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Abstract. The coffee berry borer (CBB), Hypothenemus hampei, is the most destructive insect
pest affecting coffee plantations in most coffee producing countries, hence causing major economic
losses worldwide. The cryptic life cycle of CBB inside coffee berries makes their control extremely
difficult. To tackle this problem, we use a dynamical model describing the plant–pest interactions
during a cropping season, which includes a berry age structure to account for CBB preference for
mature berries. We introduce two environmentally friendly control methods, consisting in applying
a bio-insecticide to reduce berry infestation and in trapping the colonising CBB. Our objective is to
maximise the profit generated by the harvest of healthy coffee berries, while minimising the CBB
population for the next cropping season. The existence of an optimal control strategy is provided
and necessary optimality conditions are established. Finally, the optimal control problem is solved
numerically and simulations are provided. They show that combining the two control methods is a
cost-effective strategy to protect coffee berries from CBB infestation.

Keywords. Population dynamics, Age-structured model, Plant epidemiology, Optimal control,
Numerical simulations

AMS subject classifications. 49J20. 35L60. 92D30

1. Introduction. Originating from East Africa, coffee (Coffea Rubiaceae) is an
important agricultural commodity in tropical and subtropical countries [25], ensuring
the livelihood of an estimated 25 million people in Latin America, Africa, and Asia
[26]. There are several species of coffee, but commercial production is mainly based on
two closely related species: Coffea Canephora (know as robusta) and Coffea Arabica.
However, coffee production is threatened by numerous pests, the coffee berry borer
(CBB) Hypothenemus hampei being the most damaging pest. It is an insect pest of
African origin, which has spread to almost all coffee producing countries in the world.
CBB use the coffee berries for food and shelter. Adult females bore a hole to enter
a berry, where they feed and lay their eggs, and where their larvae develop. CBB
infestation hence severely reduces the coffee yield and quality, causing more than 500
million US$ in damages annually [19]. Moreover, CBB cryptic life cycle within coffee
berries protects them quite efficiently from pest control programs.

Control of CBB has long relied on the application of insecticides, which are harm-
ful both for human health and the environment, and whose efficacy is limited by insec-
ticide resistance [7, 18]. Alternative methods include cultural control, which mainly
consists in removing all remaining berries from the trees and the soil [4, 7], as well as
trapping, which allows to capture female CBB when they look for coffee berries to lay
their eggs [8, 22]. More recently, research on biological control has led to the use of

∗This work is supported by EPITAG, an Inria associated team part of the LIRIMA (https://
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natural enemies, including parasitoids, nematodes and entomopathogenic fungi such
as Beauveria bassiana [4, 7, 26]. The latter is present and naturally infects CBB in
many coffee growing countries. As a bio-insecticide, it can be safely sprayed in the
plantation and significantly reduces CBB infestation [4]. However, there are still gaps
to fill to develop successful biocontrol strategies [26, 19].

Tackling the issue of CBB biocontrol through mathematical modelling and op-
timal control is the approach we retained in this work. It is far less costly, both in
terms of time and money, than field experiments and it can provide valuable insights
on efficient control strategies. We use a dynamical model describing the infestation
dynamics of coffee berries by CBB during a cropping season, which includes a berry
age-structure to take into account the CBB marked preference for mature berries
[14], demonstrated in several field and laboratory studies [26, 16, 24]. Optimal con-
trol theory, has been applied to several age-structured systems, to study for instance
competing species [11], harvesting control [3, 23], birth control [21], or epidemic dis-
ease control [1, 2, 5, 17], but not in plant epidemiology.

As in [12], we implemented control methods combining the use of traps, to reduce
the colonising female population, and the spraying of an entomopathogenic fungus
Beauveria bassiana, to limit berry infestation. Since the ultimate goal of coffee farmers
is the production of high quality coffee at the best market price and the lowest cost, we
designed an optimal control problem whose objective is to maximise the yield while
minimising both the control costs and the CBB population for the next cropping
season. In the optimisation criterion, we took into account the fact that the berry
price depends on the berry age, which was not possible in our previous works aiming
at controlling CBB impact on coffee yield [12, 13].

This manuscript is structured as follows. Section 2 briefly presents the coffee
berry–CBB interaction model developed in [14] and on which this control study is
based. Section 3 is devoted to the optimal control problem, which is formalised in
Subsection 3.1. The existence of an optimal cntrol pair is shown in Subsection 3.2 and
characterised using the maximum principle in Subsection 3.3. Numerical simulations
are provided in Section 4, to illustrate the theoretical results. The paper then ends
with Conclusions in Section 5.

2. Model Overview. The model we use in this study describes the develop-
ment of coffee berries and their infestation by CBB during a cropping season [14].
Coffee berries are characterised by their age a ∈ [0, a†] and their epidemiological
state: sb(t, a) and ib(t, a) are respectively the age-specific density of healthy and in-
fested coffee berries at time t. The CBB population is divided in two: the colonising
females, denoted by y(t), which are adult fertilised females looking for healthy berries
to lay their eggs; and the infesting females, denoted by z(t), which feed and reproduce
inside infested coffee berries. Males are not considered in the model, as only females
disperse and take part in the infestation process of new healthy berries: males remain
in the berry where they were born. Moreover, we assume that there are always enough
males to fertilise the young females in the berry [7, 4].

Figure 1 represents the dynamics of the coffee berries and CBB females. New
healthy coffee berries sb(t, 0) are produced at time-dependent rate λ(t). Healthy
berries sb(t, a) can then be infested by colonising females y(t) at rate β(a)f(B, y),
where β(.) is the berry age-dependent infestation rate and f is an interaction function,
which depends on the number of healthy berries B(t) :=

∫ a†
0
sb(t, a)da and colonising

females y(t). Infestation results in a transfer from healthy to infested berries ib(t, a)
and simultaneously, from colonising to infesting female z(t). Inside the coffee berries,
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Fig. 1. Diagram of the coffee berry–CBB interaction model.

infesting females lay eggs which go through their development cycle until the emer-
gence of new fertilised colonising females at rate φ. All these compartments undergo
mortality at rates µy and µz for colonising and infesting females; µ(a) and ν(a) for
healthy and infested coffee berries.

Figure 1 translates in the following system:

(2.1)


∂tsb(t, a) + ∂asb(t, a) = −β(a)f(B(t), y(t))sb(t, a)− µ(a)sb(t, a)

∂tib(t, a) + ∂aib(t, a) = β(a)f(B(t), y(t))sb(t, a)− ν(a)ib(t, a)

ẏ(t) = −εf(B(t), y(t))‖βsb(t, .)‖ − µyy(t) + φz(t)

ż(t) = εf(B(t), y(t))‖βsb(t, .)‖ − µzz(t)

where ε is a scaling parameter that corresponds to the number of colonising females
per infested berry (so usually, ε = 1 CBB/berry) and ‖βsb(t, .)‖ =

∫ a†
0
β(a)sb(t, a)da.

The system is completed by the following boundary and initial conditions:

(2.2) sb(t, 0) = λ(t), ib(t, 0) = 0, sb(0, a) = sb0(a), ib(0, a) = ib0(a).

This model relies on the following assumptions.

Assumption 2.1. Positivity and smoothness of the functions and parameters of
model (2.1–2.2)

1. Parameters φ, ε, µy, µz and initial conditions y0 and z0 are nonnegative.
2. λ(.) ∈ L∞+ (0,∞), β(.) ∈ L∞+ (0, a†); boundary conditions sb0(.), ib0(.) ∈ L1

+(0, a†)
and are bounded.

3. Mortality rates µ(.), ν(.) ∈ L∞+ (0, a†), ν(a) ≥ µ(a), and there exists a real
number µ̃ > 0 satisfying : µ(a) ≥ µ̃ for almost every a ∈ [0, a†].

4. Contact function f(., .) is bounded and C1–Lipschitz continuous for both
arguments. Moreover, f(B, y) decreases with B and increases with y, with
f(B, 0) = 0 and for all y > 0, lim

B→+∞
f(B, y)B is finite.

(L1
+(I), ‖.‖) is the space of nonnegative measurable functions equiped by the prod-

uct norm and by (L∞+ (I), ‖.‖∞) the space of nonnegative and Lebesgue integrable
functions over the set I ⊂ R.

This model is thoroughly analysed in [14]. In particular, it establishes that the model
has a unique nonnegative and bounded solution.

3. Optimal Control. In this section, we describe and study an optimal control
problem designed to maximise the yield of healthy coffee berries, while minimising
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the control costs and the CBB population for the next cropping season, based on
model (2.1,2.2) described above.

3.1. Problem Statement. We consider a fixed time interval [0, tf ], where tf
denotes the end of the cropping season. We assume that all coffee berries are picked
at time tf . Two interventions strategies, called controls, are included into initial
system (2.1). These controls are functions of time, constrained by lower and upper
bounds, and described as follows:

• First, control u(t) ∈ [0, 1] denotes the effort made to reduce the infestation
of healthy coffee berries. In practise, this control can represent the action of
synthetic insecticides, which are widely used in some coffee growing countries,
but pollute the environment and favour the development of CBB resistance
[6]. It can also represent the action of the entomopathogenic fungus Beauveria
Bassiana, which is as an environmentally friendly bio-insecticide, not toxic
to workers, that is sprayed on the coffee berries and kills CBB when they
drill their entry hole in the berries [15]. We denote by ξ the efficiency of this
control u(t), so (1− ξu(t))β(a) represents the reduced infestation rate.

• Second, control v(t) ∈ [0, 1] consists in reducing the colonising female popula-
tion. It can represent traps set in the plantation to capture colonising females
during their migration flight [22, 8]. We denote by η the efficiency of control
v(t), so ηv(t) represents the fraction of colonising females captured per unit
of time.

Note that variable ib(t, a) representing infested berries does not appear in the remain-
ing equations of system (2.1). Moreover, none of the two control methods described
above targets infested berries. Therefore, one can ignore the ib(t, a)-equation to study
and control the system dynamics. Hence, implementing both controls in system (2.1)
and dropping the ib(t, a)-equation, we obtain the following controlled system:

(3.1)


∂tsb(t, a) + ∂asb(t, a) = −f(B(t), y(t))(1− ξu(t))β(a)sb(t, a)− µ(a)sb(t, a)

ẏ(t) = −εf(B(t), y(t))‖βsb(t, .)‖ − µyy(t)− ηv(t)y(t) + φz(t)

ż(t) = +εf(B(t), y(t))(1− ξu(t))‖βsb(t, .)‖ − µzz(t)
sb(t, 0) = λ(t), sb(0, a) = sb0(a), y(0) = y0, z(0) = z0.

The existence and uniqueness of a solution of controlled system (3.1) over a finite time
interval is obtained as in the case without control presented in [14]. Moreover, the so-
lution remains nonnegative and bounded for nonnegative initial conditions, since the
controls are bounded (the proof consists in using the comparison principle, as con-
trolled system (3.1) is upper-bounded by the system without control, whose solution
was showed to be bounded [14]).

Let K be the space of admissible controls defined by:

K :=
{

(u, v) ∈ (L∞(0, tf ))2 : u(.) : [0, tf ]→ [0, 1], v(.) : [0, tf ]→ [0, 1]
}
.

The optimal control problem is then formulated below.

Problem 3.1. Find an admissible control pair (u?(.), v?(.)) ∈ K maximising the
following objective functional:

(3.2) J (u, v) =

∫ a†

0

Θ(a)sb(tf , a)da−
∫ tf

0

[
Cuu

2(t) + Cvv
2(t)

]
dt− Cyy(tf ).

The first term of the objective functional represents the crop yield, where the coffee
berry price Θ(.) is an increasing, bounded, continuous function depending on berry
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age. We assume that infested berries do not contribute to the yield, as their economic
return is negligible compared to healthy berries. The second integral term corresponds
to the control implementation costs, with coefficients Cu and Cv being the maximal
costs per unit of time of controls u and v, respectively. Quadratic expressions of
the controls are included to indicate the nonlinearity of the implementation costs, as
it is more costly to increase the control efficiency when it is already high. Finally,
the last term is a penalty on the CBB population that remains in the plantation
after harvest, weighted by parameter Cy. The remaining population consists only of
colonising females, as we assume that all berries are picked to limit the infestation of
the next cropping season.

3.2. Existence of an Optimal Control Pair. We then prove the existence of
the solution of the optimal control problem 3.1. Consider the function:

χ(t, a,B, y, u) = e−
∫ a
0

[µ(η)+(1−ξu(θ))β(η)f(B(θ),y(θ))]θ=t−a+ηdη.

Setting Q := [0, tf ]× [0, a†], then the following lemma holds.

Lemma 3.2. Under Assumption 2.1, function χ is Lipschitz in the following sense:
for (Bi, yi, ui), i ∈ {1, 2} and (t, a) ∈ Q, there exists a constant K > 0 such that:∣∣χ(t, a,B1, y1, u1)− χ(t, a,B2, y2, u2)

∣∣ ≤ K(|B1 −B2|+ |y1 − y2|+ |u1 − u2|).

Proof. Lemma 3.2 is obtained by direct computation, based on the following
arguments: |e−m − e−p| ≤ |m− p| for all m, p ∈ R+, the state variables B(.) and y(.)
are uniformly bounded and u(.) ∈ U .

Using the method of characteristics, we get an explicit solution of the sb(t, a)-
equation in system (3.1) as follows:

(3.3) sb(t, a) =

sb0(a− t) χ(t, a,B, y, u)

χ(t, a− t, B, y, u)
if a > t,

λ(t− a)χ(t, a,B, y, u) if a ≤ t.

For (t, a) ∈ Q, we obtain from equation (3.3) the boundedness of the age-specific
density of healthy coffee berries as follows:

(3.4) |sb(t, a)| ≤ max

{
sup

a∈[0,a†]

|sb0(a)|; ‖λ‖∞

}
.

By integrating the sb(t, a)-equation of controlled system (3.1) on the age interval
[0, a†], one gets:

(3.5) Ḃ(t) = λ(t)− (1− ξu)f(B, t)‖βsb(t, .)‖ − ‖µsb(t, .)‖ ≤ ‖λ‖∞ − µ̃B(t).

Therefore, it follows that B(t) ≤ max
{
B(0), ‖λ‖∞µ̃

}
for all t ∈ [0, tf ]. Since the state

variables B(t), y(t) and z(t) are bounded for t ∈ [0, tf ], it follows from (3.1) and (3.5)
that:

(3.6) |Ḃ(t)|+ |ẏ(t)|+ |ż(t)| ≤ M,

whereM is a constant that does not neither depend on time nor on the control pair.
We now prove that there exists an optimal control strategy that maximises the

objective functional (3.2) subject to the age-structured model (3.1).
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Theorem 3.3. Under Assumption 2.1, the optimal control Problem 3.1 admits
a solution, i.e. there exists an optimal control pair (u?(.), v?(.)) ∈ K with associated
optimal solution (s?b(., .), y

?(.), z?(.)) which maximises the objective functional J (., .).

Proof. Since the state variables and the controls are uniformly bounded, then
it follows that sup {J (u, v) : (u, v) ∈ K} is finite. Thus there exists a maximising
sequence (un, vn)n ⊂ K such that:

lim
n→+∞

J (un, vn) = sup {J (u, v) : (u, v) ∈ K} .

Since sequence (un, vn)n is bounded, there exists a subsequence, still denoted (un, vn),
that converges to the limit (u?, v?) in the weak topology of L∞(0, tf )×L∞(0, tf ). The
limit (u?, v?) belongs to K, since K is a closed convex subset of L∞(0, tf )×L∞(0, tf )
and so it is weakly closed. Let (sbn, yn, zn) be the state variables associated with
control pair (un, vn) and Bn(t) =

∫ a†
0
sbn(t, a)da. From equation (3.3), these variables

are also related to each other by:

(3.7) sbn(t, a) =

sb0(a− t) χ(t, a,Bn, yn, un)

χ(t, a− t, Bn, yn, un)
if a > t,

λ(t− a)χ(t, a,Bn, yn, un) if a ≤ t.

Thanks to inequality (3.6), the Bn(t), yn(t) and zn(t) sequences are uniformly Lip-
schitz continuous, so they are bounded and equicontinuous. According to Arzela-
Ascoli’s theorem, we can extract a subsequence, still denoted Bn(t), yn(t) and zn(t),
which converges uniformly to the limit B?(t), y?(t) and z?(t) respectively in C(0, tf ).
Using inequality (3.4) and the uniqueness of the limit, we have sbn(t, a) −→ s?b(t, a)
when n → ∞ almost everywhere in Q and B?(t) =

∫ a†
0
s?b(t, a)da. As a consequence

of Lemma 3.2, we have the convergence χ(t, a,Bn, yn, un) −→ χ(t, a,B?, y?, u?) as
n → ∞ almost everywhere in Q. So we can pass to the limit in equation (3.7) to
obtain:

(3.8) s?b(t, a) =

sb0(a− t) χ(t, a,B?, y?, u?)

χ(t, a− t, B?, y?, u?)
if a > t,

λ(t− a)χ(t, a,B?, y?, u?) if a ≤ t.

Moreover, passing to the limit in the differential equations satisfied by the sequences
yn(t) and zn(t) in controlled system (3.1), we obtain:

ẏ?(t) = φz?(t)− εf(B?, y?)‖βs?b(t, .)‖ − µyy?(t)− ηv?(t)y?(t),
ż?(t) = (1− ξu?(t))εf(B?, y?)‖βs?b(t, .)‖ − µzz?(t).

By using the continuity and boundedness of function Θ(.) and passing to the limit
in the objective functional (3.2), we obtain limn→+∞ J (un, vn) = J (u?, v?). So
the pair (u?, v?) satisfies Problem 3.1. Hence, there exists an optimal control pair
(u?, v?) ∈ K and the corresponding state variables s?b , y

? and z? that maximise the
objective functional J (., .) in K.

3.3. Necessary Optimality Conditions. We use the maximum principle for
general age-structured systems on a finite time horizon provided by Feichtinger et
al. [9, 10] and references cited therein, to derive the first-order necessary conditions
and characterise the optimal control of Problem 3.1. We set state vector x(t) =
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(y(t), z(t))> to rewrite system (3.1) in the following compact form:

(3.9)


∂tsb(t, a) + ∂asb(t, a) = F (t, a, x(t), q(t), sb(t, a), u(t)) =: F (t, a)

ẋ(t) = G(t, x(t), q(t), u(t), v(t)) =: G(t)

sb(t, 0) = λ(t), sb(0, a) = sb0(a), x(0) = (y(0), z(0))>,

where q(t) = (q1(t), q2(t))> derives from h(t, a) = (h1(t, a), h2(t, a))>, with:

h1(t, a) = sb(t, a), and q1(t) =

∫ a†

0

h1(t, a)da,

h2(t, a) = β(a)sb(t, a) and q2(t) =

∫ a†

0

h2(t, a)da.

Functions F (t, a) and G(t) = (G1(t), G2(t))> represent the right hand side of sys-
tem (3.1) for the sb-, y- and z-compartment respectively. Let ∇x denotes the differ-
entiation with respect to state variable x. We introduce the adjoint functions Φb(t, a)
and Φx(t) = (Φy(t),Φz(t)) corresponding to the state variable sb(t, a) and vector x(t),
respectively. Then, from [9], the adjoint system is given by:

−∂tΦb(t, a)− ∂aΦb(t, a) = Φb(t, a)∇sbF (t, a) + Φx(t)∇qG(t)∇sbh(t, a)

+

∫ a†

0

Φb(t, a)∇qF (t, a)da∇sbh(t, a)

Φb(tf , a) = Θ(a), Φb(t, a†) = 0

−Φ̇x(t) = Φx(t)∇xG(t) +

∫ a†

0

Φb(t, a)∇xF (t, a)da

Φx(tf ) = (−Cy, 0).

This adjont system can be rewritten as:

(3.10)



∂tΦb + ∂aΦb = (1− ξu)[βf(B, y)(Φb − εΦz) + fB(B, y)(‖βsbΦb‖
− ε‖βsb‖Φz)] + [εβf(B, y) + ε‖βsb‖fB(B, y)] Φy + µΦb

Φ̇y = (1− ξu)fy(B, y) [−ε‖βsb‖Φz + ‖βsbΦb‖] + ε‖βsb‖fy(B, y)Φy

+ (µy + ηv)Φy

Φ̇z = −φΦy + µzΦz

with the following tranversality conditions associated with the adjoint state variables
for (t, a) ∈ Q:

(3.11) Φb(tf , a) = Θ(a), Φb(t, a†) = 0, Φy(tf ) = −Cy, Φz(tf ) = 0.

From the solution sb(t, a), y(t) and z(t) of system (3.1) and the corresponding so-
lution Φb(t, a), Φy(t) and Φz(t) of adjoint system (3.10), we define the Hamiltonian
functional associated with the control problem 3.1 by:

H(t, u(t), v(t)) := −Cuu2(t)−Cvv2(t)+Φy(t)G1(t)+Φz(t)G2(t)+

∫ a†

0

Φb(t, a)F (t, a)da.

Applying Pontryagin’s maximum principle [9], which consists in solving equations
∂uH(t, u, v) = ∂vH(t, u, v) = 0, and taking into account the boundaries of each con-
trol, we obtain:

(3.12) u?(t) = min{max{0, using(t)}, 1}, v?(t) = min{max{0, vsing(t)}, 1},
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where

using(t) = −ξf(B(t), y(t))(−‖βsb(t, .)Φb(t, .)‖+ ε‖βsb(t, .)‖Φz(t))
2Cu

,

vsing(t) = −ηy(t)Φy(t)

2Cv
.

4. Numerical Results.

4.1. Functions and parameters. In the numerical simulations, as in [14], a
constant berry production rate λ(t) ≡ λ and an age-independent berry mortality rate
µ(a) ≡ µ are chosen. Furthermore, the infestation rate is defined by the following
function:

(4.1) β(a) =

{
βmin 0 ≤ a < aβ ,

βmin + βa(1− e−kβ(a−aβ)) aβ ≤ a ≤ a†,

with aβ = 90 days and remaining parameters chosen such that the average value
β̄ = 1

a†

∫ a†
0
β(a)da ≈ 0.023 day−1. The CBB–berry interaction function f is modelled

by:

f(B, y) =
y

y + αB + 1
,

More details see [14] for the description):
We choose a sigmoid function to model the price of healthy coffee berries according

to berry age:

(4.2) Θ(a) =
Θan

an + anΘ
,

where Θ is the asymptotic price of healthy coffee berries, aΘ is the age at which berries
are at half asymptotic price and n ∈ N? is the Hill constant. Note that with a finite

age bounded by a†, the maximum price that mature berries can reach is
Θan†
an†+anΘ

.

We assume that the cost Cu of the infestation control, associated with the bio-
insecticide, is higher than the cost Cv of traps, as regular spraying is more time
consuming and labour intensive.

All parameter values used in the simulations are given in Table 1. Moreover, we
use the following initial conditions. The initial time t = 0 corresponds to the very
beginning of flowering, so sb0(a) = 0 for all a ∈ [0, a†]. As infesting females were
eliminated when berries were picked during the preceding harvest, there are none
initially, so sb0(a) = 0 for all a ∈ [0, a†] and z(0) = 0. The number of initial colonising
females is set at y(0) = 104 females.

4.2. Simulations. Using the parameters given in Table 1 and the initial condi-
tions described above, we numerically solve optimal control Problem 3.1 associated
with system (3.1). We approximate the optimal solution using an extension of the
forward-backward sweep method [20]. Firstly, the state variables of system (3.1) are
approximated using the forward semi-implicit finite difference scheme in time and
backward semi-implicit difference in age described in [14] for the model without con-
trol, with an initial guess for the control pair (u(.), v(.)), for instance 1-valued func-
tions. Secondly, the adjoint system (3.11) is solved by using the backward difference



Optimal Control of Coffee Berry Borers 9

Table 1
Model and control parameter values. Most of parameter values are based on biological data

collected in the literature [4]; more information is available in [13].

Symbol Description Value

tf Duration of a cropping season 250 days
a† maximum age of coffee berry 250 days
λ Production rate of new coffee berries 1200 berries.day−1

µ Natural mortality rate of healthy coffee berries 0.002 day−1

ε Colonising CBB per berry (scaling factor) 1 female.berry−1

β(a) Infestation function (4.1): day−1

βmin minimum infestation rate 0.004 day−1

βa age-dependent extra infestation rate 0.036 day−1

kβ infestation coefficient 0.035 day−1

aβ infestation threshold age 90 days
α CBB–berry interaction constant 0.7 female.berry−1

φ Emergence rate of new colonising females 2 day−1

µy Natural mortality rate of colonising females 1/20 day−1

µz Natural mortality rate of infesting females 1/27 day−1

ξ Maximum efficiency of control u (bio-insecticide) 0.75 –
η Maximum efficiency of control v (traps) 0.08 day−1

Cu Weight of control u 5 $.day−1

Cv Weight of control v 0.65 $.day−1

Θ(a) Coffee berry price function (4.2): $.berry−1

Θ coffee berry asymptotic price 0.025 $.berry−1

aΘ berry age at half asymptotic price 120 days
n Hill constant 7 –

Cy Cost of remaining colonising females 10−4
$.female−1

in time and forward difference in age, using the solutions of the state equations. After
these two steps, the control function values are updated with the new values of the
state and adjoint variables, thanks to equations (3.12) that characterise the optimal
control. This procedure is repeated until convergence is achieved.

Results are illustrated in Figure 2. Panels (a–c) represent the dynamics of the
(integrated) state variables, i.e. the total healthy coffee berries B, the colonising y
and infesting z CBB females (plain red curves); panel (d) represents the evolution
of the optimal controls u? (plain magenta curve) and v? (plain orange curve). For
comparison purposes, the solution of the system without control is also drawn in pan-
els (a–c) (dashed blue curves), as well as the pest-free solution obtained with y(0) = 0
female in panel (a) (dash-dotted black curve). These results show that the optimal
application of both controls, the bio-insecticide that hampers infestation (u) and the
traps that capture colonising females (v), significantly reduce the CBB population
(Figure 2(b) and (c), plain red curves), compared to the case without control (dashed
blue curves). Moreover, the total healthy coffee berries regain the dynamics obtained
in the pest-free case (Figure 2(a), dash-dotted black curve). During most of the crop-
ping season, both controls are at their highest level so as to severely decrease the
CBB population. From day 190, the population increases again, but remains several
orders of magnitude below the case without control. When we decompose the impact
of both controls on the CBB dynamics, the bio-insecticide and the traps (see Figure 5
in Appendix A), we observe that neither control is sufficient to reduce the CBB popu-
lation when applied alone. In both cases, the CBB population growth is slowed down
compared to the uncontrolled case, but similar values are reached at the end of the
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Fig. 2. (a–c) Simulation of system (3.1) with optimal control pair (u?, v?) (plain red curves),
without controls (u = v = 0, dashed blue curves) and without pest (y(0) = z(0) = 0, dash-dotted
black curve). (d) Evolution of optimal controls u? (plain magenta curve) and v? (plain orange
curve). Parameter values are given in Table 1. Zero initial conditions are set, except for colonising
CBB: y(0) = 104 females.

cropping season. As a consequence, the healthy berries decline at the end of season,
which reduces the harvest compared to the optimal case or pest-free case depicted in
Figure 2(d). This shows that the controls have a synergistic effect. To further explore
the impact of each control, we solve a modified version of control Problem 3.1: we still
aim at maximising the objective functional (3.2), but we use a single control, either u
or v, setting the other control to zero. The optimal controls obtained are denoted by
u† and v†. Results are shown in Figure 3. In both cases, the optimal strategy consists
in applying the control at its maximal value during almost all (for the bio-insecticide
u) or all (for the traps v) the cropping season. A single optimal control is less efficient
to contain the CBB population than the optimal control pair (Figure 2), especially
when only traps (v†) are deployed. In this latter case, v†(t) = 1 at all times, and the
final healthy coffee berries are less abundant than in the optimal or pest-free cases
depicted in Figure 2(d), which has an impact on the harvest. These results show that
the bio-insecticide (u) alone can preserve the harvest, but not the traps (v). However,
to control the CBB population, both controls are needed.

This synergistic effect of the controls appears even more clearly in Table 2, which
splits the penalised profit J defined in equation (3.2) into its three components, for
the various control strategies depicted above. The penalised profit J is based on
the berry financial yield Y, minus the control costs C and a penalty based on the
colonising CBB population remaining after harvest, so as to limit the damages for the
next cropping season. The bio-insecticide, especially when optimised (u†), is fairly
efficient to preserve the yield and reduce the colonising CBB population after harvest,
but its cost is high. In contrast, the traps (v) alone are poorly efficient, but not too
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Fig. 3. (a–c) Simulation of system (3.1) with optimal control u† (v = 0, plain magenta curves),
optimal control v† (u = 0, plain orange curves), without control (u = v = 0, dashed blue curves)
and without pest (y(0) = z(0) = 0, dash-dotted black curve). (d) Evolution of optimal controls u†

and v†. Parameter values are given in Table 1. Zero initial conditions are set, except for colonising
CBB: y(0) = 104 females.

Table 2
Penalised profit (J in US$), yield (Y in US$) control costs (C in US$) and colonising CBB

females remaining after harvest at the end of the cropping season (tf = 250 days). “control u? only”
corresponds to the application of u = u? from optimal control pair (u?, v?) with v = 0; “optimal
control u†” corresponds to the optimisation of u when v = 0 (and vice versa for v).

Intervention J Y C y(tf )
no control 311 412 0 1002008
optimal controls (u?, v?) 1528 2635 1106 2356
control u? only 471 1503 967 649030
control v? only 553 782 139 891815
optimal control u† 1316 2563 1244 23695
optimal control v† 628 838 163 469589

Penalised profit/financial gain in the pest-free case: J = G = 2644 US$

costly. However, when applying traps (v?) on top of the bio-insecticide (u?), their
effect is particular notable on all components of the penalised profit, which highlights
the synergistic effect of both controls.

The yield Y is computed as the integral of the healthy berry age distribution at the
end of the cropping season sb(tf , a) multiplied by the age-dependent sigmoid-shaped
price (4.2). These final distributions are depicted in Figure 4. As the season starts
with no berries, which are then produced at a constant rate, there are less mature
than young berries at the end of the season. Young berries do not contribute to the
yield. As expected from the results above, the final berry and price distributions are
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Fig. 4. Age distribution of the healthy coffee berries and their price (yield) at the end of the
simulation (t = tf ) with optimal control pair (u?, v?) (plain red curves), optimal control u† (v = 0,

plain magenta curves), optimal control v† (u = 0, plain orange curves), without control (u = v = 0,
dashed blue curves) and without pest (y(0) = z(0) = 0, dash-dotted black curves). Cases without
control and with constant infestation rates β are also represented (blue-shaded areas delimited by
βmin and βmax = βmin + βa, plain blue curves for average value β̄). Parameter values are given in
Table 1. Zero initial conditions are set, except for colonising CBB: y(0) = 104 females.

similar in the pest-free (dash-dotted black curves) and optimal control cases when
both controls are used (plain red curves). When the bio-insecticide only is optimised
(u†, plain magenta curves), there are slightly less mature berries, which is reflected
in the yield (Table 2). When only traps are used (v†, plain orange curves), there are
markedly less berries, but still more than without control (dashed blue curves), hence
a better yield. In these two latter cases, the age preference for berries older than
90 days is notable and reflected by the sharper decline occurring at this age. In the
case without control (blue curves), we can compare the results with CBB preference for
mature berries through function (4.1) (dotted curves) and without preference, setting
the infestation rate β to a fixed value between βmin and βmax (shaded area). Using
the mean value of function (4.1) results in a drastic reduction of berries of (almost)
all ages at the end of the season and very low revenues (plain blue curves). Indeed,
without preference, colonising females infest more immature berries. However, for
lower values of the infestation rate β, there are more mature berries at the end of
season, which generate notably higher revenues. It is therefore particularly relevant
to take into account the CBB preference for mature berries.

5. Conclusions. In this study, we formulate a controlled PDE model describing
the infestation dynamics of coffee berries by CBB during a cropping season taking into
account two environmentally friendly control methods. An optimal control problem
is then formulated, aiming at maximising the yield while minimising the control costs
and the CBB population for the next cropping season. Two levers are considered to
achieve this aim: a control which reduces the berry infestation, by spraying a bio-
insecticide such as the entomopathogenic fungus Beauveria Bassiana, and a control
which increases the colonising female mortality, based on traps. We establish the
existence of an optimal solution, which we characterise using the maximum principle
for general age-structured systems. The problem is solved numerically using a forward-
backward sweep method.

Our main result is the synergistic effect of both controls: the bio-insecticide is
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Fig. 5. (a–c) Simulation of system (3.1 when only applying control u? (v = 0, plain magenta
curves) or control v? (u = 0, plain orange curves) from optimal control pair (u?, v?), without controls
(u = v = 0, dashed blue curves) and without pest (y(0) = z(0) = 0, dash-dotted black curve). (d)
Evolution of controls u? and v?. Parameter values are given in Table 1. Zero initial conditions are
set, except for colonising CBB: y(0) = 104 females.

efficient but costly, the traps alone are poorly efficient but less costly; combining both
allows to reach a cost-effective optimum.

Appendix A. Breakdown of the Optimal Control Impact.
Figures 5 and 6 are obtained by numerically solving optimal control Problem 3.1

to obtain the optimal control pair (u?, v?), but then applying only one of the two
controls and setting the other one to zero to integrate system (3.1). We hence observe
the impact of the bio-insecticide (u?) alone and the traps (v?) alone on the crop–pest
dynamics.
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