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Despite recent progress elucidating the genetic basis for behavioral variation, the effects of the developmental environment on the maintenance and generation of behavioral variation across multiple traits remains poorly resolved. We investigated how nutritional status during development affected behavioral variation and covariance between activity in an open field test and response to cues of predator presence in the house cricket (Acheta domesticus). We provided 98 juvenile crickets with either a high or low quality diet during development throughout which we measured body mass, activity in a modified open-field and response to predator excreta twice every week for three weeks. Diet quality affected growth rate but not average activity or response to cues of predator presence, nor the correlation between the two. However, repeatability (τ) in response to cues of predator presence was reduced by 0.24 in individuals exposed to the high quality diet versus the low quality diet. Larger individuals also increased their response to predator cues when reared on a high quality diet, suggesting negative feedbacks between growth rate and antipredator behaviors. Our results also indicate that changes in the developmental environment are not sufficient to collapse behavioral syndromes, suggesting a genetic link between activity and predator cue response in house crickets, and that nutritional stress early in life can lead to more consistent behavioral responses when individuals faced predatory threats. Our results demonstrate that subtle differences in the quality of the environment experienced early in life can influence how individuals negotiate behavioral and life-history trade-offs later in life.

INTRODUCTION

The environment organisms experience during development can have a considerable influence on phenotypic expression. For example, individuals are primed to adjust their phenotype to developmental cues through epigenetic changes [START_REF] Ledón-Rettig | Epigenetics for behavioral ecologists[END_REF][START_REF] Weaver | Epigenetic programming by maternal behavior[END_REF] which can have long-term consequences on morphology, physiology, and behavior [START_REF] Kasumovic | The multidimensional consequences of the juvenile environment: towards an integrative view of the adult phenotype[END_REF][START_REF] Snell-Rood | An overview of the evolutionary causes and consequences of behavioural plasticity[END_REF][START_REF] Mj | Developmental plasticity and evolution[END_REF]. Understanding the contribution of the developmental environment to phenotypic expression is therefore fundamental to understanding the generation of stable individual differences in behavior (i.e. animal personality and behavioral syndromes, [START_REF] Réale | Integrating animal temperament within ecology and evolution[END_REF]Sih et al. 2004a;Sih et al. 2004b).

Personality variation arises from the combined influence of genetic and environmental factors (Dingemanse andDochtermann 2014, Han andDingemanse 2015) with each accounting for around 50% of observed personality variation [START_REF] Dochtermann | The contribution of additive genetic variation to personality variation: heritability of personality[END_REF]. A large part of personality research has focused its attention on quantifying the genetic inheritance of behavioral variation [START_REF] Taylor | Low heritabilities, but genetic and maternal correlations between red squirrel behaviours[END_REF], its fitness consequences [START_REF] Bergeron | Disruptive viability selection on adult exploratory behaviour in eastern chipmunks[END_REF], and implications for a population's evolutionary trajectories [START_REF] Dochtermann | Behavioral syndromes as evolutionary constraints[END_REF]. However, these areas of attention largely deal with ultimate causes and consequences of personality variation and behavioral syndromes and as such are fundamentally multi-generational topics. In contrast, variation in the environment an individual experiences during development-such as food abundance, food quality, conspecific density, or presence of predator cues-typically operate within the life-time of individuals.

Focusing on how within-lifetime processes affect the expression of behavioral variation is necessary because differences in early experiences may place individuals along different lifehistory trajectories in interaction with their behavioral types [START_REF] Buss | Adaptive individual differences[END_REF][START_REF] Carere | Personalities in great tits, Parus major: stability and consistency[END_REF]. Since changes in the expression of a behavioral phenotype are often associated with costs (reviewed by Snell-Rood 2013), such changes might be restricted to sensitive periods during early development [START_REF] Groothuis | Unfolding personalities: the importance of studying ontogeny[END_REF]. Manipulative studies have identified many of the developmental conditions that influence the expression of behaviors (diet quality: [START_REF] Noguera | Are you what you eat? Micronutritional deficiencies during development influence adult personality-related traits[END_REF], immune challenge: Butler et al. 2012;predation pressure: Niemelä et al. 2012b; access to shelter: [START_REF] Bengston | The development of collective personality: the ontogenetic drivers of behavioral variation across groups[END_REF]conspecific cues: DiRienzo et al. 2012;Niemelä et al. 2012a; physical and social environment: [START_REF] Liedtke | Early environmental conditions shape personality types in a jumping spider[END_REF]. Most of these studies, however, focus strictly on changes in the population average while effects on behavioral variation in and of itself remain largely ignored (but see [START_REF] Dirienzo | Juvenile pathogen exposure affects the presence of personality in adult field crickets[END_REF]. This is a missed opportunity because determining the effects of developmental conditions on behavioral variation can shed light on the set of factors that promote the generation of stable individual differences [START_REF] Duckworth | Evolution of personality: developmental constraints on behavioral flexibility[END_REF][START_REF] Han | Effect of diet on the structure of animal personality[END_REF][START_REF] Jandt | Behavioural syndromes and social insects: personality at multiple levels[END_REF][START_REF] Stamps | The development of animal personality: relevance, concepts and perspectives[END_REF] The developmental environment can also create conditions by which morphological and behavioral variation dynamically interact with each other via feedback loops. For example, diet quality impacts growth rates (Hunt et al. 2005b) and resulting morphological differences can in turn affect behavioral and life history strategies [START_REF] Lee | Perturbations in growth trajectory due to early diet affect age-related deterioration in performance[END_REF][START_REF] Metcalfe | Compensation for a bad start: grow now, pay later?[END_REF].

Feedback loops connecting behavior with an individual's morphology (e.g. condition or other state variables, sensu [START_REF] Houston | Models of adaptive behaviour[END_REF] can then affect the expression of behavioral variation within a population. Under a negative feedback scenario, if individuals with access to higher quality or more food are larger or have positive energy balances, they are expected to engage in asset protection [START_REF] Clark | Antipredator behavior and the asset-protection principle[END_REF][START_REF] Clark | Dynamic State Variable Models in Ecology:Methods and Applications: Methods and Applications[END_REF] and limit the amount of risktaking behaviors over time. This behavioral change is then expected to reduce the amount of personality variation observed over time [START_REF] Dall | The behavioural ecology of personality: consistent individual differences from an adaptive perspective[END_REF][START_REF] Luttbeg | Risk, resources and state-dependent adaptive behavioural syndromes[END_REF]. In a positive feedback scenario, such as state-dependent safety [START_REF] Luttbeg | Risk, resources and state-dependent adaptive behavioural syndromes[END_REF], individuals with higher body-sizes or more positive energy balance are less likely to be captured by predators and can increase their foraging effort under predation risk, in turn increasing their state value. Such a feedback loop is again expected to increase the amount of among-individual variation present within a population and lead to stable behavioral differences [START_REF] Luttbeg | Risk, resources and state-dependent adaptive behavioural syndromes[END_REF]. While state-dependent models of personality have been extensively investigated through theoretical and conceptual models [START_REF] Dall | The behavioural ecology of personality: consistent individual differences from an adaptive perspective[END_REF][START_REF] Luttbeg | Risk, resources and state-dependent adaptive behavioural syndromes[END_REF][START_REF] Montiglio | Contaminants as a neglected source of behavioural variation[END_REF]Sih et al. 2015;[START_REF] Wolf | Life-history trade-offs favour the evolution of animal personalities[END_REF], they remain poorly studied empirically (but see [START_REF] Mathot | Disentangling the roles of frequency-vs. state-dependence in generating individual differences in behavioural plasticity[END_REF]).

In the absence of direct tests, state-dependent feedback can be indicated by among-individual state-based differences in behavior [START_REF] Sih | Animal personality and state-behaviour feedbacks: a review and guide for empiricists[END_REF].

State-dependent feedback loops and their effects on behavioral variation are further complicated by the fact that behavioral responses are frequently integrated within behavioral syndromes (Sih et al. 2004 a,b). Because they are generated in part through genetic correlations [START_REF] Dochtermann | Applying a quantitative genetics framework to behavioural syndrome research[END_REF][START_REF] Dochtermann | Testing Cheverud's conjecture for behavioral correlations and behavioral syndromes[END_REF][START_REF] Han | Effect of diet on the structure of animal personality[END_REF], behavioral syndromes may constrain evolutionary responses [START_REF] Dochtermann | Behavioral syndromes as evolutionary constraints[END_REF]) and may prevent populations from reaching adaptive peaks if behavioral syndromes are robust to environmental variability. There is, however, considerable variation among organisms and within populations in the behaviors associated within a syndrome, often depending on environmental conditions [START_REF] Bell | Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus)[END_REF][START_REF] Bell | Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus)[END_REF][START_REF] Dingemanse | Behavioural syndromes differ predictably between 12 populations of three-spined stickleback[END_REF][START_REF] Royauté | Interpopulation variations in behavioral syndromes of a jumping spider from insecticide-treated and insecticide-free orchards[END_REF]Royauté et al. , 2015a)). Unfortunately, despite the stability of behavioral syndromes over multiple lifestages having been well studied [START_REF] Brodin | Behavioral syndrome over the boundaries of life -carryovers from larvae to adult damselfly[END_REF][START_REF] Sinn | Development of shy/bold behaviour in squid: context-specific phenotypes associated with developmental plasticity[END_REF][START_REF] Wilson | Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts?[END_REF], the developmental characteristics that shape the emergence of syndromes are poorly understood [START_REF] Han | Effect of diet on the structure of animal personality[END_REF].

Here we investigated how variation in a single component of the developmental environment, diet quality, influenced subsequent variation in and correlations among body mass, activity, and response to cues of predator presence in juvenile house crickets (Acheta domesticus). Specifically, we aimed to answer the following questions: (1) Does variation in diet quality generate different developmental trajectories in growth rates, activity, and response to cues of predator presence? (2) Does diet quality increase or decrease body mass and behavioral variation? (3) Does diet quality affect the strength of correlations between morphological and behavioral traits? At the population average level, we expected a low quality diet to decrease growth rate and, as a result, increase individual's propensity to exhibit risky behaviors in order to meet energetic demands (state-dependent safety and starvation avoidance principles, Luttbeg and Sih 2010; Figure 1a). Here, this would translate into higher activity levels and a higher propensity to ignore the presence of predatory cues. In contrast, we expected individuals fed a high quality diet to increase their growth rate and avoid risky situations through the asset protection principle [START_REF] Clark | Antipredator behavior and the asset-protection principle[END_REF][START_REF] Luttbeg | Risk, resources and state-dependent adaptive behavioural syndromes[END_REF]; Figure 1b). For effects on trait covariance, we predicted a negative correlation between activity and antipredator response in both treatments since the patterns of effect of growth rates on these traits are opposite and symmetrical across diet quality treatments (Figure 1). We also predicted that due to the cost of plasticity, individuals fed a low quality diet would decrease the amount of behavioral plasticity (measured here as the residual within-individual variance VR-sensu [START_REF] Westneat | The biology hidden inside residual withinindividual phenotypic variation[END_REF]although here this measure conflates measurement error, organismal error, and plasticity).

Finally, since individuals would be more constrained in terms of energy allocation we also expected a "ceiling effect" on among-individual variation (VID) such that VID in body mass would be lower in the low quality diet treatment.

MATERIALS AND METHODS

House cricket rearing and diet preparation

We purchased one-week old Acheta domesticus from Fluker's Farm (Port Allen, LA, USA).

Crickets were housed individually in 0.71L containers and provided with ad libitum food and water, as well as pieces of egg carton for shelter. All individuals were maintained under a 12:12 light/dark photoperiod. Individuals were fed a standard laboratory diet and allowed to habituate to their containers for a minimum of seven days before being randomly assigned to either a high or low quality diet (Table 1) and beginning behavioral trials.

We varied diet quality by producing food pellets baked from high protein fish flakes (high quality diet, TetraMin Plus) and cellulose mixed with fish flakes (low quality diet, two parts cellulose to one part fish flakes). Thus the nutritive quality of the high quality diet was 3 times higher than that of the low quality diet (Table 1). The use of non-nutritive cellulose also imposed gut limitations on intake, preventing individuals in the low quality diet treatment from circumventing diet quality differences. Food pellets were produced by mixing ground fish flakes with water or cellulose and water and cooking the mixture in a Plexiglas mold at 60°C for 12h following Hunt et al. (2005). A preliminary study completed on a subset of 40 crickets (20 low quality, 20 high quality) showed substantial differences in growth rates between the two diets after 10 days of treatment (diet × day interaction, P < 0.05) (Figure S1). Because these crickets originate from captive populations, a direct comparison with their wild diet is difficult. However, the low quality diet treatment provided considerably lower energy than our standard laboratory diet (ground Purina chick starter chow, 2.88 cal/g, Purina Mills®, St Louis, MO, U.S.A.; Table 1).

Behavioral tests

To test whether diet quality affected patterns of behavioral variance and covariance, we recorded February 2015 respectively. In order to minimize potential carry-over effects from exposure to cues of predator presence, the obstacle course assay was always conducted first followed by testing an individual's antipredator response. We thoroughly cleaned each arena in between trials with 70% ethanol wipes to avoid chemical trace of conspecifics from influencing the behavior of subsequently tested individuals. We recorded mass to the nearest mg immediately after the antipredator assay. This procedure was repeated twice every week over a three week period for a maximum of six behavioral measures per individual per assay. In total we were able to record the behavioral responses of 98 individuals (low quality diet: n = 45, high quality diet: n = 53) with a total of 446 individual observations (low quality diet: n = 198, high quality diet: n = 248; Table S1). Due to mortality during the course of development, particularly in the low quality diet, only 35% of individuals survived until sexual characteristics were noticeable. We thus did not include sex in analyses.

Obstacle course activity

Activity was measured in a modified open field test, in which individuals had to navigate around multiple obstacles to explore the entire arena. The arena was 60 cm × 60 cm × 15 cm high, constructed of sealed plastic, and had a Plexiglas lid. This obstacle course behavioral protocol has previously been used with A. domesticus to evaluate exploratory behavior [START_REF] Dochtermann | Multiple Facets of Exploratory Behavior in House Crickets (Acheta domesticus): Split Personalities or Simply Different Behaviors?[END_REF]) and behavior-physiology correlations (Royauté et al. 2015b). Individuals were left to rest for 30s in a 5 cm diameter container introduced into the lower right section of the arena (Z1, Figure S2a). We then allowed the cricket to move freely through the arena for 220 seconds.

We calculated the total distance travelled through the arena (in cm) with Ethovision X (Noldus Information Technology).

Response to cues of predator presence

Considerable research with a variety of cricket species has examined latency to emerge from shelter following disturbance under the assumption that this latency relates to anti-predator behavior (e.g. [START_REF] Hedrick | Crickets with extravagant mating songs compensate for predation risk with extra caution[END_REF][START_REF] Hedrick | Sex differences in the repeatability of boldness over metamorphosis[END_REF][START_REF] Kortet | A behavioural syndrome in the field cricket Gryllus integer: intrasexual aggression is correlated with activity in a novel environment[END_REF][START_REF] Niemelä | Personality-related survival and sampling bias in wild cricket nymphs[END_REF].

Such latencies are ecologically reasonable measures of anti-predator behavior, particularly for males, but are not the only means by which crickets assess or respond to potential predator presence. For example, over the last decade it has been repeatedly demonstrated that Gryllidae crickets respond to chemical cues of predators via either escape or avoidance behaviors [START_REF] Kortet | Detection of the spider predator, Hololena nedra by naive juvenile field crickets (Gryllus integer) using indirect cues[END_REF][START_REF] Storm | Predator-naïve fall field crickets respond to the chemical cues of wolf spiders[END_REF][START_REF] Storm | Mothers Forewarn Offspring about Predators: A Transgenerational Maternal Effect on Behavior[END_REF]. Response to chemical cues has likewise been used to measure response to potential predation threat in a variety of invertebrates and vertebrates (e.g. [START_REF] Herman | The effect of mammalian predator scent on the foraging behavior of Dipodomys merriami[END_REF][START_REF] Dochtermann | The roles of competition and environmental heterogeneity in the maintenance of behavioral variation[END_REF][START_REF] Nelson | Learned recognition of novel predator odour by convict cichlid embryos[END_REF]Patterson et al. 2013).

That crickets respond to chemical cues of predator presence should not be surprising as chemosensory cues are known to be important and often sufficient and/or necessary to illicit a variety of behavioral responses. The importance of chemical cues to crickets has been demonstrated, for example, in male-male agonistic interactions (e.g. [START_REF] Iwasaki | Cuticular lipids and odors induce sex-specific behaviors in the male cricket Gryllus bimaculatus[END_REF], in female assessment of male quality (e.g. [START_REF] Kortet | The scent of dominance: female field crickets use odour to predict the outcome of male competition[END_REF], self-reference to prevent repeated matings with the same individuals (e.g. [START_REF] Weddle | Cuticular hydrocarbons as a basis for chemosensory self-referencing in crickets: a potentially universal mechanism facilitating polyandry in insects[END_REF], and, as mentioned above, in eliciting response to potential predator presence.

To measure response to cues of potential predator presence here we collected excreta from two subadult and one adult leopard gecko (Eublepharis macularius) that were fed a mixed diet of crickets (A. domesticus) and mealworms (Tenebrio molitor). Leopard geckos were housed according to North Dakota State University IACUC standards (Protocol number: A14006).

Collected excreta was ground weekly and diluted with deionized water (1 ml H2O : 5 mg excreta). This solution was then applied to 15 cm diameter Whatman filter paper discs (Figure S2b) with a 5 cm diameter central cutout that allowed crickets to be left to rest unexposed to the predatory cue. Each predatory disc was left to dry for a minimum of 2 h and was stored at 4 °C before trials. We inserted the predatory cue disc at the bottom of a 15cm diameter arena and left the cricket to rest for 30 s under a 5 cm diameter cup in the non-treated central cutout. We then allowed the cricket to move freely for 220 s and estimated the distance travelled (in cm) through Ethovision. Previous experiments with this protocol showed that crickets had heightened activity levels in presence of diluted gecko excreta compared to a water control (t48 = 2.05, p = 0.046; Figure S3), thus greater activity during anti-predator trials was interpreted as greater responsiveness to predator cues.

Data analysis

All analyses were conducted in R 3.2.2 (R Development Core Team 2013) with the package MCMCglmm for Bayesian mixed models [START_REF] Hadfield | MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package[END_REF].

Effect of diet quality on average trait value and trait repeatability

We estimated the effects of diet type and development on activity, response to cues of predator presence, and mass using Bayesian univariate mixed models. Mass was log10-transformed and all response variables were expressed as standard deviation units. The third batch of crickets had stronger mortality due to winter shipment and we included a three-way interaction for diet type, day (centered) since placed on either the low or high quality diet, and batch number. Additional fixed effects included condition (injured or not), time of testing, temperature (expressed as among and within individual values; van de Pol and Wright 2009), and whether the cricket crawled under the filter paper during the antipredator response assay to control for potential confounds and "pseudo-repeatability" [START_REF] Nakagawa | Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists[END_REF][START_REF] Westneat | Individual variation in parental care reaction norms: integration of personality and plasticity[END_REF].

Individual identity was included as a random effect and variance components were estimated separately by diet treatment to allow comparison of trait repeatabilities (Royauté et al. 2015a).

We specified a Markov chain Monte Carlo (MCMC) chain with 1.3 × 10 6 iterations, 300000 burn-in period and a thinning interval of 1000. We tested the influence of prior type on our results by comparing results from an inverse-Wishart prior to those estimated with maximum likelihood. Prior type had very little influence on our estimates and we present the results based on the inverse-Wishart prior.

MCMC approaches to fitting mixed models, like used above, do not allow classic tests of "significance" Thus, to test for the "significance" of the diet × day × batch effects on body size and behaviors we employed two approaches. First, we specified seven a priori models (Table S3) of different ways in which our predictor variables might have affected body size or behaviors. The models we evaluated differed in the complexity of interactions included, ranging from a full model including the three-way interaction of diet × day × batch, all two-way interactions, and all main effects to reduced models that included single main effects. For these different models, we then compared their "Deviance Information Criterion values" (DIC).

Models with lower DIC have better support and models with ΔDIC < 4 were considered as statistically equivalent. This procedure is analogous to the Likelihood Ratio tests for fixed effects performed with frequentist mixed models [START_REF] Zuur | Mixed effects models and extensions in ecology with R[END_REF]. Second, to assess the "significance" of particular terms we examined whether individual model terms as estimated had 95% credibility intervals that overlapped zero.

We calculated repeatability (τ) as the posterior mode of τ = VID / (VID + VR) with VID being the among-individual variance and VR the within-individual (or residual) variance. We also calculated the MCMC posterior distribution of differences in repeatability between the diets (∆τ = τHighQual -τLowQual). This metric provides an estimation of the effect size for the difference in repeatability [START_REF] Royauté | Interpopulation variations in behavioral syndromes of a jumping spider from insecticide-treated and insecticide-free orchards[END_REF](Royauté et al. , 2015a)). Here positive values of Δτ indicate greater repeatability in the high quality diet treatment. "Significance" and inference of this difference was based on the proportion of posterior estimates that excluded zero. We repeated this procedure on each variance component (VID and VR) to determine whether changes in repeatability were linked to changes in any specific variance component. Importantly estimates of values like ∆τ may differ from a comparison of τHighQual -τLowQual because the former is calculated directly from each MCMC iteration.

Effect of diet quality on behavioral correlations

We tested whether diet quality affected correlations among activity, antipredator response, and mass by specifying a multivariate mixed model which was fit separately for each diet type. We included all three traits as response variables and used individuals as random effects. All fixed effects and model conditions were as above. This procedure allowed us to estimate and compare among-(rID) and within-individual (rWI) correlation matrices between diet types (following Dingemanse and Dochtermann 2013). As above, we compared the magnitude of the difference in posterior estimates of correlation coefficients between the treatments (Δr = rHighQual -rLowQual) and base our inferences on the proportion of estimates excluding zero.

RESULTS

Effect of diet quality on average trait value and trait variation

Diet quality positively affected growth rate (diet × day interaction, estimate ± CI;  = 0.04 ± [0.03:0.05]) but had no effect on average activity ( = 0.00 ± [-0.05:0.05] or response to cues of predator presence ( = 0.02 ± [-0.03:0.08]) (Figure 2, Table S2). These inferences are consistent with our model comparison results which indicated similar patterns as none of the best models had substantially higher support than the null model for behavioral data (∆DIC < 4, Table S3).

We did, however, detect a significant three-way interaction between diet, day, and batch number on body mass, indicating that the positive effect of the high quality diet on growth rate varied among batches (Table S3, Figure S4).

The repeatability of response to cues of predator presence was lower in the high quality diet (low quality: τ = 0.36 ± [0.21; 0.53], high quality: τ = 0.16 ± [0.07; 0.27], ∆τ = -0.24, P = 0.01; Figure 3), but no significant differences were detected in repeatability for activity or mass (activity: ∆τ = -0.02, P = 0.43; mass: ∆τ = 0.03, P = 0.27; Figure 3, Table S2). The observed changes in the repeatability of antipredator response were more strongly influenced by an increase in within-individual variation in the high quality diet rather than a decrease in amongindividual variance (among-individual variance: ∆VID = -0.18, P = 0.07; within-individual variance: ∆VR = 0.27, P = 0.008; Figure 3 and Figure S5). This suggests that individuals provided with a high quality diet were more inconsistent across repeated testing in their response to predator cues while individuals provided with a poor diet quality remained relatively consistent over the duration of the experiment.

Effect of diet quality on behavioral correlations

We found no evidence for a change in behavioral syndrome structure mediated by diet quality.

Instead, activity and antipredator response were positively correlated with similar effect sizes in both treatments (low quality: rID = 0.39 ± [0.05; 0.71], rWI = 0.31 ± [0.18; 0.47]; high quality: rID = 0.31 ± [0.02; 0.64], rWI = 0.40 ± [0.27; 0.51], Figure 4). In the high quality diet, larger individuals had a greater antipredator response while this association was not detected in the low quality diet (i.e. body mass × antipredator correlation: low quality: rID = 0.01 ± [-0.41; 0.33]; high quality: rID = 0.39 ± [0.02; 0.62]; ∆rID = 0.38, P = 0.04) (Figure 4, Table S4).

DISCUSSION

Our aim here was to test whether the developmental environment experienced by individuals affects behavioral means, behavioral variation, and the covariance between activity and response to cues of predator response. We did find evidence of diet manipulation affecting multiple levels of trait variation however those patterns often contradicted our theoretical predictions (Figure 1).

Besides greater growth (and thus mass) for the high versus low quality diet, we predicted decreased activity and increased response to predator cues in the high versus low quality diets.

We also had initially predicted that among-individual variation in mass would be lower in the low quality diet versus the high quality diet and that within-individual variation in behaviors would be higher in the high quality diet than the low, resulting in greater behavioral repeatability in the low quality diet. Although a higher diet quality increased cricket growth rate, we found surprisingly little effect on either average activity or response to predator cues. Further, we found decreased within-individual variation-evidence of lower behavioral plasticity in the low quality diet-but only for the response to cues of predator presence. Finally, the activity-predator cue response behavioral syndrome was not affected by diet quality but the sign of the correlation was opposite to that expected. This suggests that the developmental diet, as manipulated here, can have non-intuitive consequences on trait expression when hierarchical patterns of variation are taken into account.

As expected, increasing diet quality resulted in faster growth rates and thus greater body mass. However, this change in population growth rate did not have consequences on population average behaviors. This led us to generally reject our prediction that individuals in a low quality diet would follow the state-dependent safety principle while individuals in the high quality diet would follow an asset protection model (but see below). Instead, the influence of diet quality had stronger consequences on trait repeatability and covariance. That diet affected the magnitude of behavioral variation in the absence of a population-level behavioral change is particularly intriguing. Because individuals were maintained in their treatments for only 30 days, it is possible that the effects of diet quality manifest themselves quickly on individual variation but require longer exposure before population shifts are detected. In such a case, maintaining individuals on the different diet regimes over the entirety of development and maturity would be necessary to determine the long-term consequences of diet type on activity and response to cues of predator presence.

Crickets reared on a lower quality diet demonstrated a higher repeatability of their response to cues of predator presence but not their activity. As expected, plasticity in responses to cues of predator presence were favored only when individuals had access to sufficient nutritive resources (i.e. the high quality diet) and individuals under nutritive stress exhibited higher individual consistency in their responses to cues of predator presence, causing higher repeatability. In addition, the largest crickets from the high quality diet treatment reduced risktaking by expressing a stronger response to cues of predator presence (Figure 4). This indicates partial support for the asset protection principle-wherein individuals that accumulate more assets over time (e.g. increase in body mass) preserve assets by reducing risky behaviorsdespite a lack of general support for the principle herein.

These observations lead to two important insights on the influence of diet quality on behavioral variation: First, a higher diet quality and higher caloric content diet may alleviate the costs to behavioral plasticity by attenuating individual trade-offs. In contrast, individuals experiencing nutritive stress may face stronger allocation trade-offs due to limits on energy acquisition and a higher cost of switching behavioral responses. Second, changes in diet quality may have the potential to change the magnitude of state-dependent feedback loops (e.g. in this case the correlation between body mass and response to cues of predator presence between the two treatments), which in turn can have a profound influence on the maintenance of amongindividual variation. Unfortunately our experimental design only allowed us to test for the direct effect of growth rate on behavior through diet manipulation and not for recursive effects of behavior on growth rates. Recursive effects are expected to reduce the amount of personality differences over time, because individual protecting assets would acquire resources at a lower rate [START_REF] Luttbeg | Risk, resources and state-dependent adaptive behavioural syndromes[END_REF][START_REF] Montiglio | Contaminants as a neglected source of behavioural variation[END_REF].

According to our predictions, we expected a negative among-individual correlation between activity and response to cues of predator presence. However, the traits were positively correlated. Because activity and response to cues of predator presence were both measured as distance moved through an arena, it is possible that a positive structural correlation will be present between measurements, over-riding more biologically relevant and interesting relationships. However, we view this explanation as insufficient given past experiments with this species. For example, movement rates of A. domesticus measured in different arenas can be uncorrelated even if each behavior demonstrates repeatability [START_REF] Dochtermann | Multiple Facets of Exploratory Behavior in House Crickets (Acheta domesticus): Split Personalities or Simply Different Behaviors?[END_REF]. Specifically, [START_REF] Dochtermann | Multiple Facets of Exploratory Behavior in House Crickets (Acheta domesticus): Split Personalities or Simply Different Behaviors?[END_REF] found that activity (distance moved) measured in an obstacle course arena and activity (distance moved) in maze exploration trials were not correlated. A more plausible explanation for our results therefore is that the activity-predator cue response syndrome is robust to changes in the permanent environment as the among-individual correlations did not vary between low and high quality diet treatments (Figure 4). This general inference holds even if we were assaying activity in different contexts (e.g. open field trials: "exploration of a control environment", predator cue trials: "exploration of an altered environment"; sensu [START_REF] Dingemanse | Behavioural syndromes differ predictably between 12 populations of three-spined stickleback[END_REF]. That is, even if considering activity in the presence and absence of predators as separate contexts, we still demonstrated that the amongindividual correlation was robust to permanent environmental differences. Among-individual correlations, i.e. behavioral syndromes [START_REF] Dingemanse | Defining behavioural syndromes and the role of 'syndrome deviation'in understanding their evolution[END_REF], are generated by both additive genetic correlations and permanent environment correlations [START_REF] Dingemanse | Quantifying individual variation in behaviour: mixedeffect modelling approaches[END_REF][START_REF] Dingemanse | Individual behaviour: behavioural ecology meets quantitative genetics[END_REF]. In our study, additive genetic correlations should have been the same between the two treatments as individuals were randomly assigned to the two diet types. Any differences in among-individual correlations between the two treatments are therefore attributable to changes in permanent environmental correlations or G × E effects [START_REF] Han | Effect of diet on the structure of animal personality[END_REF]. That the activitypredator cue response syndrome was unchanged suggests two alternative explanations: First, this syndrome might be primarily underpinned by genetic correlations. Second, diet quality may have little contribution to the permanent environment correlation and other environmental cues (e.g., temperature, predator presence, maternal effects) could be more influential. We view this latter explanation as less likely because of the strong influence of diet quality on life-history trajectories [START_REF] Houslay | Sex differences in the effects of juvenile and adult diet on age-dependent reproductive effort[END_REF][START_REF] Tatar | Nutrition mediates reproductive trade-offs with age-specific mortality in the beetle Callosobruchus maculatus[END_REF], morphological (e.g. [START_REF] Braendle | Wing dimorphism in aphids[END_REF], physiological (e.g. [START_REF] Cruz | The Relationship between Diet Quality and Basal Metabolic Rate in Endotherms: Insights from Intraspecific Analysis[END_REF], and behavioral traits [START_REF] Akman | Effect of food deprivation during early development on cognition and neurogenesis in the rat[END_REF][START_REF] Tremmel | Insect personality depends on environmental conditions[END_REF][START_REF] Wilder | Diet quality affects mating behaviour and egg production in a wolf spider[END_REF]) that has been demonstrated in a considerable number of species, including crickets (Hunt et al. 2005a;[START_REF] Hunt | High-quality male field crickets invest heavily in sexual display but die young[END_REF][START_REF] Hunt | Artificial selection on male longevity influences age-dependent reproductive effort in the black field cricket Teleogryllus commodus[END_REF][START_REF] Zajitschek | Effects of juvenile and adult diet on ageing and reproductive effort of male and female black field crickets Teleogryllus commodus[END_REF][START_REF] Zajitschek | Diet, sex, and death in field crickets[END_REF].

As mentioned, there has been extensive research demonstrating the effects of diet and condition on behavior in crickets (see above). Moreover, beyond just general condition or energy availability, attention to particular stoichiometric relationships has highlighted subtle differences in the effects of diet on behavior (e.g. [START_REF] Bertram | Phosphorus availability influences cricket mate attraction displays[END_REF][START_REF] Han | Individuality in nutritional preferences: a multi-level approach in field crickets[END_REF]reviewed by Han and Dingemanse 2015). Our results are particularly interesting even with this existing literature for several reasons. For example, despite a major difference in dietary value (Table 1), no mean effects on behavior were statistically detectable. This lack of detectable effects is surprising not only because of the existing literature but also given the clear predictions available from conceptual and theoretical frameworks (e.g. the asset protection principle; [START_REF] Luttbeg | Risk, resources and state-dependent adaptive behavioural syndromes[END_REF]. Moreover, our approach of partitioning variation and explicitly estimating among-versus within-individual variation and correlations revealed that, despite a lack of mean effects, withinindividual variation in response to cues of predator presence differed between the two diet treatments. Most previous manipulations of diet, condition, and state have largely failed to explicitly estimate these types of effects and thus have failed to detect the effect noted here (but see [START_REF] Han | Individuality in nutritional preferences: a multi-level approach in field crickets[END_REF] for a notable exception). More generally, our study shows that the outcomes of state manipulation on behavioral variation and behavioral syndromes are not obvious and may fail to confirm theoretical predictions. Indeed, while we found partial support for the asset protection principle regarding antipredator response in the high quality diet, the changes in behavioral variance were more due to an increase in behavioral plasticity than to a decrease in among-individual variance contrary to our predictions. It remains unclear whether manipulating state generally has stronger effects on behavioral averages, behavioral variances, or on behavioral syndromes. 

  individuals' activity levels in a modified open-field arena (obstacle course assay) and response to diluted gecko excreta (response to a cue of predator response assay). Behavioral testing began within one week of arrival and testing occurred between 1 October 2014 and 3 March 2015. Due to logistical constraints, crickets were assayed in batches of 20 individuals with 10 individuals randomly assigned to either the high or low diet quality treatments. Five separate batches were sequentially reared and assayed and "batch" was included in all analyses (see below) to statistically account for any potential effects on average behavior. Behavioral trials for batches 1 -5 began on 1 October 2014, 11 November 2014, 12 January 2015, 27 January 2015, and 6
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	Tables			
	Nutrient content	Low quality	High quality	Standard
		diet	diet	laboratory diet
	Total energy (cal/g)	1.12	3.35	2.88
	Protein (%)	15.33	45.00	18.00
	Lipid (%)	3.66	11.00	3.00
	Carbohydrate (%)	7.66	23.00	56.90
	Non-nutritive fiber (%)	65.00	3.00	5.50
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