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ABSTRACT	15 

Many	key	questions	in	evolutionary	ecology	require	the	use	of	variance	ratios	such	as	16 

heritability,	repeatability,	and	individual	resource	specialization.	These	ratios	allow	17 

researchers	to	understand	how	phenotypic	variation	is	structured	into	genetic	and	non-18 

genetic	components,	to	identify	how	much	organisms	vary	in	the	resources	they	use	or	how	19 

functional	traits	structure	species	communities.	Understanding	how	evolutionary	and	20 

ecological	processes	differ	among	populations	and	environments	therefore	often	requires	21 

the	comparison	of	these	ratios	across	groups	(i.e.	populations,	sexes,	species).	Inference	22 

based	on	comparisons	of	ratios	can	be	limited,	however.	Variance	ratios	can	remain	the	23 

same	across	group	despite	very	different	values	in	the	numerator	and	denominator	24 

variances.	Moreover,	evolutionary	ecologists	are	most	often	interested	in	differences	in	25 

specific	variance	components	among	groups	rather	than	in	differences	in	variance	ratios	26 

per	se.	Recommendations	for	how	to	infer	whether	groups	differ	in	variance	are	not	clear	in	27 

the	literature.	Using	simulations,	we	show	how	questions	regarding	the	estimation	of	28 

variance	components	and	their	differences	among	groups	can	be	answered	with	Linear	29 

Mixed	Models	(LMMs).	Frequentist	and	Bayesian	frameworks	have	similar	abilities	to	30 

identify	differences	in	variance	components.	However,	variance	differences	at	higher	levels	31 

of	organization	can	be	difficult	to	detect	with	low	sample	sizes.	We	provide	tools	to	conduct	32 

power	analyses	to	determine	the	appropriate	sample	sizes	necessary	to	detect	differences	33 

in	variance	of	a	given	magnitude.	We	conclude	by	supplying	guidelines	for	how	to	report	34 

and	draw	inferences	based	on	the	comparisons	of	variance	components	and	variance	ratios		35 

SIGNIFICANCE	STATEMENT		36 
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Many	critical	questions	in	ecology	and	evolution	use	variance	ratios,	such	as	repeatability,	37 

heritability,	or	individual	resource	specialization,	to	make	inferences	about	ecological	and	38 

evolutionary	processes.	In	many	cases	these	inferences	rely	on	the	comparison	of	variance	39 

ratios	among	datasets	(populations,	sexes,	or	environments).	In	this	article,	we	show	that	40 

current	approaches	of	drawing	inferences	about	group	differences	from	comparisons	of	41 

ratios	are	inappropriate	because	ratios	can	differ	due	to	differences	in	the	numerator,	42 

denominator,	or	both.	We	investigated	how	questions	regarding	differences	in	variance	43 

ratios	and	constituent	variance	components	can	be	evaluated	using	Linear	Mixed	Model	44 

approaches	(LMMs)	and	provide	guidance	for	appropriate	sampling	schemes	under	45 

different	scenarios	and	discuss	common	pitfalls	associated	with	estimation	of	differences	in	46 

variance	component	among	datasets.	47 

	48 

Running	Head:	Comparing	variation	within	datasets	49 
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INTRODUCTION	75 

Our	understanding	of	many	evolutionary	and	ecological	processes	is	underpinned	76 

by	an	estimation	of	variance	ratios	(Table	1).	For	example,	the	reporting	of	repeatability	77 

has	become	pervasive	in	behavioral	studies	as	it	summarizes	the	amount	of	variation	in	78 

behavior	attributable	to	differences	among	individuals.	Informally	these	differences	among	79 

individuals	can	be	thought	of	as	differences	in	their	average	behaviors.	Repeatability	then	80 

can	be	interpreted	as	how	much	of	the	overall	variation	is	attributable	to	individual	81 

differences	82 

Use	of	variance	ratios	like	repeatability	spans	a	broad	swath	of	evolutionary	ecology	83 

(Table	1).	This	includes	the	most	well-known	variance	standardized	ratio:	heritability,	and	84 

extends	to	interest	in	community	ecology	regarding	the	distribution	of	functional	trait	85 

variation	expressed	within	versus	among	populations	or	species	(Violle	et	al.	2012).	86 

While	useful	for	understanding	the	relative	magnitude	of	variation,	variance	ratios	87 

can	be	highly	misleading	when	compared	between	groups	(Houle	1992;	Wilson	2018).	88 

Comparisons	of	variance	ratios	are	only	narrowly	interpretable	because	these	ratios	can	89 

differ	when	numerators	differ,	when	denominators	differ,	or	when	both	differ.	Indeed,	90 

variance	ratios	can	be	equal	despite	having	different	numerators	and	denominators	values.	91 

Put	another	way,	differences	between	groups	in	ratios	like	repeatability	are	not	92 

informative	as	to	absolute	differences	in	the	magnitudes	of	variation	observed.	93 
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Table	1	Examples	variance	ratios	found	in	the	the	ecological	and	evolutionary	literature		94 

Discipline	 Variance	ratio	 Definition	 Description	 References	
Quantitative	
Genetics	

Heritability	 h2	=	Va	/	Vp	 The	proportion	of	variation	attributable	to	
additive	genetic	variance	(Va)	

(Mousseau	and	
Roff	1987)	

Behavioral	
Ecology	

Adjusted	
Repeatability	

RA	=	Vi	/	(Vi+ Vw)	 The	proportion	of	variation	attributable	to	
among-individual	differences	(Vi)	relative	to	
either	the	total	variation	(Vi+Vf+Vw)	or	after	
adjusting	for	fixed-effects	(Vi+Vw)	

(Lessells	and	Boag	
1987)	

	 Unadjusted	
Repeatability	

RU	=	Vi	/	(Vi+Vf +Vw)	 (Nakagawa	and	
Schielzeth	2010)	

Ecology	 Individual	Niche	
Specialization	

S	=	WIC	/	TNW	 The	proportion	of	variation	attributable	to	
within-individual	preference	in	niche	(WIC)	

(usually	expressed	as	standard	deviations)	

(Bolnick	et	al.	
2002)	

Community	
Ecology	

T-ratios	 TIP/IC	=	VIP	/	VIC	 The	proportion	of	variation	attributable	to	
within-population	variance	(VIP)	relative	to	
the	community	variance	(VIC)	

(Violle	et	al.	2012)	

	 	 TIC/IR	=	VIC	/	VIR	 The	proportion	of	variation	attributable	to	
community	variance	(VIC)	relative	to	the	
regional	pool	variance	(VIR)	

(Violle	et	al.	2012)	

	95 

Legend:	Va:	additive	genetic	variance	in	a	trait,	Vi:	among-individual	variance	in	trait,	Vw:	within-individual	(i.e.	residual)	96 
variance	in	a	trait,	WIC:	within-individual	variance	in	niche	preference,	TNW:	Total	niche	width,	TIP:	total	amount	of	trait	97 
variation	in	a	community,	VIP:	within-population	variance	in	trait,	VIC:	community	variance	in	trait,	VIR:	regional	pool	variance	98 
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To	further	illustrate	the	inferential	limits	of	variance	ratios,	consider	the	following	99 

scenario:	researchers	are	studying	the	behaviors	and	dietary	habits	of	two	populations	of	100 

the	mythical	Dahu	(Dahu	desterus;	Fig.	1A)	at	different	elevations.	These	elusive	creatures	101 

have	shorter	hind-legs	on	their	left	side,	thus	only	allowing	for	clockwise	movement	102 

(Chartois	and	Claudel	1945;	Jacquat	1995).	While	measuring	aggressive	interactions,	103 

researchers	find	no	differences	in	means	between	populations	and	similar	behavioral	104 

repeatabilities	(!	=	0.8;	Fig.	1B).	Put	another	way,	the	same	relative	amount	of	variation	is	105 

attributable	to	individuals	in	each	population.	The	researchers	notice,	however,	that	there	106 

are	large	differences	in	the	among-	and	within-individual	variances	of	each	population.	Had	107 

researchers	only	examined	repeatabilities	and	mean	differences	they	would	108 

inappropriately	conclude	that	the	populations	are	behaviorally	equivalent.	Instead,	the	109 

actual	variance	estimates	reveal	that	individuals	from	the	high-altitude	population	are	very	110 

distinct	from	one	another	in	their	aggressive	tendencies	while,	at	low-altitude,	individuals	111 

show	little	departure	from	the	population	average	(Fig.	1B,	C).	112 

These	researchers	are	also	curious	as	to	whether	the	harsher	climate	at	the	top	of	113 

the	mountain	range	leads	to	a	narrower	dietary	breadth.	Researchers	predict	that	114 

individual	resource	specialization	will	be	higher	in	the	low	elevation	population,	as	D.	115 

desterus	have	more	food	options	to	choose	from.	To	the	researcher’s	surprise,	they	find	116 

much	higher	individual	resource	specialization	in	the	high-altitude	population:	S1	=	0.2,	S2	=	117 

0.8.	Upon	examining	the	specific	values	of	among-	and	within-individual	variation	in	niche,	118 

they	find	that	these	differences	are	a	result	of	the	high	elevation	population	having	a	much	119 

narrower	total	niche	width	(Fig.	1D)	while	the	within-individual	variation	in	niche	120 

preference	is	equal	between	populations.		 	121 
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 122 

	123 

Fig.	1	Reliance	on	variance	ratios	can	lead	to	misleading	inferences.	(A)	The	elusive	Dahu	124 
(Dahu	dexterus)	in	its	natural	environment.	(B)	Two	populations	of	Dahus	living	at	different	125 
elevations	do	not	differ	in	their	repeatability	of	aggressive	interactions	(τ).	(C)	By	plotting	126 
the	individual	aggression	scores	over	the	course	of	multiple	measurements,	it	is	clear	that	127 
individuals	are	more	distinct	in	their	aggressive	behavioral	strategies	at	high	elevation.	128 
This	inference	cannot	be	made	by	investigating	repeatability	alone.	(D)	The	two	population	129 
have	very	different	resource	specialization	indices	(S).	A	more	accurate	inference	is	that	130 
individuals	do	not	differ	in	niche	width	(WIN),	it	is	instead	the	total	niche	wdith	(TNW)	that	131 
is	narrower	in	the	high-alttitude	population.	Code	available	here:	https://osf.io/5aw42/.	132 
Illustration:	Philippe	Semeria	(CC	BY	3.0	license)	 	133 
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This	means	that	it	is	the	difference	in	diet	preference	among	individuals	that	drives	134 

the	difference	between	the	two	populations.	With	more	varied	resources	available	at	low	135 

elevation,	each	individual	can	specialize	along	the	total	niche	axis,	yet	the	breadth	of	diet	136 

preference	within-individuals	is	the	same	between	populations.	137 

For	both	traits,	exclusive	reliance	on	ratios	would	have	led	to	either	inappropriate	138 

or	incomplete	inferences	(i.e.	inappropriately	concluding	behavioral	equivalence	and	139 

incompletely	recognizing	the	basis	of	differences	in	apparent	specialization).	Due	to	these	140 

problems	with	interpretations	of	variance	ratios	(Houle	1992;	Dochtermann	and	Royauté	141 

2019),	what	would	be	of	greater	use	to	researchers	is	to	instead	evaluate	differences	in	142 

specific	variance	components.		143 

A	statistical	framework	for	comparing	variance	components	144 

The	statistical	procedures	necessary	for	the	estimation	of	variance	components	and	ratios	145 

within	a	single	population	have	been	the	subject	of	much	attention	(e.g.	mixed	models	for	146 

repeatability:	Dingemanse	and	Dochtermann	2013;	animal	models	for	heritability:	Wilson	147 

et	al.	2010;	individual	niche	specialization:Bolnick	et	al.	2002;	Coblentz	et	al.	2017;	148 

functional	trait	variation:	Nakagawa	and	Schielzeth	2012;	Violle	et	al.	2012;	Carmona	et	al.	149 

2016).	There	is	also	a	long	history	in	quantitative	genetics	regarding	the	comparison	of	150 

variances	and	covariance	structures	among	groups	(Shaw	1991;	Arnold	and	Phillips	1999;	151 

Roff	2002;	Roff	et	al.	2012;	Aguirre	et	al.	2014).	Unfortunately,	these	quantitative	genetic	152 

approaches	have	been	poorly	disseminated	across	fields	(but	see	(Dochtermann	and	Roff	153 

2010;	White	et	al.	2020).	Here	we	describe	and	investigate	methods	for	detecting	154 

differences	in	variance	components	amongst	groups.	Specifically,	we	compare	the	strength	155 



10 
 

and	weaknesses	of	three	statistical	approaches:	comparison	of	confidence	intervals,	model	156 

comparison	with	AIC,	and	Bayesian	estimation	of	the	difference	in	variance	components.	157 

While	this	selection	of	methods	encompasses	very	different	philosophical	approaches	to	158 

data	analysis,	all	three	are	routinely	used	in	the	estimation	of	repeatability	and	other	ratios.		159 

We	consider	a	scenario	where	a	phenotypic	attribute,	y,	is	measured	repeatedly	for	160 

individual	organisms	occupying	one	of	two	different	environments	(E1	and	E2)	and	in	161 

which	variation	occurs	among	and	within-individuals	(VI	and	VW	respectively).	In	the	162 

following	sections	we	focus	on	differences	in	individual	variation	and	repeatability.	Note,	163 

however,	that	this	scenario	can	also	be	expanded	to	the	comparison	of	diet	specialization	164 

for	individuals	occupying	different	environments	or	how	functional	traits	vary	among	and	165 

within	species	in	two	different	environments.		166 

An	easy	way	to	compare	these	variance	components	and	their	ratios	(τ	=	VI/(VI	+	167 

VW))	is	to	estimate	the	variance	components	for	each	environment	in	separate	statistical	168 

models.	We	can	then	test	for	differences	in	variances	and	ratios	by	environment	based	on	169 

whether	estimate	confidence	intervals	overlap	or	not.	While	straightforward,	this	method	170 

suffers	from	two	key	limitations.	First,	basing	inference	on	the	overlap	of	95	%	confidence	171 

intervals	is	overly	conservative	(Barr	1969),	especially	when	sample	size	is	low.	It	is	172 

instead	whether	the	confidence	interval	for	the	difference	in	variances	excludes	0	that	is	173 

relevant	for	drawing	inferences.	This	difference	cannot	be	directly	estimated	from	the	174 

approach	we	have	described.	However,	statistical	significance	can	still	be	assessed	by	175 

comparing	the	overlap	of	the	83%	confidence	intervals	for	variance	components,	a	176 

threshold	that	provides	a	better	approximation	for	an	α	=	0.05	for	the	null	hypothesis	of	no	177 

difference	(Schenker	and	Gentleman	2001;	Austin	and	Hux	2002;	MacGregor-Fors	and	178 
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Payton	2013;	Hector	2021).	Second,	by	estimating	variance	components	in	separate	179 

statistical	models,	the	hierarchical	structure	of	the	data,	i.e.	the	variance	components	180 

nested	within	the	environments,	has	been	broken.	As	a	result,	potential	average	differences	181 

in	the	traits	of	interest	are	not	appropriately	tested.		182 

Instead,	we	suggest	that	a	more	appropriate	procedure	would	be	the	use	of	a	Linear	183 

Mixed	Model	(LMM)	where	the	among-	and	within-individual	variance	is	estimated	for	184 

each	environment	within	the	same	statistical	model.	This	statistical	model	can	be	described	185 

by	the	following	equation:	186 

"!" = $# + $$&'()*+',-'. + /0#! + -#!" 		 	 	 	 	 (equation	1)	187 

/0#! 	~	345(0, Ω%&);					Ω%& = <4%&	&$ 0
0 4%&	&(=	188 

-#!" 	~	345(0, Ω));					Ω) = <4)	&$ 0
0 4) 	&(=	189 

where	"!" 	describes	the	phenotypic	traits	for	the	ith	individual	and	jth	observation.	/0#! ,	is	190 

the	deviation	from	an	overall	intercept,	$#,	for	the	ith	individual.	$$	represents	the	191 

regression	coefficient	for	the	fixed	effect	of	environment	(here	a	contrast	coefficient).	The	192 

random	intercepts	and	residual	variance	(-#!")	both	follow	a	multivariate	normal	193 

distribution,	and	Ω%& and	Ω) ,	are	the	variance-covariance	matrices	at	the	among-	and	194 

within-individual	levels	respectively.		195 

The	diagonal	elements	of	these	matrices	represent	the	among-	and	within-196 

individual	variances	in	each	environment:	E1	and	E2.	The	off-diagonal	elements	represent	197 

the	cross-environment	correlation	(set	to	0	if	individuals	are	only	ever	evaluated	in	one	of	198 

the	two	environments).	This	formulation	has	the	advantage	of	allowing	considerable	199 

flexibility	in	the	specification	of	the	statistical	models	considered	(Dingemanse	and	200 
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Dochtermann	2013).	LMMs	are	now	available	for	most	statistical	software	and	their	201 

generalized	extensions	can	accommodate	non-normal	error	distributions	(Table	2).		202 

Upon	fitting	LMMs,	several	methods	are	then	available	to	determine	whether	a	203 

variance	ratio	or	components	of	the	ratio	differ	by	environment.	Specific	hypotheses	of	204 

which	variance	component	differs	across	environment	can	be	easily	tested	via	model	205 

comparison.	For	example,	a	model	where	only	the	among-individual	variance	differs	by	206 

environment	can	be	compared	to	a	null	model	where	the	among	and	within-	individual	207 

variance	are	kept	constant	across	developmental	environments	(Royauté	et	al.	2019).	208 

These	models	can	be	estimated	within	a	frequentist	framework	via	restricted	maximum	209 

likelihood	or	a	Bayesian	framework	and	suitable	decision	criteria	can	be	used	to	determine	210 

which	model	best	fits	the	data.	In	the	case	of	restricted	maximum	likelihood	estimation,	it	is	211 

also	possible	to	use	likelihood	ratio	tests	to	compare	these	models.	Note	however	that	the	212 

proper	degrees	of	freedom	to	apply	to	each	model	is	unclear	and	additional	care	should	be	213 

taken	when	using	this	method	(Pinheiro	and	Bates	2006;	Santostefano	et	al.	2016).	We	214 

recommend	calculating	these	degrees	of	freedom	by	considering	each	variance	component	215 

as	a	full	parameter	for	more	conservative	testing	(see	also	the	tutorial	in	ESM3).216 
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Table	2	Packages	and	softwares	allowing	to	test	for	differences	in	variance	components	using	Linear	Mixed	Models	(LMM)	along	with	217 
parameter	estimation	method	(maximum	likelihood	(ML),	restricted	maximum	likelihood	(REML),	hierachical	likelihood	(H-ML)	or	218 
Bayesian	framework)	and	inference	method	(Likelihood	Ratio	tests	(LRT),	AIC,	bootstrapping	or	credible	interval	for	ΔV).	This	list	is	not	219 
comprehensive	and	is	instead	based	on	widely-used	commercial	softwares	and	R	packages	220 
	221 
Package	or	
software	

Free	or	
commercial	

Estimation		 Testing	method	 Among-unit	
variance	by	
group	

Residual	
variance	by	
group	

Distributions	
handled	

Comments	 Reference	

ASREmL	 Commercial	 ML/REML	 LRT,	AIC,	
bootstrapping	

Yes	 Yes	 Gaussian	 	 (Gilmour	et	al.	
2015)	

SAS	 Commercial	 ML/REML	 LRT,	AIC,	
bootstrapping	

Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

	 SAS	Institute	
Inc.	

nlme	 Free	 ML/REML	 LRT,	AIC,	
bootstrapping	

Yes	 Yes	 Gaussian		 	 (Pinheiro	and	
Bates	2006)	

lme4	 Free	 ML/REML	 LRT,	AIC,	
bootstrapping	

Yes	 No	 Gaussian,	
Poisson,	
Binomial	
…	

	 (Bates	et	al.	
2015)	

glmmTMB	 Free	 ML/REML	 LRT,	AIC,	
bootstrapping	

Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

	 (Brooks	et	al.	
2017)	

hglm	 Free	 H-ML	 LRT,	AIC,	
bootstrapping	

Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

Residual	variance	
modelled	as	Gamma	
distribution	

(Rönnegård	et	
al.	2010)	

R-INLA	 Free	 Approximate	
Bayesian	

credible	
intervals	for	ΔV	

Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	

	 (Lindgren	and	
Rue	2015)	

MCMCglmm	 Free	 Bayesian	 DIC,	credible	
intervals	for	ΔV	

Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

	 (Hadfield	
2010)	

brms	 Free	 Bayesian	 WAIC,	LOO,	
credible	
intervals	for	ΔV	

Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	…	

Residual	variance	
modelled	as	log-
normal	distribution	

(Bürkner	
2017)	
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In	many	cases,	researchers	are	also	interested	in	whether	the	difference	in	variance	222 

components	have	a	biologically	meaningful	effect.	In	other	words,	when	asking	questions	223 

about	whether	variance	components	vary	between	environments,	we	are	mostly	interested	224 

in	the	magnitude	of	the	difference	in	these	components	across	environments.	While	model	225 

comparison	of	LMMs	can	help	us	understand	whether	a	statistically	detectable	difference	is	226 

observable	across	environments,	the	magnitude	of	the	difference	can	only	be	determined	227 

by	examining	the	difference	in	variance	components	among	environment:	ΔV	estimated	as	228 

VE2	-	VE1	in	our	case.	When	the	trait	of	interest	is	expressed	as	standard	deviation	units	(i.e.	229 

mean	centered	and	scaled	to	the	standard	deviation	of	the	dataset	across	all	populations	230 

and	environments),	this	difference	can	be	considered	an	effect	size	for	the	magnitude	of	the	231 

difference	among	variance	components,	thus	making	comparisons	across	studies	possible	232 

(Royauté	et	al.	2015;	Hamilton	et	al.	2017;	Royauté	and	Dochtermann	2017).	Note	that	ΔV	233 

could	also	be	expressed	on	a	ratio	scale	(VE2/VE1)	or	on	a	log-additive	scale	(log(VE2)	-	log	234 

(VE1)).	We	will	return	to	the	topic	of	statistical	significance	vs.	appropriate	effect	sizes	later	235 

in	the	paper.	For	now,	we	simply	consider	ΔV	on	an	additive	scale	with	data	expressed	in	236 

standard	unit	deviations	because	it	allows	the	most	straightforward	interpretation	and	237 

functions	in	cases	where	a	variance	component	is	zero	or	approaching	zero.	ΔV	can	be	238 

calculated	from	the	maximum	likelihood	estimates	in	a	frequentist	framework	but	239 

calculation	of	the	uncertainty	around	this	estimate	is	not	straightforward	and	requires	240 

additional	steps	such	as	bootstrapping.	In	a	Bayesian	framework,	the	calculations	are	much	241 

simpler	given	that	the	distribution	of	ΔV	can	be	directly	estimated	by	taking	the	difference	242 

in	the	posterior	distribution	of	VE2	-	VE1.	The	posterior	mode	of	ΔV	can	then	be	interpreted	243 
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as	the	estimated	strength	of	ΔV,	with	credible	intervals	representing	the	precision	around	244 

this	estimate.	245 

In	summary,	approaches	based	on	LMM	and	their	generalized	extensions	allow	246 

great	flexibility	and	are	well	suited	to	study	questions	related	to	how	variation	in	247 

phenotypic	traits	varies	at	multiple	levels	of	organization.	In	the	next	section,	we	describe	248 

the	performance	of	LMMs	to	detect	differences	in	variance	components.	249 

	250 

METHODS	251 

The	simulations	described	below	focus	on	interpretation	in	the	context	of	behavioral	252 

repeatability.	However,	it	is	worth	noting	again	that	inferences	about	the	ability	to	estimate	253 

and	detect	differences	in	variances	generalizes	to	the	components	of	the	ratios	described	in	254 

Table	1.	255 

Data	simulations	256 

To	compare	the	performance	of	statistical	procedures	for	detecting	differences	in	variance	257 

components	and	variance	ratios,	we	performed	a	series	of	simulations	based	on	the	258 

scenarios	illustrated	in	Fig.	2.	In	these	scenarios	a	phenotypic	attribute	y	is	measured	in	259 

two	different	environments	(E1	and	E2)	and	variation	occurs	among	and	within	individuals	260 

(VI	and	VW	respectively).	In	scenarios	A	through	C	the	repeatability	(τ)	differs	by	an	equal	261 

amount	between	the	two	environments	(∆τ	=	0.3),	but	the	underlying	driver	of	this	262 

difference	is	either	due	to	a	difference	in	the	among-individual	variance	(A),	in	the	within-263 

individual	variance	(B)	or	in	both	the	among	and	within-individual	variance	(C).	Note	that	264 
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for	scenario	C,	the	total	variance	remains	the	same	between	environments.	In	scenarios	D	265 

and	E,	we	explore	cases	where	the	variance	ratios	are	equal	among	environment,	either	266 

because	all	variance	components	are	equal	as	well	(D)	or	in	spite	of	differences	in	all	267 

variance	components	(E)	(see	Table	S1	for	exact	values	for	all	parameters).		268 

Using	the	R	statistical	environment	(R	Core	Team	2020),	we	generated	500	datasets	for	269 

each	of	the	following	combinations:	270 

• Sample	size	varying	from	20	to	200	individuals	by	increments	of	20	for	each	271 

environment	(sample	size	was	equal	between	the	two	environments)	272 

• Number	of	repeated	measures	taken	on	each	individual	varying	from	2	to	6	273 

repeated	measures	by	increments	of	1		274 

• Five	different	scenarios	of	known	difference	in	variance	ratios	as	described	in	Fig.	1	275 

and	Table	S1.	276 

Each	dataset	was	simulated	by	sampling	from	a	Gaussian	distribution	for	the	random	277 

(among-individual	values)	and	the	error	(within-individual)	terms.	This	resulted	in	a	total	278 

of	125,000	datasets	on	which	we	tested	three	different	statistical	procedures	to	detect	279 

differences	in	variance	components	and	variance	ratios.	We	provide	all	R	code	for	data	280 

generation	and	analysis	in	the	Electronic	Supplementary	Materials	(ESM1).281 
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	282 

Fig.	2	Scenarios	used	in	simulations	detailing	how	differences	or	lack	of	difference	in	283 
repeatability	(right-side	column)	can	arise	from	different	patterns	in	the	underlying	284 
variance	components	(left-side	column;	exact	values	can	be	found	in	Table	S1).	Scenarios	285 
A-C	correspond	to	cases	where	the	total	variation	differs	between	two	environments	(E1	286 
and	E2)	due	to	differences	in	the	among-individual	variance	(VI,	A),	the	within-individual	287 
variance	(VW,	B)	or	both	(C).	Scenarios	D-E	indicate	cases	where	the	ratios	remain	constant	288 
across	environments,	because	all	variance	components	are	identical	(D)	or	in	spite	of	289 
variance	component	being	different	among	environments	(E)	290 

	 	291 
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Comparison	of	confidence	interval	overlap	from	separate	mixed	models	292 

We	first	compared	the	overlap	of	83	%	confidence	intervals	for	variance	component	when	293 

estimated	from	separate	linear	mixed	models.	We	specified	one	mixed	model	for	294 

environment	1	and	one	for	environment	2.	These	models	are	a	simplified	version	of	the	one	295 

presented	in	equation	(3):	296 

!!" = ## + %&#! + '#!" 		 	 	 	 	 (equation	2)	297 

()*#! 	~	-(0, 1$%);		298 

'#!" 	~	-(0, 1&)	299 

The	experimental	units	in	the	environment	of	interest	are	included	as	random	effects	and	300 

no	additional	fixed	effect	are	needed.	Upon	fitting	these	models,	we	computed	83	%	301 

confidence	intervals	for	the	among	and	within-individual	variance.	Datasets	where	these	302 

intervals	did	not	overlap	were	considered	as	statistically	different.	303 

Frequentist	LMM	with	AIC	model	comparison		304 

Our	second	approach	was	to	fit	the	LMM	approach	described	above	and	test	for	the	for	the	305 

significance	of	the	difference	in	among-	and	within-individual	variance	using	likelihood	306 

ratio	tests.	Specifically,	we	specified	four	different	mixed	models	corresponding	to	the	four	307 

different	possibilities	by	which	variance	components	may	differ	(Royauté	et	al.	2019;	308 

Bucklaew	and	Dochtermann	2021):	309 

• Model	1:	a	null	model	where	the	among	(VI)	and	within-individual	variance	(VW)	310 

was	kept	constant	among	environments.	311 
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• Model	2:	a	model	where	only	the	among-individual	variance	differs	among	312 

environments,	while	the	within-individual	variance	is	kept	constant	(VI	≠	&	VW	=)	313 

• Model	3:	a	model	where	only	the	within-individual	variance	differs	among	314 

environments	while	the	among-individual	variance	is	kept	constant	(VI	=	&	VW	≠)	315 

• Model	4:	a	model	where	both	the	among	and	within-individual	variance	were	316 

allowed	to	vary	among	environments	(VI	≠	&	VW	≠)	317 

For	each	dataset	combination,	we	then	compared	each	model’s	Aikaike’s	Information	318 

Criterion	value	(AIC).	AIC	allows	the	comparison	of	relative	fit	of	statistical	models	and	319 

models	with	lower	AIC	values	indicate	better	support	relative	to	competing	models.	These	320 

simulations	and	this	analytical	framework	are	similar	to	previously	used	approaches	(Shaw	321 

1991;	Jenkins	2011;	Tüzün	et	al.	2017).	These	models	were	specified	using	the	nlme	322 

package	for	mixed	models	(Pinheiro	and	Bates	2006)	using	Restricted	Maximum	323 

Likelihood	(REML).	324 

Bayesian	LMM	and	difference	in	variance	components	325 

We	next	fit	a	mixed	model	where	variances	among	and	within	units	were	allowed	to	vary	326 

between	environments	(as	in	model	4	described	above)	to	each	randomly	generated	327 

dataset.	We	calculated	the	posterior	mode	for	the	difference	in	variance	components	328 

(calculated	as	∆V	=	VE2	–	VE1)	and	estimated	the	95	%	credible	intervals	based	on	the	329 

Highest	Posterior	Density	of	this	distribution.	95	%	credible	intervals	excluding	0	were	330 

taken	to	indicate	statistically	detectable	differences	in	variance	components	among	331 

environments.	All	models	were	run	with	the	MCMCglmm	package	(Hadfield	2010)	using	332 

default	iteration	settings	to	shorten	computing	time	(13000	iterations,	3000	burn-in	333 
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iterations	and	thinning	interval	of	10	iterations).	We	used	priors	that	were	minimally	334 

informative	for	the	variance	components	(See	ESM1	and	ESM3	for	prior	specification	and	a	335 

discussion	on	priors).	336 

Probability	of	correct	model	identification,	precision,	bias	and	accuracy	estimations	337 

We	calculated	the	probability	of	detecting	the	model	with	the	correct	difference	in	variance	338 

components	(hereafter	“abridged”	to	probability	of	correct	model	identification),	precision,	339 

relative	bias	and	accuracy	under	each	scenario	and	sampling	design	to	compare	the	340 

performance	of	maximum	likelihood	and	Bayesian	mixed	models.	For	Method	1	(overlap	of	341 

83	%	intervals),	we	assigned	values	of	1	when	significant	differences	in	variance	342 

components	were	detected	in	directions	predicted	by	the	data	generating	process,	and	0	343 

otherwise.	For	Method	2,	we	calculated	the	probability	of	correct	model	identification	as	344 

the	proportion	of	times	the	model	with	the	lowest	AIC	matched	the	generating	model.	For	345 

Method	3,	we	calculated	whether	a	given	model	detected	a	difference	in	variance	346 

components	based	on	the	overlap	of	the	95	%	credible	intervals	of	the	ΔV	posterior	347 

distribution	with	0.	As	in	Method	1,	we	then	assigned	values	of	0	or	1	based	on	whether	the	348 

detected	difference	matched	with	the	data	generation	process	of	the	corresponding	349 

scenario.	We	calculated	the	probability	of	correct	model	identification	as	the	proportion	of	350 

analyzed	datasets	in	which	we	detected	differences	in	the	direction	predicted	by	each	351 

scenario	and	statistical	method.	Precision,	indicating	the	similarity	of	the	results	produced	352 

by	simulations	with	a	given	scenario,	was	calculated	as	the	difference	between	25	%	and	75	353 

%	quantiles	of	estimates	(van	de	Pol	2012).	To	calculate	the	relative	bias	(in	%)	for	each	354 

statistical	approach	by	scenario,	we	calculated	the	mean	difference	between	the	expected	355 
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value	and	the	value	observed	in	each	of	the	500	simulations.	Finally,	we	report	the	root	356 

mean	square	of	error	(RMSE)	for	each	scenario	and	sample	sizes.	This	metric	calculates	357 

how	close	estimates	are	to	the	expected	values	and	serves	as	an	estimate	of	the	accuracy	of	358 

each	statistical	approach	by	scenario.	359 

RESULTS	360 

The	probability	of	correctly	detecting	differences	in	variance	components	did	not	differ	361 

substantially	between	frequentist	and	Bayesian	methods	of	estimation	(Fig.	3).	The	highest	362 

probability	of	correct	model	identification	was	observed	for	cases	where	the	variance	ratio	363 

differs	as	a	result	of	changes	to	the	within-individual	variance	(scenario	B)	or	when	364 

variation	remained	equal	between	environments	(scenario	D).	The	statistical	power	to	365 

differentiate	between	alternative	scenarios	(i.e.	scenarios	A,	C	and	E)	was	lower,	especially	366 

with	small	sample	sizes	and	low	number	of	repeated	measures	(Fig.	3).	Importantly,	no	367 

statistical	method	seemed	to	outperform	all	others	across	scenarios.	Our	results	are	368 

consistent	with	previous	simulations	showing	that	the	among-individual	variance	369 

component	is	particularly	difficult	to	estimate	at	small	sample	sizes	(Dingemanse	and	370 

Dochtermann	2013).371 
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	372 

Fig.	3	Effect	of	sampling	design	on	the	probability	of	correct	model	identification	by	373 
scenario	type	and	statistical	modeling	approach.	Each	point	represents	the	probability	of	374 
detecting	the	correct	differences	in	variance	averaged	over	500	simulated	datasets	for	a	375 
given	sample	size	(n:	number	of	individuals	measured	in	each	population,	reps:	number	of	376 
repeated	measures	per	individuals).	A	represents	a	scenario	where	only	the	among-377 
individual	variance	(VI)	varies	between	environments,	B	represents	a	case	where	the	378 
within-individual	variance	(VW)	varies	between	environments,	and	both	among	and	within-	379 
individual	variance	vary	between	environments	in	scenario	C.	In	scenario	D,	all	variance	380 
components	are	equal	while	in	scenario	E,	variance	components	are	different	but	variance	381 
ratios	are	equal	across	environments.	Dashed	lines	correspond	to	80	%	threshold	similar	to	382 
recommendations	for	power	analyses.	 	383 
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In	scenarios	B	and	D,	the	correct	differences	among	variance	components	were	384 

identified	>	80	%	of	the	time,	even	at	low	sample	sizes	(Fig.	3).	In	all	other	scenarios	this	385 

threshold	was	only	reached	with	high	sample	sizes	and	a	high	number	of	repeated	386 

measures.	For	scenarios	C	and	E—which	correspond	to	cases	where	the	variance	ratio	387 

differs	as	a	result	of	among-individual	variance	(C)	or	when	the	variance	ratio	remains	the	388 

same	despite	changes	to	both	among-	and	within-individual	variance	(E)—datasets	with	389 

only	2	repeated	measures	per	individual	never	achieved	a	probability	of	identifying	the	390 

generating	model	above	0.8,	even	with	sample	sizes	above	200	units	per	environment	(i.e.	a	391 

minimum	of	800	total	measurements,	Fig.	3).	Increasing	the	number	of	repeated	measures	392 

only	marginally	alleviated	the	problem.	For	example,	in	scenario	C,	only	datasets	with	4	or	393 

more	repeated	measures	per	individual	reached	statistical	power	above	0.8	with	sample	394 

sizes	above	120	individuals	per	environment,	which	is	higher	than	many	ecological	or	395 

evolutionary	studies	can	provide	under	realistic	scenarios.		396 

Note	that	for	AIC	model	comparison,	we	calculated	power	as	the	number	of	times	397 

the	best	model	corresponded	to	the	generating	model.	A	more	conservative	approach	is	to	398 

calculate	the	proportion	of	times	the	best	model	is	at	least	2	AIC	units	lower	than	the	399 

second	model.	This	method	corresponds	to	a	common	threshold	to	detect	statistically	400 

distinct	models	(Burnham	and	Anderson	1998).	When	using	this	more	conservative	401 

threshold	(Fig.	S1),	datasets	generated	according	to	scenarios	A	and	D	were	never	402 

statistically	distinguishable	from	non-generating	models,	although	the	correct	model	was	403 

consistently	ranked	as	the	best	model.	This	discrepancy	is	likely	because	when	the	404 

generating	model	does	not	include	differences	in	the	within-individual	variability	405 

(scenarios	A	and	D),	sampling	error	is	erroneously	identified	as	heterogeneity.	At	smaller	406 
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sample	sizes	this	error	is	greater	on	average,	and	thus	detectable.	At	larger	sample	sizes	407 

this	sampling	error	is	smaller	but	more	easily	detected	and	therefore	manifests	as	a	408 

difference	between	groups.	To	address	this,	in	addition	to	measures	of	variance	differences	409 

like	the	described	ΔV	statistic,	researchers	should	also	compare	mean-standardized	410 

variance	estimates	like	the	coefficient	of	variation	or	Houle’s	evolvability	between	groups	411 

(Houle	1992;	Hansen	et	al.	2011;	Dochtermann	and	Royauté	2019).		412 

	 The	comparison	of	relative	bias,	precision,	and	accuracy	among	statistical	methods	413 

produced	mixed	results.	On	average,	Bayesian	LMMs	consistently	underestimated	the	414 

among-individual	variance	for	scenarios	in	which	the	among-individual	variance	differed	415 

between	environments	(scenarios	A,	C,	and	E)	resulting	in	a	bias	at	small	sample	sizes	(Fig.	416 

S2).	However,	Bayesian	LMMs	also	had	higher	precision	and	accuracy	compared	to	417 

maximum	likelihood	(Fig.	S3,	S4).	This	means	that	Bayesian	estimates	tend	to	be	418 

consistently	more	conservative	than	maximum	likelihood	regarding	the	magnitude	of	the	419 

among-individual	variance	but	that	these	estimates	nonetheless	more	closely	matched	420 

simulation	conditions.	421 

DISCUSSION	422 

Comparing	variability	across	datasets	is	important	for	many	questions	in	evolutionary	423 

ecology	(e.g.	Table	1).	However,	variance	ratios	are	not	sufficient	to	address	questions	424 

about	how	variation	is	expressed	across	environments,	populations,	or	sexes.	The	inability	425 

to	determine	why	groups	differ	based	on	ratios	is	in	addition	to	the	numerous	conceptual	426 

and	theoretical	problems	inherent	to	the	estimation	of	variance	ratios	(Houle	1992;	Hansen	427 

et	al.	2011).	Instead,	many	questions	require	the	direct	comparison	of	variances.	428 
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What	are	appropriate	sample	sizes	for	detecting	differences	in	variance?	429 

	 Our	simulations	show	that	regardless	of	the	statistical	methods	used,	comparing	430 

variance	components	across	groups	is	a	“data	hungry”	question.	Scenarios	where	the	431 

among-individual	variance	differed	between	environments	were	particularly	hard	to	detect	432 

at	low	sample	sizes.	Note	that	our	objective	was	not	to	provide	a	full	exploration	of	433 

parameter	space.	Instead,	we	focused	on	a	subset	of	scenarios	that	are	likely	to	be	common	434 

in	ecology	and	evolution	(Fig.	2).	Based	on	our	simulations,	the	probability	to	detect	435 

differences	in	variance	components	will	depend	in	large	part	on	the	ability	to	estimate	the	436 

among-individual	variance	component	(VI).	In	the	most	complex	case	where	differences	437 

occur	among	and	within-individuals	(scenario	E),	researchers	would	require	a	minimum	of	438 

1,600	observations	to	correctly	detect	differences	(i.e,	200	individuals	measured	4	times	in	439 

each	environment).	This	is	far	higher	than	sample	sizes	needed	for	single	populations,	440 

where	moderate	repeatabilities	only	need	∼100	observations	to	be	estimated	with	>	0.8	441 

power	(at	least	25	individuals	measured	4	times	to	detect	a	repeatability	of	0.3;	see	442 

(Dingemanse	and	Dochtermann	2013).		443 

Given	these	challenges,	we	recommend	that	researchers	conduct	power	calculations	444 

prior	to	the	experiment	whenever	possible	(see	R	code	for	a	priori	power	analyses	in	ESM2	445 

and	an	R	Markdown	tutorial	in	ESM3).	If	not,	a	simple	rule	for	sampling	can	be	to	estimate	446 

the	sample	size	needed	to	detect	the	lowest	among-individual	variance	value	of	interest	447 

(see,	for	example,	(Martin	et	al.	2011;	van	de	Pol	2012;	Dingemanse	and	Dochtermann	448 

2013)	and	multiplying	that	sample	size	by	the	number	of	experimental	groups	involved.		449 

	 	450 
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	451 

Fig.	4	A)	Flowchart	showing	decision	rules	regarding	how	to	test	for	differences	in	variance	452 
components,	which	metrics	to	report	and	which	effect	sizes	can	be	calculated,	along	with	their	453 
definitions	in	table	format.	B)	Reporting	example	based	on	the	simulated	case	study	in	Fig.	1B,	C.	454 
The	first	Table	used	REML	model	selection	with	AIC	to	compare	the	support	for	different	455 
hypotheses	for	how	variance	components	of	aggression	may	differ	between	the	low	and	high	456 
elevation	populations.	The	best	model	is	one	where	among	and	within-individual	variances	are	457 
higher	in	the	high	elevation	population.	The	second	Table	compares	all	components	by	458 
environment	(posterior	medians	and	95	%	credible	intervals	estimated	from	a	Bayesian	mixed	459 
model	with	model	4,	note	that	frequentist	confidence	interval	can	also	be	reported	using	non-460 
parametric	bootstrapping	as	shown	in	ESM3).	Finally,	because	aggression	does	not	differ	on	461 
average	between	populations,	lnVR	is	an	appropriate	metric	to	report	the	effect	size	for	the	462 
difference	in	variance	between	populations.	 	463 
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How	to	report	results?	Statistical	significance	vs.	effect	sizes	464 

	 Given	the	issues	discussed	above,	how	should	researchers	interested	in	ecological	465 

and	evolutionary	variation	design	their	studies	and	report	their	findings?	We	suggest	that	466 

researchers	report	their	results	in	a	manner	that	focuses	on	the	magnitude	of	the	difference	467 

in	variability	between	experimental	groups	rather	than	solely	focus	on	statistical	468 

significance.		469 

To	this	effect,	we	believe	that	reporting	the	results	of	the	full	model	rather	than	just	470 

the	most	parsimonious	model	will	be	most	appropriate	in	most	cases	(i.e.	model	4	in	our	471 

conceptual	example).	This	is	because	model	selection	only	gives	information	on	whether	472 

differences	among	groups	are	statistically	detectable.	In	contrast,	questions	regarding	the	473 

magnitude	and	precision	of	the	estimated	differences	are	answerable	only	with	474 

interpretation	of	the	most	complete	statistical	model	(see	tutorial	in	ESM3).	475 

In	addition	to	presenting	results	of	the	full	model,	we	suggest	that	measures	of	effect	476 

sizes	for	the	differences	in	variance	component	also	be	presented.	As	reported	above,	ΔV	477 

provides	a	simple	metric	to	estimate	the	magnitude	of	these	differences,	but	it	is	by	no	478 

mean	the	only	one.	In	our	theoretical	example,	the	mean	trait	value	did	not	differ	by	479 

environments,	but	in	many	cases	mean	and	variance	are	related.	In	such	cases,	using	480 

comparisons	based	on	Houle’s	(1992)	I2	value	or	coefficients	of	variation	for	each	481 

component	as	opposed	to	variance	component	themselves	can	be	preferable	(Hansen	et	al.	482 

2011;	Dochtermann	and	Royauté	2019).	Effect	sizes	based	on	the	coefficient	of	variation	483 

can	also	be	calculated	within	an	LMM	framework	as	described	by	(Nakagawa	et	al.	2015)	484 

(see	also	(Carmona	et	al.	2016;	Fontana	et	al.	2018)	for	approaches	relevant	to	functional	485 

trait	diversity).		486 
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We	provide	a	synthetic	guide	for	which	statistical	tests	and	effect	sizes	are	most	487 

appropriate	depending	on	the	nature	of	the	dataset	in	Fig.	4A.	Returning	to	our	dahu	488 

example,	an	appropriate	analysis	of	the	difference	in	aggression	variance	would	follow	the	489 

tables	and	figures	from	Fig.	4B.	Here	the	repeatability	is	unchanged	between	environments	490 

(posterior	median	[95	%	credible	interval];	Δτ	=	-0.01	[-0.06;	0.04],	probability	of	491 

difference:	Pmcmc	=	0.68).	However,	the	high-elevation	population	shows	significantly	492 

higher	variation	among	and	within-individuals	(ΔVRI	=	493.89	[370.25;	648.69],	Pmcmc	=	493 

1.00;	ΔVRW	=	128.76	[107.57;	148.40],	Pmcmc	=	1.00).	This	difference	is	also	biologically	494 

relevant	since	the	effect	sizes	are	also	>	1	(lnVRI	=	1.38	[1.10,	1.66];	ΔVRW	=	1.48	[1.31,	495 

1.64]).	Biologically,	this	means	that	the	high	elevation	population	is	composed	of	496 

individuals	that	are	more	distinct	in	behavior	compared	to	the	low	elevation	population.	497 

	 While	we	limited	our	conceptual	example	to	comparisons	between	two	498 

environments,	the	LMM	approach	we	propose	is	by	no	mean	restricted	to	two-groups	499 

comparisons.	For	example,	Jenkins	(2011)	used	model	comparison	to	tease	apart	the	500 

relative	influence	of	sex,	species	and	their	interaction	on	the	expression	of	behavioral	501 

variation	in	kangaroo	rats.	Similarly,	(Coblentz	et	al.	2017)	show	how	model	selection	502 

combined	with	Bayesian	GLMM	can	allow	the	comparison	of	indices	of	diet	specialization	503 

within	and	among	species.	In	both	cases,	model	selection	can	provide	a	first	pass	at	504 

whether	differences	in	variance	components	are	detectable	among	groups,	while	specific	505 

pairwise	comparisons	of	effect	sizes	(using	ΔV	or	other	metrics)	will	allow	discernment	of	506 

the	most	pronounced	differences	in	variance	component.	Regardless	of	the	statistical	507 

approach	used,	we	suggest	it	is	important	that	researchers	clearly	outline	the	direction	and,	508 

when	possible,	magnitude	of	the	expected	effects	in	their	predictions.	509 
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	 Finally,	our	conceptual	examples	focus	exclusively	on	the	case	of	“well-behaved”	510 

data	with	normal	error	distributions.	While	these	comparisons	can	be	made	with	511 

generalized	extensions	to	LMMS	(i.e.	GLMMs),	researchers	must	take	extra	precautions	512 

when	calculating	and	comparing	the	within-individual	variances	(i.e.	the	residual	variance).	513 

Indeed,	in	the	case	of	non-Gaussian	data,	the	residual	variance	depends	on	both	the	link	514 

function	used	and	how	the	software	deals	with	overdispersion	(additive	vs.	multiplicative	515 

overdispersion).	(Nakagawa	and	Schielzeth	2010))	provides	a	very	useful	and	extensive	516 

guide	explaining	how	the	correct	residual	variation	can	be	calculated.		517 

CONCLUSIONS	518 

Variance	ratios	are	straightforward	metrics	to	describe	how	various	ecological	and	519 

evolutionary	processes	occur.	However,	comparing	these	ratios	across	studies	or	group	can	520 

be	misleading	if	poor	attention	is	given	to	the	specific	variance	components	making	up	521 

those	ratios.	More	importantly,	a	lack	of	difference	in	these	ratios	does	not	mean	that	522 

variation	is	expressed	equally	among	groups.	Given	these	limitations,	we	advocate	for	523 

techniques	allowing	the	estimation	of	differences	in	each	variance	components	rather	than	524 

focusing	solely	on	variance	ratios.	The	statistical	tools	allowing	comparison	of	trait	525 

variation	have	become	increasingly	sophisticated	and	now	allow	asking	very	precise	526 

questions.	Specifically,	we	can	now	ask	how	trait	variation	is	generated	and	how	variation	527 

differs	among	groups.	However,	despite	the	availability	of	these	tools,	researchers	528 

interested	in	ecological	and	evolutionary	variation	must	remain	careful	in	their	study	529 

designs.	As	our	simulations	show,	scenarios	involving	differences	in	among-individual	530 

variance	are	particularly	difficult	to	detect	without	substantial	sample	sizes.	Finally,	we	531 
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hope	the	statistical	approaches	and	tools	for	power	analysis	presented	here	will	allow	for	532 

appropriate	comparisons	of	trait	variation	in	ecological	and	evolutionary	studies.		533 

	 	534 
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