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Abstract 1 

The pace-of-life hypothesis predicts that among-individual differences in behavior should 2 

integrate with a wide variety of morphological, metabolic, and life-history traits along a 3 

slow to fast pace-of-life continuum. Support for the pace-of-life hypothesis has been mixed, 4 

in part because most empirical tests have been conducted strictly at the phenotypic level 5 

and have thus conflated genetic and environmental sources of covariance among traits. In 6 

the present study, we tested the hypothesis that, according to the predictions of the  pace-7 

of-life hypothesis,  body-mass, routine metabolic rate, activity, and exploratory propensity 8 

would be positively integrated in the house cricket Acheta domesticus (Orthoptera: 9 

Gryllidae). Using modified open field behavioral tests and flow-through respirometry, we 10 

determined whether among-individual differences correlate across morphology, behavior 11 

and metabolism in 50 male house crickets. All traits were repeatable, but we found poor 12 

evidence for overall integration across traits. Instead we found evidence for modularity, 13 

with behavioral traits covarying independently from mass and routine metabolic rate. 14 

Modularity, like that found here between activity and exploratory propensity, has been 15 

suggested to facilitate adaptive evolutionary change by coupling functionally related traits 16 

into suites on which selection can more rapidly act. 17 

  18 

http://ees.elsevier.com/anbeh/viewRCResults.aspx?pdf=1&docID=12770&rev=1&fileID=455771&msid={DE2A8B77-55E9-4EFA-AF99-4D08C37951B5}


Introduction 19 

Phenotypic integration—correlations among phenotypic traits (Armbruster et al., 2014) —20 

can have numerous ecological and evolutionary impacts. For example, evolutionary 21 

constraints are an expected product of phenotypic integration (Blows and Hoffmann, 22 

2005), resulting from the inability of traits to respond independently to selection. These 23 

correlations thereby generate fitness trade-offs (Careau et al., 2008; Roff, 2002; West-24 

Eberhard, 2003).  Such trade-offs are necessarily frequent, as the number of traits 25 

expressed by organisms relative to the number of genes commonly present necessitates 26 

pleiotropy (Walsh and Blows, 2009). Phenotypic integration can be contrasted with 27 

modularity wherein traits are integrated within developmental (West-Eberhard, 2003) or 28 

functional units (Araya-Ajoy and Dingemanse, 2014) independently from other traits or 29 

groups of traits.  30 

Recent interest in behavioral syndromes, which represent integration of behavioral 31 

traits, is demonstrative of an increased appreciation for the importance of phenotypic 32 

integration in behavioral ecology (Sih et al. 2004a, Sih et al. 2004b). Behavioral syndromes 33 

elicit many of the same questions as phenotypic integration at large. For example, as with 34 

other phenotypic traits, behavioral syndromes are of sufficient strength to have the ability 35 

to constrain evolutionary responses available to populations (Dochtermann and 36 

Dingemanse, 2013). Importantly our understanding of how behavioral responses integrate 37 

with other phenotypic domains (e.g. with physiology and life-history) continues to lag 38 

behind our understanding of integration within domains. 39 



 A variety of physiological and life-history traits are expected to covary with 40 

behaviors. For example, Biro and Stamps (2010) and Careau et al. (2008) have suggested 41 

that consistent individual differences in metabolic rate (and other physiological processes) 42 

should promote consistent individual differences in behavior. These same differences in 43 

physiology are also expected to integrate consistent individual differences in growth, 44 

reproduction, and other life-history processes into a “pace-of-life syndrome” (Biro and 45 

Stamps, 2008, 2010; Careau and Garland, 2012; Careau et al., 2008; Reale et al., 2010). 46 

Phenotypic integration will be modulated by physiology within a pace-of-life syndrome, as 47 

argued by Ricklefs and Wikelski (2002), due to several underlying assumptions likely 48 

general to animals (and, indeed, plants). In particular, integration should arise if: (1) 49 

organisms respond to environmental variation; and (2) these responses are constrained by 50 

limited resources (Ricklefs and Wikelski, 2002). Under the pace-of-life hypothesis 51 

behavior, physiology and life-history are thus considered non-independent components of 52 

an integrated phenotype.  53 

Within a pace-of-life syndrome, behavioral responses are expected to correlate with 54 

several aspects of life-history and physiology in predictable ways (Reale et al., 2010). For 55 

example, higher resting metabolic rates may allow individuals to more rapidly increase 56 

energy expenditure (Reinhold, 1999). As a result, individuals with higher resting metabolic 57 

rates may be able to engage in more costly behaviors (Mathot et al., 2015). More generally, 58 

under the pace-of-life hypothesis, metabolism is expected to positively correlate with 59 

activity, exploratory rate, dispersal, “boldness”, and aggression (Reale et al., 2010 but see 60 

Houston, 2010).  61 



Current support for integration of behavior with metabolic rate according to the 62 

pace-of-life hypothesis is mixed (Careau et al., 2015; Mathot and Dingemanse, 2015). 63 

Supporting the pace-of-life hypothesis Careau et al. (2010) found that energy expenditure, 64 

growth rate, and longevity were all positively correlated with “boldness” and aggression in 65 

domestic dogs (Canis lupus familiaris); Mathot et al. (2015) found that metabolic rate and 66 

risk-taking were correlated—albeit in a context dependent manner—in great tits (Parus 67 

major (but see Bouwhuis et al., 2014 where a negative relationship was found between 68 

metabolic rate and exploratory behavior in female great tits); Shearer and Pruitt (2014) 69 

found that heart-rate, a purported proxy for metabolic rate, and “boldness” were positively 70 

correlated; likewise heart-rate and  social dominance were positively correlated in red deer 71 

(Cervus elaphus; Turbill et al., 2013); growth rate and boldness were positively correlated 72 

in crayfish (Cherax destructor; Biro et al., 2014); and fast and slow reproductive strategies 73 

corresponded to fast and slow exploration in eastern chipmunks (Tamias striatus; 74 

Montiglio et al., 2014). In contrast to this support, Mathot et al. (2013) found that the 75 

genetic correlation between metabolic rate and courtship was effectively zero in zebra 76 

finches (Taenipygia guttata); in yellow mealworm beetles (Tenebiro molitor) metabolic rate 77 

positively correlated with predator response latency and negatively correlated with time 78 

immobile, supporting and contradicting the pace-of-life hypothesis respectively (Krams et 79 

al., 2014); correlations between metabolic rate and behavior in viviparous lizards (Zootaca 80 

vivipara) did not differ from zero, although there were slight relationships between 81 

behavior and locomotor performance (Le Galliard et al., 2013). Likewise, Gifford et al 82 

(2014) found no relationship between metabolic rate and exploratory behavior in 83 

salamanders (Desmognathus brimleyorum). This mixed support may stem, in part, from 84 



difficulties in distinguishing differences among individuals in acquisition—the general 85 

basis for pace-of-life relationships—and allocation trade-offs imposed by resource 86 

availability (van Noordwijk and de Jong 1986; see also Careau et al. 2014).  87 

Regardless of this mixed support, the majority of research into phenotypic 88 

integration within a pace-of-life framework has focused on vertebrates. This discrepancy 89 

reflects an overall vertebrate bias in the study of behavioral variation (Kralj-Fišer and 90 

Schuett, 2014) and the study of behavior more broadly.  Nonetheless, the assumptions of 91 

the pace-of-life hypothesis will typically be met in invertebrate groups like arthropods. For 92 

example, in Acheta domesticus , standard metabolic rate accounts for 78% of daily energetic 93 

expenditure (Hack, 1997). A consequence of this relationship is that allocation of energy to 94 

other purposes will be constrained, a necessary requirement for the pace-of-life hypothesis 95 

(Ricklefs and Wikelski, 2002). Further, an important limitation of pace-of-life research is 96 

that empirical tests are often conducted strictly at the phenotypic level, thus conflating 97 

genetic and environmental effects (Dingemanse and Dochtermann, 2013, 2014; 98 

Dingemanse et al., 2012). This conflation means that phenotypic correlations can differ 99 

substantially from, for example, among-individual or genetic correlations (Dingemanse and 100 

Dochtermann, 2013, 2014; Dingemanse et al., 2012; Downs and Dochtermann, 2014 but 101 

see Dochtermann, 2011) and thereby lead to inappropriate evolutionary or ecological 102 

inferences. 103 

Within this framework of phenotypic integration and the pace-of-life hypothesis, we 104 

were interested in whether behaviors covary with physiology and morphology in house 105 

crickets (Acheta domesticus). We have previously demonstrated that A. domesticus exhibits 106 



repeatable behavioral variation with respect to activity and exploratory propensity 107 

(Dochtermann and Nelson, 2014), and Wilson et al. (2010) demonstrated that several 108 

behaviors of A. domesticus were correlated at the phenotypic level. Here we sought to 109 

determine whether individual differences in activity and exploration propensity were 110 

correlated with adult mass and routine metabolic rate at the among-individual level. 111 

Support for the pace-of-life hypothesis is expected to be confirmed if all traits are found to 112 

be positively correlated. 113 

Methods 114 

Male five-week old Acheta domesticus were commercially obtained (Fluker Farms) and 115 

initially housed communally with shelter, ad libitum food (ground Purina chick starter), 116 

and water. At least 7 days prior to any behavioral and metabolic testing subjects were 117 

moved from communal to individual housing. Crickets were individually housed in 0.71 118 

liter containers and provided with ad libitum food and water, as well as egg carton pieces 119 

for shelter. All individuals were maintained under a 12:12 light/dark photoperiod.  120 

Behavioral tests 121 

We measured behavioral responses using a modified open field test, in which individuals 122 

had to navigate around multiple obstacles to explore the entire arena (Figure 1). The arena 123 

was 60 cm ×  60 cm × 10 cm, constructed of sealed and painted plywood with a Plexiglas 124 

lid. This obstacle course behavioral protocol was previously used with A. domesticus to 125 

evaluate exploratory behavior (Dochtermann and Nelson, 2014) and, here, is being used to 126 

assess exploratory propensity and activity levels. 127 



Individuals were introduced into the lower right section of the arena (Z1, Figure 1) 128 

and allowed to move throughout the arena for 180 seconds after introduction. Recording 129 

started upon introduction for all individuals. We digitally recorded all behavioral trials and 130 

used Noldus Ethovision (Noldus Information Technology) to track movements of these 131 

individuals from digital videos. Using Ethovision we superimposed a 5 × 5 grid on the arena 132 

(Figure 1) and recorded the location and movement of individuals through the resulting 25 133 

zones. As a measure of “exploratory propensity” we recorded the number of unique zones 134 

visited. As a measure of “activity” we recorded the total distance moved by an individual. 135 

Individual mass was measured immediately prior to behavioral tests. Arenas were cleaned 136 

with alcohol wipes and allowed to air-dry between trials.  137 

Exploratory propensity and activity as operationally defined here are expected to 138 

exhibit some degree of structural correlation; i.e. individuals that visit more unique zones 139 

necessarily move greater distances and individuals that move greater total distances might, 140 

but not necessarily, incidentally visit more unique zones. To address this issue, we 141 

developed an individually-based simulation model described in greater detail in the 142 

supplemental materials.  In short, we modeled the movement of individuals through a 60 143 

cm ×  60 cm area as a random walk and then calculated the correlation between activity 144 

(total distance moved) and unique zones visited. Using this model, we estimated the null 145 

structural correlation as 0.199. Unfortunately there is no a priori basis on which to 146 

determine how this correlation is expected to be divided between the among- and within-147 

individual levels.  148 

Individuals were generally tested in the obstacle course twice, although due to 149 

natural mortality some were only able to be tested once (Ntwice = 42, Nonce = 10).  150 



Routine metabolic rate 151 

We used CO2 emission rate as an index of aerobic metabolic rate, as we have 152 

previously done with other invertebrates (Yocum et al., 2011; Greenlee and Harrison, 2004, 153 

2005; Owings et al. 2014). Crickets were weighed on an analytical balance to the nearest 154 

0.01 mg (Mettler Toledo, Columbus, OH) just prior to and immediately following metabolic 155 

measurements.  Crickets (n = 42) were placed individually into 20 ml respirometry 156 

chambers constructed from 50 ml syringes plumbed with Tygon tubing.  Chambers were 157 

covered and the room was kept dark during recording to minimize activity.  Using a 158 

multiplexor (Intelligent Multiplexor V3, Sable Systems, Inc., Las Vegas, NV), seven crickets 159 

plus a baseline chamber were run concurrently.  Dry, CO2 free air (Balston purge gas 160 

generator, Haverhill, MA) was pushed through the measurement chamber and directed to 161 

the CO2 analyzer (LiCor 6252, Lincoln, NE) at a flow rate of 500 ml min-1 using a mass flow 162 

meter (Sierra Instruments, Monterey, CA) controlled by a mass flow controller (MFC-4; 163 

Sable Systems, Inc., LasVegas, NV) .  While not being measured, remaining chambers were 164 

flushed with dry, CO2 free air (140 ml min-1, Ametek R2 pump).  We used Sable Systems 165 

software (Expedata version 1.4.15) and hardware (UI2) to control switching between 166 

chambers and to record data.  One round of sampling from the multiplexed animals began 167 

with recording from the baseline chamber (identical, but lacking a cricket) for 1 min.  After 168 

this time, the sample airstream was switched to chamber 1, and data were recorded for 5 169 

min.  The multiplexor was programmed to switch to the baseline chamber between each of 170 

the subsequent animal chambers, which were sampled in series for 5 min each.  Crickets 171 

were each sampled four times for 5 min each.    We calculated mass loss during the time 172 

that animals were in the chambers.   173 



We used Expedata to calculate the mean CO2 emission for each sampling period, 174 

trimming the first and last 30 sec of each sampling period from each recording. Because 175 

animals were not immobilized, we could not ensure a true resting metabolic rate. Instead 176 

our measurement of metabolic rate represents an estimate of “routine metabolic rate” 177 

(sensu Makarieva et al. 2008). We calculated routine metabolic rate (RMR) from baseline-178 

corrected CO2 emission data as in Greenlee and Harrison (2004, 2005):   179 

MCO2 (mol CO2 h-1) = Vin × (FECO2 – FECO2) × 60 × 1000 × 22.4-1 180 

where Vin is the upstream flow rate in ml min-1, FECO2 = 0. ml g–1·min–1 were converted to 181 

μmol·g–1·h–1 using the following conversion factors: 1000·μl·ml –1, 182 

60·min·h–1 and 22.4·μl·μmol–1.  MCO2 was calculated for each of the four sampling periods 183 

and these MCO2 estimates used in subsequent analyses.  184 

 185 

Data analysis 186 

To estimate the cross-domain relationships and overall phenotypic integration we 187 

employed a two part analysis (see also Sprenger et al., 2012). First, we estimated the 188 

among-individual and within-individual variances and covariances for exploratory 189 

propensity, activity, routine metabolic rate, and mass. Second, we used Structural Equation 190 

Modeling (SEM) to test a priori hypotheses about how morphological, physiological and 191 

behavioral traits may be integrated. Among-individual and within-individual variances and 192 

covariances were estimated using multiresponse mixed-effects models (Dingemanse and 193 

Dochtermann, 2013, 2014; Dingemanse et al., 2012). We estimated among-individual and 194 

within-individual components separately, because phenotypic correlations can be 195 



misleading as to the direction and magnitude of trait relationships at the level of 196 

individuals when individuals can vary their own responses (Dingemanse and 197 

Dochtermann, 2013; Downs and Dochtermann, 2014). 198 

In our mixed-effects models we included individual as a random factor. Condition 199 

(injured or not, four individuals had minor appendage injuries), time of testing and 200 

temperature (centered within individuals; van de Pol and Wright, 2009) were included as 201 

fixed effects to control for potential confounds and “pseudo-repeatability” or “pseudo-202 

personality” (Nakagawa and Schielzeth, 2010; Westneat et al., 2011). Because we were only 203 

interested in the variance components, we will not discuss the fixed effects results (see 204 

Table S1). We modeled all variables according to a Gaussian distribution and scaled them 205 

to standard deviation units. Mass and RMR were log10-transformed to linearize the 206 

exponential relationship between these variables. Analyses were conducted using the 207 

MCMCglmm package (Hadfield, 2010) of R (R Development Core Team 2014) with 1.3 × 106 208 

iterations, with a 3 × 105 iteration burn-in and thinning intervals of 1000. We used a prior 209 

that was flat and uninformative for the correlations. 210 

From these mixed-effects models, we estimated behavioral, morphological, and 211 

physiological repeatabilities and the among- and within-individual correlations across the 212 

traits. Because they were assessed during separate testing events, we could not estimate 213 

the within-individual correlation of RMR with either activity or exploratory propensity. 214 

Similarly, the within-individual correlation between mass and RMR could not be estimated.  215 

While our sample size for estimating among-individual correlations had low power to 216 

distinguish estimates from zero, our correlation should have had relatively low bias (see 217 

Figure 1 in Dingemanse and Dochtermann 2013) making these estimates useful in SEM 218 



comparisons. The posterior modal estimates of the among- and within-individual 219 

correlation matrices were used in the second part of the analysis.  220 

For the second part of the analysis we used a structural equation model comparison 221 

approach to assess how the different traits might be linked (Dingemanse et al., 2010a; 222 

Dochtermann and Jenkins, 2007). We compared a priori models using Akaike’s Information 223 

Criterion (AIC). Eleven models of trait covariance were evaluated at the among-individual 224 

level and four at the within-individual level (Figure 2): 225 

model 1: all traits independent (evaluated for among- (A) and within-individual (W) 226 

correlation matrices) 227 

model 2: only behaviors correlated (A & W) 228 

model 3: only mass and RMR correlated (A) 229 

model 4: behaviors are correlated but independent from mass and RMR, which are also 230 

correlated (A) 231 

model 5: behaviors integrated with RMR via an underlying latent variable (A) 232 

model 6: behaviors integrated with mass via an underlying latent variable (A & W) 233 

model 7: all four traits integrated via an underlying latent variable (A) 234 

model 8: both behaviors arise causally from the influence of RMR and mass (A) 235 

model 9: both behaviors arise causally from the influence of RMR (A)  236 

model 10: both behaviors arise causally from the influence of mass (A & W) 237 



model 11: mass causally influences RMR and both behaviors arise causally from the 238 

influence of RMR and mass (A) 239 

Of these eleven models, model 1 represents null expectation, models 5-7 represent cross-240 

domain trait integration, and models 8-11 represent causal influences of morphology and 241 

physiology on behavior. 242 

Results 243 

The four phenotypic measures showed repeatabilities (R) ranging from moderate to high 244 

(Table 1), with mass showing the highest repeatability (R = 0.89) and behavior and routine 245 

metabolic rate showing moderate repeatabilities (0.28 < R < 0.61, Table 1). At the among-246 

individual level, activity (distance moved) and exploratory propensity (unique zones 247 

visited) were positively correlated while separately RMR and mass were positively 248 

correlated (among-individual correlations: r = 0.56 and 0.53 respectively). Both of these 249 

correlations had 95% credibility intervals excluding 0 (Table 1). Remaining among-250 

individual correlations did not differ from 0 (Table 1).  251 

At the within-individual level only activity and exploratory propensity were 252 

correlated (r = 0.75, Table 1). In addition, the phenotypic correlation after controlling for 253 

fixed-effects and repeated measures between activity and exploratory propensity 254 

(calculated following Dingemanse et al. 2012) was substantially higher than the expected 255 

correlation derived from null expectations (rP = 0.70 (0.57 : 0.79), rPNULL = 0.19; see 256 

Supplementary Information).  257 

Consistent with the bivariate correlations, SEM model comparison results suggest 258 

that model 4 (Figure 2) best explains the data at the among-individual level (Table 2). This 259 



model suggests behavioral integration separate from the expected relationship between 260 

RMR and mass. At the within-individual level, the model in which only behaviors covaried 261 

(model 2) was best supported by the data (Table 2). However, since behavioral and 262 

physiological measurements were not taken within the same time-spans, several of the 263 

proposed models could not be fit to the within-individual correlation matrix. 264 

Discussion 265 

We sought to determine whether A. domesticus exhibits phenotypic integration of 266 

behaviors, metabolic rate, and morphology as expected according to the pace-of-life 267 

hypothesis. Ultimately, we did not find support for integration of behavior and metabolism 268 

but found substantive correlations between activity and exploratory behaviors and, 269 

separately, between routine metabolic rate and mass. The relationship between mass and 270 

metabolic rate has previously been observed in A. domesticus (Hack, 1997) and is expected 271 

for allometric reasons (e.g. Downs et al., 2008). We also found that all four of the traits we 272 

measured exhibited considerable repeatable variation (Table 1), suggesting underlying 273 

genetic variation is present in each (Boake, 1989). Meta-analyses suggest that, on average, 274 

about half of the repeatable variation present in behaviors corresponds to additive genetic 275 

variation with the other half being attributable to permanent environmental differences 276 

(Dochtermann et al., 2015). How genetic variation and permanent environmental variation 277 

might influence A. domesticus behavioral variation is unclear and future research should 278 

address the heritability of and genetic correlations among these traits. 279 

Our results also build on previous work by Wilson et al. (2010), who found that A. 280 

domesticus exhibited significant phenotypic correlations among several behavioral 281 



measures. Specifically, our results extend those previous findings by demonstrating that 282 

behavioral measures of presumably similar ecologically relevant behaviors demonstrate 283 

repeatable variation. Our results therefore suggest that among-individual correlations 284 

likely contribute to the phenotypic correlations reported by Wilson et al. (2010).  285 

Importantly we did not find evidence for integration of behavior with metabolism. 286 

Identifying correlations between behavior and metabolic rate is potentially problematic as 287 

under most testing conditions the later cannot be measured independent of the former 288 

(Mathot and Dingemanse, 2015). For example, activity in behavioral assays is expected to 289 

positively correlate with routine metabolic rate simply because more active individuals will 290 

also be more active during metabolic measurements. Such a correlation might be 291 

incorrectly viewed as support for the pace-of-life hypothesis if routine metabolic rate is a 292 

poor predictor of daily energy expenditure (Mathot and Dingemanse, 2015).  This concern 293 

is less valid for our results for two reasons. First, standard metabolic rate accounts for 78% 294 

of the daily energy expenditure of A. domesticus (Hack, 1997) and thus necessarily strongly 295 

correlates with routine metabolic rate. Second, in our case the concern about RMR being a 296 

poor predictor of daily energy expenditure is not likely to be valid, because the estimated 297 

among-individual correlation between routine metabolic rate and activity did not differ 298 

from zero (Table 1). Finally, because all individuals were provided with ad libitum food, we 299 

also do not consider it likely this lack of a connection between behavior and physiology 300 

reflects a balancing of allocation and acquisition trade-offs. 301 

Our failure to detect phenotypic integration of behavior and physiology is 302 

particularly interesting given the considerable theoretical and conceptual literature that 303 

suggests such links are to be expected (Biro and Stamps, 2010; Careau et al., 2009; Careau 304 



and Garland, 2012; Careau et al., 2008). In particular, pace-of-life models have posited that 305 

among-individual differences in behavior, i.e. personality (sensu Dingemanse and 306 

Dochtermann, 2013; Dingemanse et al., 2010b), might arise from underlying differences in 307 

energy use (Careau et al., 2009; Careau and Garland, 2012; Reale et al., 2010). Such a 308 

connection with physiology might then integrate behavioral variation with aspects of life-309 

history and slow versus fast-paced strategies (Reale et al., 2010). Here we found that 310 

neither a causal relationship from metabolic rate to behavior nor general covariance of 311 

behaviors and metabolic rate were supported. This lack of support for such cross-domain 312 

connections does, however, fit with some recent failures to support pace-of-life predictions. 313 

For example, in brown trout (Salmo trutta), behavioral variation was correlated to life-314 

history variation opposite to the direction predicted (Adriaenssens and Johnsson, 2011). 315 

Our results and corresponding findings elsewhere suggest that arguments such as a general 316 

connection among behaviors and physiology due to “pace-of-life” and other conceptual 317 

constructs should be reevaluated.  318 

Integration of traits exists on a continuum with “modularity”, i.e. independence or 319 

“discreteness” of traits (West-Eberhard, 2003). Integration may also exist within 320 

modularity; specifically, traits that show integration due to shared developmental or causal 321 

pathways (West-Eberhard, 2003) or that have been jointly shaped by selection for a 322 

particular function (Araya-Ajoy and Dingemanse, 2014) may be integrated within modules 323 

independent from other traits. Here, activity and exploratory propensity can be considered 324 

as a module independent of metabolic rate and mass. Our observation of modularity rather 325 

than integration across phenotypic domains is important to consider in terms of the 326 

potential ecological and evolutionary implications of behavioral syndromes. While 327 



behavioral syndromes might have direct effects on evolutionary outcomes for behavior 328 

(Dochtermann and Dingemanse, 2013), our results here suggest that these evolutionary 329 

consequences might not carry-over across phenotypic domains. Our findings here that 330 

behavior often exists in an integrated module (e.g. as a behavioral syndrome) separate 331 

from physiology affords populations with greater adaptive potential, allowing functionally 332 

related traits to respond rapidly to changing evolutionary pressures (West-Eberhard, 333 

2003).  334 
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Tables and Figures 491 

Table 1. Trait repeatabilities (shaded diagonal), among-individual correlations (above 492 

diagonal), and within-individual correlations (below diagonal, italicized). Values in bold 493 

indicate correlations with 95% credibility intervals (in parentheses) that do not overlap 494 

zero. 495 

 Activity 
Exploratory 
Propensity 

RMR Mass 

Activity 
0.28 

(0.20 : 0.51) 
0.56 

(0.17 : 0.77) 
0.02 

(-0.43 : 0.34) 
0.16 

(-0.26 : 0.51) 

Exploratory 
Propensity 

0.75 
(0.49 : 0.80) 

0.33 
(0.18; 0.48) 

0.15 
(-0.27 : 0.48) 

0.13 
(-0.24 : 0.52) 

RMR 
-0.04* 

(-0.49 : 0.45) 
-0.16* 

(-0.43 : 0.42) 
0.61 

(0.48 : 0.75) 
0.53 

(0.28 : 0.76) 

Mass 
0.05 

(-0.08 : 0.22) 
-0.06 

(-0.14 : 0.17) 
0.02 

(-0.22 : 0.29) 
0.89 

(0.84 : 0.93) 

*These values could not be estimated and, as reflected by their credibility intervals, roughly center on zero. 496 
Variation around zero is due to stochasticity in the MCMC process. 497 
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Table 2. Model comparison results at the among- and within-individual levels. For model 499 

descriptions see Figure 2. 500 

Among-individual  Within-individual 

Model AIC ΔAIC  Model AIC ΔAIC 

Model 4 540.07 0.00  Model 2 531.22 0.00 

Model 2 554.29 14.22  Model 6 535.09 3.87 

Model 6 556.80 16.72  Model 1 571.51 40.29 

Model 5 557.11 17.04  Model 10 575.21 43.99 

Model 3 557.29 17.22     

Model 7 557.83 17.75     

Model 11 562.21 22.14     

Model 1 571.51 31.44     

Model 10 573.23 33.15     

Model 9 574.31 34.24     

Model 8 576.43 36.35     

 501 

 502 
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Figures 504 

Figure 1. Obstacle course arena. Individuals were introduced into zone 1 (Z1) and allowed 505 

180 s to explore the arena. Shaded areas represent the placement and size of obstacles 506 

within the arena. 507 

 508 

Figure 2.  A priori models of how the four traits might covary. In model 1, all traits are 509 

independent. In model 2 (path a active), the two behavioral measures covary. In model 3 510 

(path b active), routine metabolic rate (RMR) and mass covary. In model 4 (paths a and b 511 

active), the two behavioral measures covary while separately RMR and mass covary. In 512 

model 5 (path c active) the two behaviors covary with routine metabolic rate (RMR) while 513 

mass varies independently. In model 6 (path d active), mass covaries with the two 514 

behavioral measures while RMR varies independently. In model 7 (paths c & d active), RMR 515 

and mass covary with each other and with the two measured behaviors. In model 8 (paths 516 

e through h active), the two behaviors are hypothesized to covary due to the joint effects of 517 

mass and RMR. In model 9 (paths e and f active), the two behaviors are hypothesized to 518 

covary due to the effects of RMR. In model 10 (path g and h active), the two behaviors are 519 

hypothesized to covary due to the effects of mass. In model 11 (paths e through i active), 520 

the two behaviors covary due to the effects of both RMR and mass while variation in RMR 521 

arises (in part) due to variation in mass. 522 
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