in the sensitized mice compared to the CTL mice, regardless of the route of exposure. Our results indicated that the epithelium may undergo epithelial-mesenchymal transition (EMT) in the sensitized mice. Consistent with these results, the expression of E-cadherin, a crucial type of cell–cell adhesion molecule, was decreased in the iN mice compared to the CTL and the other mice, indicating that epithelial integrity affects EMT more definitely in the nasally sensitized mice. As a part of the epithelial barrier, mucus-secreting cells might be affected by the sensitization route. Therefore, we measured the expression of MUC5AC and found its overexpression in sensitized mice which can contribute to asthma. Altogether, our results suggested that the route of sensitization may influence epithelial barrier damage in different ways.

The sensitization route modifies the inflammatory profile and T cell responses

To determine the potential impact of the sensitization route on the asthma endotype, we analyzed inflammatory cells in BAL (Fig. 3). As expected, our model is characterized by eosinophilia (Fig. 3A). Interestingly, we observed a mixed eosinophil/neutrophil infiltration. The iN and PerC mice demonstrated a two-fold increase in neutrophilia compared to the PerOS mice. Similarly, we observed an increase in macrophages and lymphocytes in the iN and PerC mice, but did not in the PerOS mice. Then, we assessed the levels of RANTES (CCL5) and eotaxin (CCL11) in BAL (Fig. 3B and C). We observed an increase in RANTES and eotaxin productions in the iN and PerC mice compared to the CTL and PerOS mice, likely correlating with the T cell infiltration (Fig. 3B). In addition, eotaxin production was significantly increased in the iN mice compared to the PerC mice, suggesting modulation of eosinophilia by the sensitization route (Fig. 3C). Finally, we explored the effect of the sensitization route on Th2 humoral response defined by circulating HDM-specific IgE (Fig. 3D). Overall, asthmatic mice had a higher level of HDM-specific IgE than the CTL mice. The iN and PerC mice displayed a higher level of HDM-specific IgE than the PerOS mice. As our model induced mixed infiltration, we quantified pulmonary Th2, Th17, Treg cells and associated cytokines (Fig. 4). A strong type 2 response in the lungs was observed in asthmatic mice, regardless of the sensitization route (Fig. 4A). Accordingly, the levels of IL-4, IL-5, and IL-13 were increased...
in asthmatic mice (Fig. 4B). However, the iN mice displayed a higher level of IL-4 than the other sensitized mice, and the PerOS mice showed a higher level of IL-4 than the PerC mice. An increase in Th17 cells was observed in the lungs of the iN and PerC mice, but not the PerOS mice, compared to the CTL mice (Fig. 4C). Moreover, the increase in Th17 cells was more pronounced in the PerC mice than in the iN mice, highlighting the influence of the sensitization route on the immune response in allergic asthma. Accordingly, the level of IL-17 was increased in the iN and PerC asthmatic mice compared to the CTL and PerOS mice (Fig. 4D). Treg cells were increased in the iN and PerC mice compared to the CTL and PerOS mice (Fig. 4E). Unlike Treg cells, IL-10 production was increased in the PerOS mice compared to the CTL, iN and PerC mice, suggesting a more pronounced regulatory response in the PerOS mice (Fig. 4F). The transforming growth factor (TGF)-β levels were increased in the asthmatic mice compared to the CTL mice, regardless of the route of sensitization (Fig. 4G). These results suggested that the route of sensitization may influence not only the inflammatory Th2 and Th17 responses, but also the regulatory response with opposing effects of the nasal and cutaneous routes versus the oral route. Our results demonstrated that the sensitization route can considerably modify lung inflammation at the cellular and molecular levels, humoral responses toward HDM and T cell responses.
The sensitization route is associated with different lung microbiota compositions

As asthma is a chronic inflammatory disease that shows complex heterogeneity with various phenotypes, depending on environmental factors and host characteristics, and the influence of the sensitization route on the inflammatory phenotype has been shown, we aimed to analyze the impact of the sensitization route on the lung microbiota (Fig. 5). Our results showed that the asthmatic mice had a lower bacterial diversity (Fig. 5A) and more ASVs (Fig. 5B) than the CTL mice. Then, the lung microbiota composition was measured, and we observed a decrease in *Cyanobacteria* and *Actinobacteriota*, and an increase in *Bacteroidota* abundance in the iN and PerC mice compared to the CTL mice. In contrast, the PerOS mice displayed a decrease in all these phyla. Additionally, the PerOS group had a specific increase in *Proteobacteria* abundance together with a decrease in *Firmicutes* abundance compared to other groups (Fig. 5C). Altogether, our results indicated specific changes in lung microbiota composition, depending on the route of sensitization. A significant decrease was observed in the abundances of four genera, *Cutibacterium*, *Acinetobacter*, *Lactobacillus* and *Streptococcus*, in the asthmatic mice compared to the CTL mice (Fig. 5D-G). However, no significant differences were observed in these genera, regardless of the route of sensitization, suggesting potential differences in bacterial activities. For the metabolites, we observed an increase in choline production, a component of cell membranes, and very low-density lipoproteins in the PerOS mice compared to the CTL mice (Fig. 6A). This result is in accordance with the modulation in *Proteobacteria* and *Firmicutes* abundance observed in the PerOS mice, as two phyla were involved in the metabolism of dietary choline. Similarly, two quaternary ammonium compounds, betaine and carnitine, which are involved in *Bacteroidetes* metabolism, were found to be increased in the PerOS mice compared to the other mice (Fig. 6B). Finally, another compound, taurine, implicated in feedback inhibition of the neutrophil/macrophage respiratory burst,
Collectively, oral sensitization was correlated with a higher level of anti-inflammatory metabolites in the lung.

DISCUSSION

Asthma is a complicated disease characterized by an important phenotypic diversity, depending on respiratory function impairment severity, airway epithelial dysfunction, immune responses or endotypes, and microbiota dysbiosis. Skin, lung and intestinal epithelia are not only physical barriers but also powerful inducers of immune responses against
environmental agents. Sensitization pathways have been hypothesized to be the origin of phenotypic diversity in allergic diseases, especially in asthma. In this study, we established mouse models of allergic asthma with different sensitization routes and compared their phenotypes. Our results showed that typical asthmatic features, including eosinophilic infiltration, AHR, mucus production and high IgE levels, could be reproduced by different HDM sensitization route in mice. Interestingly, there were notable differences among them, including the region and severity of lung inflammation and epithelium integrity. These findings indicated that the pathophysiological pattern of asthma varies according to the mode of induction. These observations are in line with those of previous studies suggesting that HDM in the gut may potentiate sensitization or HDM in the skin potentiate a Th17 response. This airway inflammation can occur in the proximal to distal airways and lung parenchyma, resulting in lung hyperinflation due to extensive mucus plugging.

In patients with asthma, the barrier function of the epithelium plays an important, but misunderstood role by disrupting tight junctions in the central and small airways and lung parenchyma. Here, we demonstrated the influence of the route of sensitization on tight junction disruption. The mice sensitized via the cutaneous or respiratory route displayed an alteration in tight junction expression, while the orally sensitized mice did not. Similarly, a recent study modeled different inflammatory phenotypes in mice through the nasal or intraperitoneal routes. Our results highlighted barrier dysfunction at the macroscopic level rather than a specific pathway within the epithelial barrier. Thus, our results should be confirmed by further studies at the protein level.

The sensitization route plays a critical role in the histological features of asthma, with cutaneous and intranasal exposure of the allergen inducing different disruptions of the epithelial barrier. Mucus overproduction is a characteristic consequence of epithelial barrier impairment in asthma. It has been shown that IL-17A increases mucin expression in human primary airway epithelial cells, indicating the association of mucus overexpression and Th17 inflammation. Other studies in humans and mice supported these results. In vivo studies have shown that allergen exposure promotes inflammation through the interaction of various immune cells, such as eosinophils, neutrophils, activated T lymphocytes, macrophages and dendritic cells. In particular, Th2 cytokines, including IL-4, IL-5, and IL-13, play critical roles in the development and maintenance of asthma. Here, airway inflammation was slightly enhanced by oral sensitization characterized by an increase in only eosinophils and specific IgE.

Th17 cells, involved in the pathogenesis of allergic asthma, was largely increased in the cutaneous- or nasal-sensitized mice. In parallel Th2-dependent airway reactivity is enhanced in a more pronounced manner via the intranasal or cutaneous route, suggesting that the mode of sensitization can differentially alter the physical features of the airways. Our results suggested that animal models of asthma with different histopathological patterns and immune phenotypes can be established by varying the sensitization route (Fig. 7).

As a chronic inflammatory disease, asthma shows complex heterogeneity with various clinical phenotypes, depending on the interplay between environmental factors and various susceptibility genes. Many recent studies have begun to reveal the role of the microbiota in asthma pathogenesis, enhancing the understanding of this heterogeneous disorder. Our current study explored the link between the route of sensitization and dysbiosis in a mouse model. In previous studies on the respiratory microbiome, many differences were reported between patients with asthma and healthy people, and among patients with different
clinical types of asthma. We first observed a decrease in lung microbiota diversity and ASV regardless of the route of exposure. Since the quantitative lung microbiota was similar among the routes of exposure, we analyzed the respiratory microbiota composition at the phylum level. Among the upper respiratory tract microbiota, Cyanobacteria and Actinobacteria were more abundant in the naive mice than in the sensitized mice. On the contrary, the abundances of Bacteroidetes and Firmicutes were largely decreased in the mice sensitized via the oral route. At the genus level, Cutibacterium, linked to the skin condition of acne, was found to be significantly decreased in asthmatic mice. Other genera, such as Acinetobacter, Lactobacillus, and Streptococcus, were also found to have decreased abundance. Acinetobacter was known to be probiotics, and intranasal exposure suppressed asthma development through the inhibition of type 2 responses by modulating lung macrophage activation, shifting M2a and M2c macrophages to M2b macrophages. Moreover, neonatal mice were protected from AHR when inhaled Acinetobacter was administered concurrently with HDM. Acinetobacter blocked the expansion of pulmonary IL-43+CD4+ T cells, whereas IL-13+ ILCs and IL-33 levels remained elevated. Similarly, Lactobacillus decreased the number of granulocytes, the levels of Th2 and Th17 inflammatory cytokines in the lungs, and the airway inflammation score, and promoted the secretion of IL-10. Interestingly, Streptococcus abundance was found to be decreased in children with severe wheezing compared to children with non-severe wheezing. Moreover,
a decrease in the ratio of the *Streptococcus* genus to the other genera was found in individuals with atopic dermatitis compared to healthy controls.40 We also observed an increase in proteobacteria in oral-sensitized mice which may be linked to an increase in *Haemophilus* that in turn may influence phenotype.41 These results indicated that the predominant microbiota of the respiratory tract were different according to the route of sensitization in asthma. The dysbiosis linked to sensitizing pathway is likely correlated with different inflammation. However, at the genus level, similar differences were observed, suggesting dysfunction in the functional microbiota. Finally, in addition to quantitative and qualitative differences in lung microbiota affecting asthma characteristics, growing evidences suggest that functional properties remain a crucial point in the relationships between microbiota in healthy and disease states.42 Here, oral sensitization is correlated with a higher level of anti-inflammatory metabolites in the lung as suggested by the link between choline and betaine with lower inflammatory marker as well as taurine and antioxidant effect.43

Our preliminary results demonstrated the large influence of route of exposure on subsequent allergic immune reaction, and could be useful for allergic prevention and mitigation especially in allergic progression. In fact, infant allergies, such as dermatitis and food allergy, often evolve toward allergic asthma in adulthood during the atopic march and route of sensitization influences immune cell recruitment at various mucosal sites a model of food allergy.44 Thus, there is a connection between the different route of exposure and the subsequent immune response in allergies. These differences may have impact on disease severity and/or development, thus participating in the atopic march. However, our study is limited to a mouse model and should be extended to non-human primates and/or human cells to confirm our data. To finish with, we did not explore the impact of doses and nature of allergens, which should be taken into consideration and modify especially interactions between epithelial barriers and allergens. Despite these limitations, our study highlights the potential impact of exposure route on asthma phenotype.

ACKNOWLEDGMENTS

The author would like to thank the Cytocell platform for assistance with the flow cytometry analysis, and we would like to thank the Therassay platform for the use of respiratory equipment (Flexivent system, Plethysmography). We are grateful to the members of the UTE IRS-UN animal facility for the support they provided with the mice. We would also like to thank the MicroPicell platform for performing the histological preparation. We would like to thank Stallergenes Greer for kindly providing the HDM total extract. The authors thank the cluster LUNG innovatiOn (LUNG O2) for logistic support. We thank M. DeCarvalho, A. Moui and C. Lebot for their experimental help. The authors thank the Genavie Foundation for funding support. The authors thank the Mibiogate consortium for their funding, material and engineering support. The authors thank L. Boussamet for collaborating on in silico microbiota metabolite analysis. The authors thank M. Croyal and S. Crossouard from the mass spectrometry platform of SFR-sante F. Bonamy for their collaboration.

This work was supported by a grant from the Mibiogate consortium and the Fondation du souffle, INRAe Transfert and the “Institut de Recherche en Santé Respiratoire des Pays de La Loire” IRSPL. LUNG O2 is supported by the National Research Agency under the Programme d’Investissements d’Avenir (ANR16-IDEX-0007), the Pays de la Loire Region research program and by the Institut de Recherche en Santé Respiratoire des Pays de la Loire”. The Genavie Foundation supported this project with a grant.
SUPPLEMENTARY MATERIAL

Supplementary Fig. S1
Lung sections were stained with HPS, PAS or transgelin (α-SMA) after paraffin inclusion and observed under a microscope. (A) Histological scores were calculated by measuring (B) bronchial epithelium thickness, (C) bronchial smooth muscle thickness, and (D) mucus-producing cells (n = 4–5).

Click here to view

REFERENCES

29. Hamid Q. Pathogenesis of small airways in asthma. Respiration 2012;84:4-11. [PUBMED | CROSSREF]

https://e-aair.org https://doi.org/10.4168/aair.2023.15.e9

PUBMED | CROSSREF

PUBMED | CROSSREF