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Abstract
1. Recent research highlights the ecological importance of individual variation in 

 behavioural predictability. Individuals may not only differ in their average expres-
sion of a behavioural trait (their behavioural type) and in their ability to adjust 
behaviour to changing environmental conditions (individual plasticity), but also in 
their variability around their average behaviour (predictability). However, quanti-
fying behavioural predictability in the wild has been challenging due to limitations 
of acquiring sufficient repeated behavioural measures.

2. We here demonstrate how common biologging data can be used to detect individual 
variation in behavioural predictability in the wild and reveal the coexistence of highly 
predictable individuals along with unpredictable individuals within the same population.

3. We repeatedly quantified two behaviours—daily movement distance and diurnal 
activity—in 62 female brown bears Ursus arctos tracked across 187 monitoring 
years. We calculated behavioural predictability over the short term (50 consecu-
tive monitoring days within 1 year) and long term (across monitoring years) as 
the residual intra-individual variability (rIIV) of behaviour around the behavioural 
reaction norm. We tested whether predictability varies systematically across av-
erage behavioural types and whether it is correlated across functionally distinct 
behaviours, that is, daily movement distance and amount of diurnal activity.

4. Brown bears showed individual variation in behavioural predictability from predict-
able to unpredictable individuals. For example, the standard deviation around the 
average daily movement distance within one monitoring year varied up to fivefold 
from 1.1 to 5.5 km across individuals. Individual predictability for both daily move-
ment distance and diurnality was conserved across monitoring years. Individual pre-
dictability was correlated with behavioural type where individuals which were on 
average more diurnal and mobile were also more unpredictable in their behaviour. In 
contrast, more nocturnal individuals moved less and were more predictable in their 
behaviour. Finally, individual predictability in daily movement distance and diurnality 
was positively correlated, suggesting that individual predictability may be a quantita-
tive trait in its own regard that could evolve and is underpinned by genetic variation.

5. Unpredictable individuals may cope better with stochastic events and unpredict-
ability may hence be an adaptive behavioural response to increased predation risk. 
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1  | INTRODUC TION

Similar to the study of classical ecological niches, where populations 
may be composed of individual specialists with distinct niches (Araújo 
et al., 2011), the field of animal personality studies behavioural niche 
specialisation where over repeated measures individuals may have a 
lower or higher average expression of a given behaviour (i.e. behavioural 
type) than the population average (Figure 1a). The coexistence of dif-
ferent behavioural types in the wild has been demonstrated for a range 
of behaviours, such as food resource selection (Courbin et al., 2018), 

movement (Abrahms et al., 2018; Spiegel et al., 2017), activity (Hertel, 
Leclerc, et al., 2019; Nakayama et al., 2016), habitat selection (Leclerc 
et al., 2016), mating strategy (van Oers et al., 2008) and aggressive-
ness towards conspecifics (Araya-Ajoy & Dingemanse, 2017). A facet 
of behaviour that only recently gained attention in the study of animal 
personality is the variability of behaviour around the behavioural type 
(Figure 1b) after also accounting for variation in plastic responses to 
changing environmental conditions (i.e. behavioural reaction norm: 
Dingemanse et al., 2010). Individuals may not only vary in their av-
erage behaviour but also in their residual intra-individual variability 

Coexistence of predictable and unpredictable individuals may therefore ensure 
adaptable and resilient populations.

K E Y W O R D S

animal personality, behavioural syndrome, double hierarchical model, movement, residual 
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F I G U R E  1   Conceptual depiction 
of possible relationships between an 
individual's mean behaviour (behavioural 
type) and its variability of behaviour 
around the behavioural type (behavioural 
predictability). (a) Behavioural type 
of five individuals relative to the 
population average behaviour (dashed 
line). Among-individual repeatability (R) 
characterises how much of the population 
wide behavioural variation is explained 
by among-individual differences. (b) 
Behavioural type and R can assume the 
same values under different structures of 
within individual behavioural variability. 
Within individual variability may be equal 
(green), or vary among individuals (orange 
and purple). (c) Accordingly, behavioural 
predictability measured as residual intra-
individual variability (rIIV), that is, after 
controlling for environmental effects, 
may be equal (green) among individuals, 
in which case rIIV does not differ from 
the population mean residual (dashed 
line) and the coefficient of variation 
in predictability (CVP) approaches 0. 
Alternatively, rIIV can vary among 
individuals (orange, purple), implicating a 
gradient from behaviourally predictable to 
behaviourally unpredictable individuals. 
Low rIIV indicates higher behavioural 
predictability relative to individuals with 
high rIIV indicating low predictability. 
(d) Finally, variation in behavioural 
predictability can be correlated with 
behavioural types (purple) or uncorrelated 
(orange)
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of behaviour around that mean (Westneat et al., 2015), a phenome-
non commonly termed behavioural predictability (Figure 1c; Biro & 
Adriaenssens, 2013; Cleasby et al., 2015; Stamps et al., 2012). Under 
individual variation in behavioural predictability, some individuals are 
unpredictable and are producing a broad range of behavioural values, 
whereas more predictable individuals express behaviours that are nar-
rowly centred around their own average. Individual variation in pre-
dictability may arise statistically due to an incomplete model in which 
covariates which animals plastically adapt their behaviour to are not 
sufficiently controlled for (Westneat et al., 2015). As such, variation in 
predictability may account for important hidden biological processes. 
Variation in predictability may, however, also be adaptive, for example 
in predator–prey relations (Briffa, 2013), for conspecific social niche 
partitioning (Bergmüller & Taborsky, 2010), or predictability may in-
crease with experience over age (Fischer et al., 2014). The analogue of 
behavioural predictability in a foraging context would be intraspecific 
dietary niche variation (Araújo et al., 2011) with a spectrum from di-
etary specialists occupying a narrow dietary niche co-occurring with 
dietary generalists occupying a wide dietary niche within populations 
of the same species (Estes et al., 2003; Wilson & Yoshimura, 1994). 
Dietary specialised individuals may be at an advantage under stable 
environmental conditions (Kassen, 2002; Vander Zanden et al., 2010) 
whereas generalists fare better under environmental stochasticity or 
anomalies (Abrahms et al., 2018). Individual variation in behavioural 
predictability could have similar important implications for individual 
performance relative to environmental dynamics.

The existence of variation in behavioural predictability is data de-
manding and difficult to quantify and, as a result, has rarely been inves-
tigated in experimental studies (Jolles et al., 2019; Mitchell et al., 2016). 
So far only one study has studied variation in predictability under re-
alistic field conditions (Westneat et al., 2012) where the presence of 
predators and conspecifics is expected to have strong and long-lasting 
effects on individual behaviour. We here aim to close this gap by using 
biologging data to elucidate the extent of individual variation in be-
havioural predictability in routine movement and activity behaviours 
of animals in the wild. A major challenge in estimating variation in 
predictability is that it requires large samples of repeated measures 
per individual and balanced sample sizes across individuals (Cleasby 
et al., 2015). Biologging data such as GPS location or accelerometer 
data from animal tracking devices provide a means of obtaining such 
high and relatively equal sampling intensities of behaviour over all in-
strumented individuals in a population.

1.1 | Biological relationships of mean and variance

Only a few studies have tested whether behavioural predictabil-
ity is systematically correlated with behavioural types (Figure 1d; 
Jolles et al., 2019; Matich et al., 2011; Stamps et al., 2012). Potier 
et al. (2015) showed that foraging great cormorants Phalacrocorax 
carbo consistently differed in dive durations. Individuals which dove 
for shorter periods applied this foraging tactic more consistently, 
whereas individuals with longer dive times were more flexible in 

their diving behaviour. Conversely, Mitchell et al. (2016) found that 
in the closed environment of an experimental tank, more active gup-
pies Poecilia reticulata showed lower intra-individual variability in ac-
tivity and were hence more predictable in their behaviour than their 
more sedentary conspecifics. Elsewhere, no relationship could be 
found between an individual's behavioural type and its predictabil-
ity (Stamps et al., 2012). From a neuroendocrinological perspective, 
bolder and more proactive individuals seem to have less inhibitory 
control and are hence more predictable in their behavioural re-
sponses, whereas shyer, reactive individuals are more flexible to ad-
just their behaviour to the environment (Coppens et al., 2010). This 
is in line with findings from black-legged kittiwakes where bolder 
birds displayed more repeatable foraging behaviour than shyer birds 
(Harris et al., 2020). Furthermore, behavioural types of functionally 
distinct behaviours can be correlated among individuals into behav-
ioural syndromes (Dingemanse et al., 2012; Réale et al., 2007; Sih 
et al., 2004). If behavioural predictability is a repeatable trait in itself 
(Biro & Adriaenssens, 2013), we might expect that the expression of 
this trait, quantified from functionally distinct behaviours, could also 
be correlated among individuals into predictability syndromes. Based 
on this assumption, individuals with high predictability in one behav-
iour could also express high predictability in other behaviours, which 
in turn would strongly support the idea of coexisting unpredictable 
and predictable individuals in the same population. Alternatively, 
trade-offs between many behaviours may lead to a mix of positive, 
negative and neutral among-individual correlations in predictability 
estimates across behaviours, simply because low levels of predict-
ability in one suite of behaviour may be compensated for in function-
ally distinct other suites of behaviours (Forsman, 2015).

1.2 | Statistical relationships of mean and variance

Behavioural predictability can be quantified statistically by parti-
tioning the phenotypic variance into its among-individual and re-
sidual components. Typically, behavioural ecologists quantify how 
much behavioural variance in a population can be attributed to 
among-individual differences in average behaviour, that is, behav-
ioural types (Figure 1a). Univariate and multivariate mixed model-
ling techniques are effective tools to partition these variances 
(Dingemanse & Dochtermann, 2013). Mixed models assume homo-
geneity of variance across individuals (the levels of a random inter-
cept), however, this assumption is rarely verified and often violated 
(Schielzeth et al., 2020). The average behavioural types of individu-
als, as well as the population level ‘among individual repeatability’ 
(R) can assume the same values under different scenarios of residual 
intra-individual variability around the mean, that is, homogenous 
(Figure 1b green) or heterogeneous (Figure 1b orange). The exten-
sion of a mixed model into a double-hierarchical generalized linear 
model (DHGLM) allows to relax the assumption of equal residual var-
iance for all individuals by explicitly modelling the residual variance. 
DHGLMs allow to simultaneously model differences in the average 
and in the residual variance in a ‘mean’ and ‘dispersion’ model. The 
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‘mean’ model includes fixed and random effects just as typical linear 
mixed effects models do. The dispersion part of the model uses the 
residual variance, that is, the unexplained variance from the mean 
model, as its response variable. As in the ‘mean’ model, the disper-
sion model includes an intercept, which correspond to the average 
residual standard deviation in the population. Fixed effect coeffi-
cients indicate whether a given factor or gradient increases or de-
creases the variance relative to the intercept. By including individual 
identity as a random effect, one can estimate how much individuals 
depart from the population residual variance (residual intra-individ-
ual variation: rIIV, Figure 1c, Cleasby et al., 2015). When individuals 
are equally variable, rIIV equals the population intercept (Figure 1c 
green). Alternatively, higher values of rIIV indicate that an individual 
produces a wider range of phenotypes compared to the average be-
havioural variance in the population, it hence behaves more unpre-
dictably. In contrast, individuals with low rIIV only express a narrow 
range of behavioural values and behave more predictably (Figure 1c 
orange). Similar to the population's repeatability (R), variation in rIIV 
can be quantified as the coefficient of variation in predictability 
(CVP). Higher CVP values indicate a population composed of a mix-
ture of predictable and unpredictable individuals (Figure 1c orange 
and purple) while low values indicate individuals are homogenous 
in their expression of behavioural variation (Figure 1c green). When 
individuals at one of the extremes of a behavioural type gradient 
(i.e. higher or lower average behaviour) display higher behavioural 
predictability (and vice versa) this results in a functional correlation 
of behavioural type and behavioural predictability (Figure 1d purple).

Note that such mean–variance between correlations can arise 
mathematically, for example for data measured on a ratio scale (i.e. 
data that have a lower bound at 0) or for specific distributions where 
the mean is equal to its variance or standard deviations (e.g. Poisson 
and exponential distributions respectively). In such cases, individuals 
with mean values close to 0 will inevitably have small variances. Any 
change in mean must therefore be accompanied by an equal change 
in variance. Mean–variance relationship can also occur when data 
distributions deviate from normality.

1.3 | Study system

We here use the brown bear Ursus arctos a highly adaptable ecologi-
cal generalist, as model species to test theoretical predictions about 
individual variation in predictability and its relation to an individual's 
behavioural type, in the wild. Our study population in south-cen-
tral Sweden has previously been demonstrated to show consider-
able among-individual variation for routine behaviours such as daily 
movement distance, diurnal activity and habitat selection for roads, 
bogs and clearcuts (Hertel, Leclerc, et al., 2019; Leclerc et al., 2016). 
Moreover, female bears exhibit behavioural syndromes and vary along 
a gradient from nocturnal/less mobile to diurnal/more mobile individ-
uals (Hertel, Leclerc, et al., 2019). Female brown bears maintain non-
territorial, stable multiannual home ranges which overlap considerably 
among females (Frank et al., 2018). Pronounced long-lasting individual 

differences in behaviour have been suggested to facilitate home range 
overlap through intraspecific temporal (Hertel et al., 2017) and spatial 
(Leclerc et al., 2016) niche partitioning. Brown bears inhabiting less an-
thropogenically altered landscapes and with no hunting are preferably 
day active but increase nocturnality in reaction to increased human 
presence (McLellan & McLellan, 2015; Ordiz et al., 2014). When ap-
proached experimentally by humans on foot, humans rarely notice 
the presence of a bear, while bears, after their initial flight response, 
change their activity pattern to become more nocturnal for up to 
3 days after the encounter (Ordiz et al., 2013). These studies demon-
strate individual variation in mean bear behaviour but they also sug-
gest that bears may differ in their behavioural variability around their 
mean if certain behavioural types are more likely to be disturbed by 
humans. A functional among-individual correlation between diurnality 
and daily movement distance has been demonstrated (Hertel, Leclerc, 
et al., 2019), with more diurnal individuals also moving farther and we 
suggest that those diurnal, far moving bears are more likely to encoun-
ter humans or traffic than their more elusive behavioural counterparts. 
Furthermore, adult female brown bears in our population produce a 
litter every 2–3 years (i.e. females keep their cubs for 1 or 2 years after 
birth, Van de Walle et al., 2018). Females with cubs have been shown 
to move over shorter distances than solitary females, probably be-
cause cubs constrain the movement capacity of their mother (Hertel, 
Zedrosser, et al., 2019) and at the same time family groups are more di-
urnal than solitary bears, most likely to protect cubs from encounters 
with potentially infanticidal adult males (Steyaert et al., 2013).

1.4 | Objectives

We used movement and accelerometer data of 62 female brown 
bears to study behavioural predictability in diurnal activity and 
movement behaviour the wild. We expected that cubs of the year 
constrain females to behave more predictably. We further expected 
among-individual variation in behavioural predictability. Specifically, 
we hypothesised that behavioural types are correlated with behav-
ioural predictability and predict that more diurnal and farther mov-
ing behavioural types will be less predictable in their behaviour as 
they are more exposed to human disturbances (traffic, recreation-
ists or berry pickers) when active during the day and will alter their 
behaviour after an encounter as has been shown previously (Ordiz 
et al., 2013). Alternatively, movement activity has been shown to be 
negatively correlated with predictability in experimental environ-
ments (Mitchell et al., 2016) and bolder individuals seem generally 
more predictable (Harris et al., 2020; Jolles et al., 2019). In our case, 
this means that more diurnal and active bears should accept encoun-
ters with humans more readily and be more predictable as a result. 
Last, we predicted that individuals with a more predictable diel ac-
tivity pattern are also more predictable in their daily movement dis-
tances as the means of these two functionally distinct behaviours 
are correlated (Hertel, Leclerc, et al., 2019). We decomposed behav-
ioural variance into its short-term (i.e. within a given bear monitoring 
year) and long-term effects (i.e. across all years an individual was 
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monitored) which allowed us to test whether behavioural predicta-
bility is stable or varies within individuals, for example, across chang-
ing reproductive status or with age (Westneat et al., 2015).

2  | MATERIAL S AND METHODS

2.1 | Study area and data collection

We used movement and activity data collected in south central 
Sweden (~N61°, E15°) as part of a long-term, individual-based moni-
toring project (Scandinavian Brown Bear Research Project; www.
bearp roject.info). Bears were immobilised from a helicopter (Arnemo 
& Fahlman, 2011) and fitted with GPS–GSM neck collars with dual-
axis motion sensors (Vectronics Aerospace GmbH). A vestigial pre-
molar tooth was collected from all bears not captured as a yearling 
to estimate age based on the cementum annuli in the root (Matson 
et al., 1993). We used data of female bears after separation from their 
mother (>2 years) and of all reproductive stages (solitary, with cubs 
of the year, with 1-year-old offspring). We used GPS relocation data 
collected at 1 hr intervals and acceleration data from dual-axis motion 
sensors averaged at 5 min intervals to estimate diurnality and move-
ment distance for 50 consecutive days from 1 July to 20 August in 
2007–2017 (i.e. a monitoring year is defined as a bear monitored from 
1 July to 20 August in a given calendar year). We estimated diurnality 
from acceleration data as relative activity during daylight hours cor-
rected for changes in daylight length (Hoogenboom et al., 1984):

where AD and AN are the sum of the acceleration values during the 
day and night, respectively, and DD and DN are the duration of the day 
and night respectively. Diurnality ranges from −1 (strictly nocturnal) 
to 1 (strictly diurnal). We calculated daily movement distance as the 
sum of Euclidian distances between consecutive hourly GPS positions 
within a day. Because missing GPS positions lead to missing distance 
calculations which may lead to an under-estimation of the daily move-
ment distance, we only included days with at least 18 of 24 possible 
relocations. Movement distance was independent from the number of 
relocations because missing fixes usually occur under closed canopy 
cover, habitat that bears select for resting. We included bears for which 
both diurnality and movement distance was recorded and included all 
monitoring days on which either one of the behaviours was recorded.

2.2 | Model fitting

We fitted a bivariate double-hierarchical generalized linear models 
(DHGLMs) with diurnality and daily movement distance as response 
variables using the r package brms (Bürkner, 2017) based on the 
Bayesian software Stan (Carpenter et al., 2017; Stan Development 
Team, 2018). DHGLMs allow for the simultaneous estimation of a 

‘mean model’ and a ‘dispersion model’. Fixed and random effects can 
be fitted to both parts of the model. The model can therefore not 
only estimate whether individuals differ in their mean expression of 
a behaviour (i.e. behavioural type, ‘mean model’) but also whether 
they differ in their residual standard deviation (rIIV) around this be-
havioural mean (i.e. behavioural predictability, ‘dispersion’ model). 
Importantly, population mean residual standard deviation (the in-
tercept of the dispersion model) and individual specific residual 
standard deviation (rIIV) are estimated on the log scale to ensure 
that standard deviations are always positive (see Cleasby et al., 2015 
for details). We additionally estimated the correlation between the 
random intercepts in the mean model and residual model (i.e. the 
correlation between behavioural mean and rIIV) for both diurnality 
and movement distance, the among-individual correlation of behav-
ioural means (i.e. behavioural syndrome), and the among-individual 
correlation of rIIVs. The response variables movement distance and 
diurnality were analysed using a Gaussian distribution after being 
standardised (mean = 0, SD = 1) to facilitate model fitting. Because 
some days were missing behavioural measures for either diurnality 
or movement distance, we fitted each model to the subset max-
imising the number of days with behavioural measures (diurnality 
n = 7,532, movement distance n = 7,485). Among individual differ-
ences and regression coefficients for fixed effects were estimated 
on the subset of days for which data of the given behaviour were 
available while among individual correlations of means and rIIV were 
based on days with behavioural measures for both diurnality and 
movement (n = 6,835).

2.2.1 | Mean model

We included diurnality and daily movement distance as response 
variables with similar fixed and random effects model structures 
into a multivariate mixed model to model differences in average 
behaviour. For both, diurnality and daily movement, we added a 
population intercept (β0) and controlled for the effects of the short-
ening daylength gradient (as a linear effect over ordinal day of year, 
Z-transformed to mean = 0 and SD = 1), reproductive status (soli-
tary, with cubs, or with 1-year-old offspring) and their interactions 
by fitting these terms as fixed effects. In addition, we controlled for 
a linear effect of age on daily movement distance. For diurnality, 
data exploration suggested a decrease in diurnal activity for younger 
bears and we therefore allowed the effect of age (Z-transformed to 
mean = 0 and SD = 1) to vary within age categories of younger bears 
(3–4 years old) and adult bears (>4 years old).

To decompose behavioural variance which cannot be explained 
by the models’ fixed effects into short-term (annual scale) and long-
term (multiannual scale) effects, we fitted random intercepts for 
each year a bear was monitored (BearYear, observation year nested 
in individual) and for each individual (BearID). We accounted for in-
dividual level variation in seasonal shifts in behaviour with random 
slopes (slope.day) over ordinal day of year for BearYear and BearID 
respectively (Figure S2). There are no systematic effects of study 

(1)diurnality index =

AD

DD
−

AN

DN

AD

DD
+

AN

DN

,

http://www.bearproject.info
http://www.bearproject.info
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year on diurnality or movement behaviour (Hertel, Leclerc, et al., 
2019), and we therefore did not include a year effect in the model. 
Please refer to the Supporting Information, Equations S1–S3 for a 
mathematical notation of the mean model and covariance. Note that 
the mean part of a DHGLM does not contain a term for the residual 
variance, since this term is modelled separately in the ‘dispersion’ 
part of the model.

2.2.2 | Dispersion model

We modelled the residual standard deviation of each diurnality 
and movement distance measure (on the log scale). We added a 
population intercept (γ0) and included age (scaled) and reproduc-
tive status as fixed effects in the dispersion part of the model. 
We fitted random intercepts for BearYear and BearID. The dis-
persion model hyperparameter ω2 reflects, on the log scale, how 
strongly individuals (ω2

BearID) or monitoring years (ω2
BearYear) dif-

fer in their residual standard deviation, measured on the log scale 
(fig. 3 in Cleasby et al., 2015). It allows to assess the consistency 
of individual differences in predictability through time (Mitchell 
et al., 2016).

We estimated the full correlation matrix among all random 
effects, that is, the random intercepts and random slopes of the 
bivariate mean model and the random intercepts of the bivariate 
dispersion model, on both the observation year (BearYear) and in-
dividual (BearID) level. Please refer to the Supporting Information 
S5, Equations S1–S6 for a mathematical notation of the mean 
model, dispersion model and their covariance. Due to the aim of 
this paper we concentrate on correlations between behavioural 
type and predictability and on cross-trait among-individual cor-
relation of behavioural means (i.e. behavioural syndrome) and 
rIIV (i.e. predictability syndrome) in the main test. We report 
the full correlation matrix of the fitted model in the Supporting 
Information S6.

Environmental covariates like home range habitat composition, 
or road density had no effect on mean or rIIV of movement or diur-
nality behaviour and were therefore not included in the model pre-
sented in the main part of the manuscript (Figure S4).

2.2.3 | Priors and model validation

Given that response variables were Z-transformed (mean = 0, 
SD = 1) we used weakly informative normal priors (N(0, 1)) for 
fixed effects, half-normal priors (N(0, 1)) for random effects, and 
an LKJ(2)—correlation prior for the correlation of random effects 
(McElreath, 2020). We ran four chains to evaluate convergence 
which were run for 10,000 iterations, with a warmup of 6,000 
iterations and a thinning interval of 4. All estimated model coef-
ficients and credible intervals were therefore based on 4,000 pos-
terior samples and had satisfactory convergence diagnostics with 
R̂ < 1.01, and effective sample sizes >400 (Vehtari et al., 2020). 

Posterior predictive checks recreated the underlying Gaussian dis-
tribution of distance moved well but did not perfectly capture the 
data distribution of daily diurnality. As mentioned in the introduc-
tion, non-normality of data can affect mean–variance relationships. 
We therefore refitted the model with a log-transformed response 
variable (not shown) which confirmed that our model conclusions 
using a Gaussian distribution were robust. Importantly, this last 
step confirmed that any correlation between behavioural type and 
predictability is unlikely to be a mathematical artefact generated by 
data distributions deviating from normality. Specifically, movement 
data (which are strictly positive and bound by 0) were normally dis-
tributed and average values were far from the lower bound of 0. We 
report the mean and 95% credible intervals, calculated as the high-
est posterior density intervals, for all parameters in our statistical 
models to assess whether parameters were statistically different 
from 0. All statistical analyses were performed in R 4.0.0 (R Core 
Team, 2020). Primary data and code to reproduce all analyses are 
provided under (Hertel & Royauté, 2020).

2.3 | Short-term and long-term behavioural 
repeatability and behavioural types

Each bear had year specific intercepts for each year it was monitored 
(BearYears) and one individual specific intercept (BearID).We calculated 
intercept repeatability (Rint, Equation 2), a standardised index represent-
ing the proportion of variance (V) across all BearYears that is explained 
by long-term consistency of individuals (Araya-Ajoy et al., 2015).

Behavioural measures taken closely in time (i.e. within a BearYear) 
are often more similar (Bell et al., 2009) because prevailing environ-
mental conditions are temporally autocorrelated. Our hierarchical 
approach allowed us to partition repeatability into its short-term 
within-year (BearYear) and long-term across-year (BearID) com-
ponents. We calculated the unconditional long-term repeatability 
(Equation 3) and the conditional short-term repeatability (Equation 
4), that is, conditional on time-related change over monitoring years, 
for movement and diurnality (Araya-Ajoy et al., 2015).

Mind that conversely to classic mixed effects model, the residual 
variance (Vresidual) here refers to the population intercept of the 
residual model (γ0). We converted this intercept into a variance 
by taking its exponent and squaring the resulting value since the 
dispersion model uses a log scale to estimate residual standard 
deviations.

We also calculated repeatability of individual random slopes (slope.
day) to assess whether individuals showed long-term consistency in 

(2)Rint = VBearID ∕ (VBearYear + VBearID ) .

(3)Rlong-term = VBearID ∕ (VBearYear + VBearID + Vresidual ) .

(4)Rshort-term = (VBearYear + VBearID ) ∕ (VBearYear + VBearID + Vresidual ) .
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their temporal adjustment of behaviour over the 50-day study period 
(Equation 5).

We extracted long-term individual behavioural types for diurnality 
and movement as the mean and credible interval of the posterior 
distribution of the random intercept for each individual. Short-term 
behavioural types were calculated by summing the predicted value of 
the random intercept BearYear to the predicted value of the random 
intercept BearID of the given individual and we extracted the mean 
and credible interval of this posterior distribution. The model was fit-
ted on Z-transformed response variables. To facilitate ecological in-
terpretation we added the population level intercept and coefficients 
of important covariates (i.e. reproductive status) to the random inter-
cept and back transformed the resulting ‘realised’ behavioural type 
onto the original scale (i.e. km and diurnality index units).

2.4 | Short-term and long-term individual 
predictability

We estimated individual variation in predictability over short time-
scales (i.e. within one BearYear) and over long time-scales (i.e. 
BearID) as the coefficient of predictability (CVP, Equation 6). CVP is a 
standardised metric quantifying among BearID and among BearYear 
variation in the predicted standard deviation from the mean residual 
standard deviation (rIIV).

We extracted the posterior distribution of the rIIV for each level of 
the random intercept of BearID as an indicator for long-term be-
havioural predictability. Similar to the behavioural type, short-term 
behavioural predictability was calculated by summing the rIIV for a 
given BearYear and the respective random intercepts for the corre-
sponding individual (BearID). When rIIV is high, the residual standard 
deviation around the behavioural mean is high indicating higher be-
havioural variability. rIIV is estimated on the log scale, for biological 
interpretation we added the population level mean standard devia-
tion (intercept) and coefficients of reproductive status to rIIV, and 
exponentiated and back transformed the resulting ‘realised’ rIIV to 
facilitate biological interpretation of individual variation in residual 
standard deviation of behaviour.

2.5 | Correlation of behavioural type and 
behavioural predictability

We extracted the mean and 95% credible interval for the among-
individual correlation of behavioural means and predicted stand-
ard deviation of residual variance (rIIV) on the short-term scale 
(BearYear), and on the long-term scale (BearID).

2.6 | Behavioural syndrome, predictability syndrome

We extracted the mean and 95% credible interval for the among-
individual correlation of behavioural means on the short-term scale 
(BearYear), and on the long-term scale (BearID). We extracted the 
mean and 95% credible interval for the among-individual correla-
tion of rIIVs of diurnality and movement on the short-term scale 
(BearYear), and on the long-term scale (BearID).

Since reproductive status (three-level factor) was an important 
covariate in the model, with solitary bears as reference level in the 
intercept, repeatability, CVP estimates and correlations among vari-
ance components are reflective of solitary bears. We refitted the 
model with a dummy-centred covariate for reproductive status, pro-
ducing estimates for an average bear (irrespective of reproductive 
status). All estimates were almost identical for solitary bears and an 
average bear (Supporting Information S7, Table S2).

3  | RESULTS

We analysed data of 62 female brown bears (BearID) monitored over 
187 monitoring years (BearYears) with 1–12 monitoring years per in-
dividual (Figure S1). Within a given bear monitoring year, we recorded 
daily movement distance on 7–50 days (median 41 days) and diurnal-
ity on 13–50 days (median = 42 days). Bears ranged in age between 
3 and 25 years in a given monitoring year (Figure S1). The average 
daily movement distance for solitary females was 8.5 km (back-
transformed intercept for movement β0 in Table 1 and centred at the 
25th of July). Females moved over shorter distances when accompa-
nied by cubs of the year (back-transformed β0 + βStatusCub = 6.3 km) 
or yearling offspring (back-transformed β0 + βStatusOffspring = 7.7 km, 
Figure S6). Solitary females moved over shorter distances later in 
the season, while females with 1-year-old offspring and females with 
cubs of the year increased daily movement distances over the au-
tumn (βOrdinal day*Status, Table 1). Daily movement distances decreased 
slightly with age (βAge, Table 1).

On the population level, solitary females distributed activity 
equally into the dark and light hours of the day (back transformed 
intercept for diurnality β0 = −0.04, Table 1), whereas females accom-
panied by offspring (back-transformed β0 + βOffspring = 0.22) and in par-
ticular females accompanied by cubs of the year (back-transformed 
β0 + βStatusCub = 0.28) were considerably more diurnal (Figure S6). All 
females increased diurnality with shortening day length over the sea-
son (βOrdinal day, Table 1). Diurnality initially decreased for 3–4-year-old 
bears but was unaffected by age in adult bears (βAge:ageclass, Table 1).

3.1 | Short-term and long-term behavioural 
repeatability and behavioural types

Bears were highly consistent in their diurnality behaviour over time 
(Rint.diurnality mean [95% credible interval] = 0.72 [0.6, 0.83]) but less 
consistent in their daily movement distance (Rint.movement = 0.34  

(5)Rslope = VBearID.slope⋅day ∕ (VBearYear.slope⋅day + VBearID.slope⋅day ) .

(6)CVP =
√

( exp (ω2 ) − 1) .
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[0.15, 0.55]). This means that individual differences in diurnality were 
maintained across study years (RBearID.diurnality = 0.41 [0.31, 0.53]). In 
contrast, individual differences in daily movement distance were only 
repeatable over a yearly period but did not carry over long, multi-
year periods (RBearID.movement = 0.07 [0.02, 0.12]). When controlling 
for time-related change in behaviour across monitoring years, short-
term repeatability for both diurnality and movement increased mark-
edly (RBearYear.diurnality = 0.57 [0.49, 0.65], RBearYear.movement = 0.21 [0.16, 
0.26]). This confirms that behavioural observations within a year were 
more similar than observations across years and corroborates the 

need to account for a temporal hierarchical structure in the model. 
Variance partitioning therefore suggested that diurnality was con-
served over long time-scales within an individual, whereas movement 
was only repeatable on an annual time-scale.

Individuals in a given year differed in the rate at which they 
adjusted movement and diurnal activity over the 50-day study pe-
riod (Among BearYear: sdslope.day in Table 1; Figure S3) but tempo-
ral adjustments were only weakly repeatable over multiple years 
(Rslope.movement = 0.2 [0, 0.41], Rslope.diurnality = 0.19 [0, 0.41]). There 
was no relationship between the average behaviour of a bear in 

Movement distance Diurnality

Mean model

Fixed effects

Intercept 0.21 [−0.12, 0.30] −0.18 [−0.35, −0.02]

Ordinal day −0.1 [−0.14, −0.06] 0.26 [0.21, 0.32]

Status

Cubs −0.73 [−0.88, −0.58] 0.92 [0.76, 1.08]

Offspring −0.27 [−0.52, −0.04] 0.76 [0.5, 1.02]

Ordinal day × status

Ordinal day × cubs 0.34 [0.26, 0.41] −0.08 [−0.19, 0.02]

Ordinal day × offspring 0.17 [0.06, 0.29] 0.1 [−0.06, 0.26]

(movement) age −0.13 [−0.2, −0.04]

(diurnality) age:ageclass

Age:subadult −0.25 [−0.43, −0.07]

Age:adult 0 [−0.12, 0.13]

Random effects

Among BearID

sdintercept.BearID 0.24 [0.15, 0.34] 0.56 [0.44, 0.69]

sdslope.day 0.07 [0.01, 0.12] 0.11 [0.01, 0.19]

rintercept-slope −0.08 [−0.62, 0.56] 0.01 [−0.49, 0.49]

Among BearYear

sdintercept.BearYear 0.34 [0.29, 0.4] 0.34 [0.3, 0.4]

sdslope.day 0.15 [0.12, 0.18] 0.23 [0.19, 0.27]

rintercept-slope −0.32 [−0.54, 0.08] 0 [−0.23, 0.22]

Dispersion model

Fixed effects

Intercept −0.21 [−0.26, −0.15] −0.56 [−0.62, −0.5]

Status

Cubs −0.4 [−0.51, −0.29] 0.24 [0.14, 0.34]

Offspring −0.3 [−0.46, −0.13] 0.18 [0.02, 0.34]

Age −0.01 [−0.06, 0.05] −0.02 [−0.07, 0.04]

Random effects

Among BearID

ω2
BearID 0.12 [0.05, 0.19] 0.16 [0.11, 0.21]

rintercept.BearID–ωBearID 0.44 [−0.06, 0.8] 0.7 [0.39, 0.9]

Among BearYear

ω2
Bearyear 0.23 [0.2, 0.27] 0.22 [0.19, 0.26]

rintercept.BearYear–ωBearYear 0.68 [0.54, 0.8] 0.27 [0.07, 0.46]

TA B L E  1   Estimates and 95% credible 
intervals (in parentheses) of fixed and 
random effects on daily movement 
distance and diurnality (mean model) 
and residual standard deviation of daily 
movement distance and diurnality 
(dispersion model) in brown bears. 
Variation in mean behaviour and residual 
standard deviation of behaviour (rIIV) 
was estimated among bear monitoring 
years (BearYear) and among individuals 
(BearID). The correlation between mean 
behaviour and rIIV was calculated on both 
the BearYear and BearID level. Estimates 
are based on double hierarchical mixed 
models. Italics indicate estimates which 
were not different from 0 based on their 
95% credible intervals
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a given year and its rate of change in behaviour over the 50-day 
study period (Among BearYear: rintercept-slope, Table 1).

Behavioural types therefore varied from individuals which moved 
less on average than the population average to ones that moved 
more on average, but individuals were also capable of adjusting their 
movement patterns across multiple years (Figure 2a). To illustrate 
the magnitude of this variability: the individual that moved most on 
average in any given monitoring year moved three times longer daily 
distances (11.7 km, a solitary female) than the individual that moved 
least (3.9 km, a female with cubs of the year, Figure S6). However, 
when averaging these patterns over multiple years of tracking, this 
discrepancy decreased to a 1.3-fold difference (behavioural type 
gradient from an average of 7.4 km to an average of 9.6 km for the 
least and most moving individual, respectively, Figure S6). Patterns of 
individual variation were much more conserved for diurnality where 
individual behavioural types ranging from more nocturnal to more 
diurnal individuals showed little among year variability (Figure 2b).

3.2 | Short-term and long-term individual 
predictability

The population level mean residual standard deviation was esti-
mated to be 2.5 km for movement (back-transformed intercept of 
the dispersion model exp(y0) = 0.21) and 0.19 for diurnality (back-
transformed intercept of the dispersion model exp(y0) = −0.56, 
Table 1). Females with cubs of the year and females accompanied 
by 1-year-old offspring were more predictable in their move-
ment distance than solitary females (yStatus, Table 1; Figure S6). 
Contrarily, females with cubs of the year were less predictable in 
their diurnality behaviour than solitary females or females with 
1-year-old offspring (yStatus, Table 1; Figure S6). Bear age did not af-
fect predictability (yAge, Table 1). The predicted standard deviation 

from the mean residual standard deviation (rIIV) for movement 
varied across individuals (ω2

BearID Table 1, CVP.BearID.movement = 0.12 
[0.06, 0.19]) and across bear monitoring years (ω2

BearYear Table 1, 
CVP.BearYear.movement = 0.24 [0.2, 0.28]), demonstrating differences in 
the behavioural predictability of movement across individuals and 
monitoring years (Figure 2c). The most predictable individual in a 
given monitoring year had a standard deviation of 1km around its 
behavioural mean for daily movement distance (a female with cubs 
of the year). On the other extreme, the least predictable individual 
in a given year had a standard deviation of 5.4 km (a solitary fe-
male, Figure S6). Individual differences in predictability were less 
pronounced on the long-term multi-annual scale and ranged from a 
standard deviation of 2.2 km to 3km around an individual's average 
behavioural type (Figure S6). Similarly, we found evidence for differ-
ences in predictability among individuals (CVP.BearID.diurnality = 0.16 
[0.1, 0.21]) and among monitoring years (CVP.BearYear.diurnality = 0.22 
[0.19, 0.26], Figure 2d) for diurnality. The standard deviation from 
the average behavioural type ranged from 0.11 for the most pre-
dictable individual in a given year to 0.39 for the least predictable 
individual in a given year (a female with cubs, Figure S6). Individual 
predictability for diurnality was similar over multiple monitoring 
years and ranged from 0.15 to 0.25. Long-term among-individual 
differences in behavioural predictability were therefore stronger 
for diurnality than for movement.

3.3 | Behavioural predictability correlates with 
behavioural type

Movement behavioural type was correlated with movement predicta-
bility at both temporal scales (long-term scale: rintBearID-ωBearID.movement =  
0.45 [0.01, 0.84], Table 1; Figure 3a, annual scale: rintBearYear-ωBearYear.movement =  
0.68 [0.55, 0.81], Table 1; Figure 3b). Individuals which moved over 

F I G U R E  2   Behavioural type (a–b) and 
behavioural predictability (c–d) for daily 
movement distance (a, c) and diurnality  
(b, d) in 49 female brown bears followed 
over 174 monitoring years. Red shaded 
boxes indicate the 95% credible interval 
for long term, that is, multiannual 
behavioural types (measured as 
behavioural means, a–b) and behavioural 
predictability (measured as residual intra-
individual variability, rIIV, c–d). Circles 
and error bars indicate the mean and 95% 
credible interval for short term, that is, 
annual estimates. Estimates are grouped 
by individual and sorted by multiannual 
estimates. Behaviours were Z-transformed 
for model fitting and rIIVs are estimated 
on the log scale, the second y-axis shows 
estimates in original units (i.e. km and 
diurnality index units)
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longer daily distances on average were therefore less predictable in 
their behaviour as indicated by a higher rIIV value. In contrast, seden-
tary individuals which moved over shorter daily distances on average 

also had also more predictable daily movement distances. Similarly, 
nocturnal individuals were more predictable, whereas diurnal indi-
viduals were more unpredictable. This trend was mostly expressed 

F I G U R E  3   Among individual 
correlation (r) between behavioural 
type and behavioural predictability in 
movement (a and b) and diurnality (c and 
d). Long-term posterior means and 95% 
credible intervals are shown in red (a, 
c) and short-term posterior means and 
95% credible intervals are shown in blue 
(b, d)

F I G U R E  4   Among-individual 
correlation (r) of movement and diurnality 
behaviour types (i.e. behavioural 
syndrome, a and b) and among individual 
correlation (r) of behavioural predictability 
in movement and diurnality (c and d). Red 
squares represent multiannual posterior 
means and 95% credible intervals of 
behavioural types (a) and behavioural 
predictability (c) in movement and 
diurnality. Red lines show the multiannual 
correlation. Blue circles represent annual 
posterior means and 95 credible intervals 
respectively (b, d)
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over the long-term scale (rintBearID-ωBearID.diurnality = 0.7 [0.44, 0.93], 
Table 1; Figure 3c) but decreased substantially on an annual basis  
(rintBearYear-ωBearYear.diurnality = 0.27 [0.08, 0.47], Table 1; Figure 3d) sug-
gesting that bears adjust their diurnal activity to yearly conditions.

3.4 | Behavioural syndrome and 
predictability syndrome

We found a positive among-individual correlation between average daily 
movement distance and average diurnality (rintBearID.movement-intBearID.diurnality =  
0.41 [0.08, 0.76]). Individuals that moved over short daily distances 
were more nocturnal while individuals that moved over longer daily dis-
tances were more day active (Figure 4a). The correlation was entirely 
based on long-term individual effects and a short-term within-year cor-
relation was not supported (rintBearYear.movement-intBearYear.diurnality = −0.11 
[−0.31, 0.09], Figure 4b). Likewise, we found a behavioural predict-
ability syndrome. Movement—unpredictable individuals (i.e. high rIIV) 
were also more unpredictable in their diurnality behaviour compared 
to individuals with predictable daily movement distances and diurnal-
ity (rωBearID.movement-ωBearID.diurnality = 0.51 [0.09, 0.87], Figure 4c). Similar 
to the behavioural syndrome described above, this predictability syn-
drome was solely generated by long-term individual differences (short-
term correlation: rωBearYear.movement-ω BearYear.diurnality = 0.07 [−0.13, 0.28], 
Figure 4d).

4  | DISCUSSION

We here demonstrate that individuals may not only vary in their av-
erage behavioural type but also in their behavioural predictability 
around that behavioural type. Using accelerometer and movement 
data of brown bears we reveal a continuum from predictable to 
unpredictable individuals for daily movement distance and diurnal 
activity. For example, the standard deviation around an individual's 
average daily movement distance varied up to fivefold from 1.1 to 
5.5 km across individuals. Importantly, behavioural predictability 
was correlated with the average behavioural type. Furthermore, be-
havioural types and behavioural predictability were positively cor-
related for both traits. For example, a more predictable individual 
had an average daily movement distance of 7.4 km with a predicted 
standard deviation of 2.3 km and was on average more nocturnal 
(−0.27) with little variation (0.16). A less predictable individual on 
the other hand moved 9.6 ± 3 km and was on average more diurnal 
(0.26) but also less predictable in when during the day it was active 
(0.24). Our findings show evidence for a to-date little studied aspect 
of individual differences, that is, among individual differences in be-
havioural predictability.

We here show that movement data can reveal significant in-
dividual variation in behavioural predictability as they record 
behaviour of many members of a population over long monitor-
ing durations (Hertel et al., 2020) offering the opportunity to re-
ceive numerous repeated measures, a prerequisite when studying 

predictability (Cleasby et al., 2015). This finding is important given 
that a key assumption of mixed models, the common analytical 
approach in animal personality studies, is that individuals are 
homogenous in variance around their individual means (Cleasby 
et al., 2015; Schielzeth et al., 2020). Our results highlight that this 
assumption is not met under realistic field conditions. Whether 
and how such variation in predictability is linked to mean be-
havioural types is still poorly understood. As predicted based on 
the ecology of our species, behavioural predictability was not ran-
domly distributed among the expression of behavioural types, but 
variability around the behavioural type systematically increased 
towards more diurnal and mobile behavioural types. Our findings 
contradict previous results obtained in the laboratory were more 
active individuals tend to be predictable and less active individu-
als unpredictable (Mitchell et al., 2016). More diurnal and mobile 
bears are more likely to encounter humans and could hence be 
considered as more risk-taking compared to nocturnal and less 
mobile bears. Indeed, our observed pattern of systematic varia-
tion in predictability across a behavioural type gradient which en-
hances disturbance risk could have two alternative explanations. 
Either, diurnal bears simply encounter more disturbances (Ordiz 
et al., 2013), which were not statistically accounted for in the 
model and the observed pattern of higher variance around the di-
urnal behavioural mean could be entirely explained by behavioural 
plasticity (Westneat et al., 2015). In this case, a complete model 
accounting for these unknown human encounters would explain 
the observed pattern and no among-individual variation in pre-
dictability should remain. Alternatively, the increased behavioural 
variability of diurnal individuals could be an anticipatory predator, 
that is, human, avoidance strategy. Unpredictable behaviour is a 
mechanism to reduce predation risk (Briffa, 2013; Humphries & 
Driver, 1970) and for diurnal individuals which face a higher risk 
of encounters, displaying unpredictable movement and temporal 
behaviour could be an adaptive strategy to prevent a predator 
from anticipating its future behaviour (Richardson et al., 2018). 
Although the literature suggests that risky and bold individuals 
lack inhibitory control and are hence more predictable, while shyer 
individuals react more sensitive to changes in the environment 
(Coppens et al., 2010), this does not seem to be the case in our 
study system. We suggest that in the wild, where risky behaviour 
may come at a realised cost of disturbance and mortality female 
bears trade-off riskier diurnal behaviour with greater flexibility 
to switch to an alternate safer (i.e. nocturnal) behaviour (Moiron 
et al., 2020). We, however, acknowledge that our evidence is lim-
ited to one study system and we are unable to conclusively disen-
tangle the two alternative explanations of an incomplete model 
or an adaptive response. Additional models that accounted for 
differences habitat structure—including anthropogenic features 
enhancing human access within a bear's home range (i.e. road and 
housing density)—did not affect our estimates of predictability 
(Supporting Information S3, Figure S4). This suggests that unpre-
dictability is not caused by stochastic encounters with humans but 
likely represent a true behavioural adaptation to elevated human 
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encounter risk. Environmental similarity among bear home ranges 
also failed to explain behavioural similarity (Figure S5). However, 
bears in our study area inhabit a relatively homogenous landscape. 
In populations with more pronounced environmental gradients, 
including for example predator density, variation in the environ-
ment could, however, explain variation in both average behaviour 
and predictability. Our results would therefore have to be con-
trasted across population with varying levels of environmental 
heterogeneity in order to conclude on the generality of patterns 
between behavioural types and behavioural predictability in risky 
behaviours in the wild.

Past studies have examined the ramifications and ecological im-
portance of behavioural predictability as degree of specialisation on 
the among-species level for population survival and fitness. In these 
studies, behavioural generalist species have been frequently shown 
to be more successful under changing environmental conditions than 
specialist species. For example, bird species with more behavioural 
flexibility, have a higher invasion success (Sol et al., 2002), are more 
successful in coexisting with humans in urban environments (Sol 
et al., 2013), and persisting in fragmented landscapes (Devictor et al., 
2008). In many cases, behavioural flexibility will also be a deciding 
factor whether a species can adapt to warming temperatures (Beever 
et al., 2017). On the other hand, specialist species tend to be more 
successful and have higher reproductive output under more con-
stant conditions (Kassen, 2002). All these examples support the idea 
that intraspecific variation in behavioural predictability could have 
similar important consequences for population persistence, that is, 
that predictable individuals may fair better under static environ-
mental conditions and vice versa. Several studies have convincingly 
shown that greater spatial flexibility is a more successful strategy 
in changing environmental conditions using measures of foraging 
specialisation (Abrahms et al., 2018; Harris et al., 2020; Wakefield 
et al., 2015). For example, in northern elephant seals, individuals 
specialised on low exploration and high foraging site fidelity coexist 
with individuals specialised on high exploration and low foraging site 
fidelity (Abrahms et al., 2018). These alternative strategies provided 
foraging benefits under contrasting environmental conditions with 
individuals showing high site fidelity outperforming individuals with 
low site fidelity under normal climatic conditions and the latter far-
ing better under anomalous conditions. This is in line with studies 
showing that more exploratory and more active behavioural types 
are also more tolerant towards landscape fragmentation or urban-
isation (Atwell et al., 2012; Breck et al., 2019; Lowry et al., 2013). 
Such challenging environments may also require greater behavioural 
flexibility because if individuals living in close proximity to humans 
were at the same time risky and predictable they could more readily 
come into conflict with humans and face higher mortality (Poessel 
et al., 2013) which is consistent with our findings.

Animal personalities are often treated as lifetime properties 
of individuals, for example when behavioural types are related to 
life-history traits (Biro & Stamps, 2008). Yet, repeatability esti-
mates tend to decrease with longer time intervals between mea-
sures (Bell et al., 2009). Behavioural types may therefore change 

within the lifetime of an individual as a result of learning (Stamps & 
Groothuis, 2010), epigenetic modification (Trillmich et al., 2018), re-
sponses to environmental conditions (Dingemanse et al., 2010), or 
ageing (Araya-Ajoy & Dingemanse, 2017). Partitioning behavioural 
variation into its short-term and long-term sources, in our case annual 
and multiannual monitoring scales, helps understand at which tempo-
ral scales behavioural variation is most strongly expressed (Araya-Ajoy 
& Dingemanse, 2017). We found that both the behavioural type and 
behavioural predictability were more pronounced within one monitor-
ing year than across years for both behaviours. Nonetheless, diurnality 
was a stronger long-term individual trait than daily movement distance. 
Inter-annual fluctuations in food abundance (Hertel, Zedrosser, et al., 
2019) or shifts in home range size from year to year (Frank et al., 2018) 
could explain the greater variance in movement than in diurnality. In 
line with our prediction, changing reproductive status between years 
drove changes in behavioural types and in behavioural predictability 
across monitoring years. Cubs restricted female movements, which re-
sulted in lower average movement distances and higher predictability 
of movement. Conversely, females were more diurnal, most likely to 
avoid infanticidal males (Steyaert et al., 2013), but also more unpre-
dictable in their diurnality when with cubs than when solitary.

Measures of residual intra-individual variability are particularly 
sensitive to unaccounted changes in behaviour (Westneat et al., 
2015). It is therefore important to account for systematic changes 
in behaviour, that is, over the course of the study period or repro-
ductive status, and to partition behavioural variance into short-term 
and long-term variability for a better understanding of drivers and 
temporal scales of behavioural predictability. Nevertheless, sto-
chastic events in the environment, such as human encounters, may 
bias estimates of intra-individual variability because the resulting 
behavioural adjustments are pooled into the residual variance. We 
found no indication that anthropogenic features facilitating access 
of humans affect whether bears are predictable or unpredictable. 
Furthermore, the long monitoring time of 50 days should limit the 
effect of such stochastic events, in particular because behavioural 
predictability was conserved over multiple years. Although uncon-
trollable environmental effects are a limitation in field studies, we 
believe that studying behavioural predictability in the wild will offer 
a new aspect to the study of among-individual behavioural variation 
and might reveal trade-offs which are not present in the laboratory 
(Moiron et al., 2020).

5  | CONCLUSIONS

We here show that significant among-individual variation and 
among-reproductive class variation in predictability of routine 
movement and activity behaviours exist in a wild brown bear popu-
lation, and that biologging data are a useful tool to reveal such vari-
ation. We document a syndrome where more diurnal individuals 
on average also moved longer daily distances and were less pre-
dictable in both of these behaviours than their nocturnal, seden-
tary and more predictable counterparts. This general syndrome 
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was disrupted in years when females had cubs of the year, most 
likely because cubs consistently constrain movement of females to 
shorter daily distances. At the same time females becoming more 
diurnal and unpredictable potentially trade-off risk of encountering 
infanticidal male bears with being disturbed by human. We pro-
pose that heightened behavioural unpredictability is an adaption 
for individuals to maintain a diurnal and mobile behavioural type 
which increases the likelihood to encounter and be disturbed by 
humans. Behavioural predictability could therefore be a key trait 
facilitating how individuals cope with changing conditions in the 
Anthropocene. Our study highlights the power of biologging data 
as a key tool to reveal such variation.
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