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Abstract

Analysis of population genetic data often includes a search for genomic regions with signs

of recent positive selection. One of such approaches involves the concept of extended hap-

lotype homozygosity (EHH) and its associated statistics. These statistics typically require

phased haplotypes, and some of them necessitate polarized variants. Here, we unify and

extend previously proposed modifications to loosen these requirements. We compare the

modified versions with the original ones by measuring the false discovery rate in simulated

whole-genome scans and by quantifying the overlap of inferred candidate regions in empiri-

cal data. We find that phasing information is indispensable for accurate estimation of within-

population statistics (for all but very large samples) and of cross-population statistics for

small samples. Ancestry information, in contrast, is of lesser importance for both types of

statistic. Our publicly available R package rehh incorporates the modified statistics pre-

sented here.

1 Introduction

The ease with which genomic sequences can be obtained contrasts sharply with the challenge

of discerning their functional elements. Finding molecular signatures of recent selection can

help to prioritize regions for further investigation. The search for selection is often performed

by statistical tests refuting the null hypothesis of neutral evolution. Here we focus on the classic

case of detecting recent strong positive selection in the form of a hard selective sweep, i.e., a

single new advantageous variant replacing—on its way to fixation—all or most of previous var-

iants [1]. Differential selection across populations can be detected by means of a conceptually

simple statistic such as Fst [2] (which compares variant frequencies between populations) but

may be corroborated by more sophisticated approaches, including those presented here, which

exploit other characteristics of the selection signal. In contrast, the detection of selection within

a single population has proven more challenging with various methods intended to capture a

sign of a reduction in genetic variation [3, 4]. Measures of the average sample homozygosity

and length of “runs of homozygosity” in individuals can be regarded, in our opinion, as pre-
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stages of the site frequency spectrum (SFS)-based and extended haplotype homozygosity

(EHH)-based statistics presented here, respectively. We should remind the reader that the for-

mer simply shows the number of variants sharing the same sample frequency in a specific

genomic region and, in contrast to the latter, disregards any association or linkage between

them [4]. Hands-on overviews are provided by the authors of [5] (bioinformatic tools and

workflow), [6] (methods and formulas), and [7] (a detailed collection of “recipes”). In the text

below, we confine ourselves to three approaches that have been widely employed for more

than a decade [8]:

• Tajima’s D [9], Fay & Wu’s H [10], and related metrics [11] compare the observed

SFS of a genomic region with its expectation under neutrality. They are designed for regions

short enough to ignore recombination. Although easy to apply and fast to compute, they are

highly vulnerable to confounding effects of demography and population structure. They are

implemented in various software packages such as DNASP [12] and R POPGENOME [13].

• SWEEPFINDER [14, 15] and SWEED [16] are two implementations of the same method. They

take into account the frequency spectrum around specific chromosomal positions and calcu-

late the composite likelihood ratio of a fitted sweep model (assuming gradual erosion of the

signal of selection with increasing genetic distance) to a position-independent null spectrum.

The latter is either taken from the empirical genome-wide “background” or derived from an

explicit demographic model.

• Sabeti et al. [17] have introduced the concept of EHH on top of which Voight et al. [18] have

built a statistic called iHS with subsequent variations [19, 20]. The statistic measures the

decay (of linkage around a specific site) due to both recombination and mutations. iHS was

first implemented in an eponymous program by the authors themselves [18]. Subsequent

improvements have been implemented in SELSCAN [21], HAPBIN [22], and the R package REHH

[23, 24].

In our view, there are two major differences of EHH-based techniques from SFS-based

approaches (see our S1 Text for a short review of the latter):

• FAY & WU’S H and SWEEPFINDER/SWEED are constructed to detect completed selective

sweeps, whereas EHH-based statistics are focused on ongoing selective sweeps. At least in

humans, completed selective sweeps seem to be rare [25], and prime examples of selection,

such as variants influencing the expression of the LCT gene (discussed below), are still far

from fixation [26].

• TAJIMA’S D and similar quantities refer to genomic intervals, and although SWEEPFINDER/

SWEED compute scores for exact genomic positions, these are not directly associated with

any particular polymorphism. In contrast, EHH-based statistics are tied to specific sites.

SFS methods, except original TAJIMA’S D, exploit the situation where alleles are polar-
ized, i.e., the ancestral vs. derived state of each allele is known. Polarization is typically

achieved using an outgroup: if a homologous site is monomorphic in the outgroup and coin-

cides with one of the alleles in the investigated population, then that variant is called ancestral.

Nonetheless, an outgroup species needs to be chosen properly: if on the one hand, the out-

group is phylogenetically too distant, then the probability of multiple mutations is high; if on

the other hand, the outgroup is too close, then the probability of shared polymorphisms is

high. Both scenarios lead to mis-specified ancestry status [27, 28]. Furthermore, a reference

genome of that species has to be available. Even so, the genomes of the outgroup and of the

focal species may not completely overlap, thereby leaving unpolarized chunks. For example,

PLOS ONE EHH-based statistics for unphased or unpolarized data

PLOS ONE | https://doi.org/10.1371/journal.pone.0262024 January 18, 2022 2 / 22

https://doi.org/10.1371/journal.pone.0262024


although considerable effort has been made to infer the “ancestral sequence” of present-day

humans, *4% of the single-nucleotide polymorphisms (SNPs) found by the 1000 GENOMES

PROJECT cannot be polarized (see below).

In addition to polarization, the calculation of EHH as described by [17] requires genotype

data to be phased, i.e., it is known for di- or polyploid individuals which variant of a hetero-

zygous locus belongs to which chromosome. Although obtaining phased haplotypes experi-

mentally is expensive, computational methods for inferring them probabilistically often yield

satisfactory results [29]. Nevertheless, two studies with the same basic approach indicate that

phasing can be omitted in case of diploid individuals: [30] for a within-population test and

[20] for a cross-population test. Both research groups assessed statistical power by simulations,

yet they did not directly compare phased and unphased estimators; the latter group merely

reported a coefficient of correlation r2 of 65–73% between the two estimators in terms of

empirical data.

The aim of this article is to assess the robustness of EHH-based statistics against a loss of infor-

mation about the phase or variant ancestry status. We first recapitulate and unify the definition

of the three statistics we want to investigate. Then, we describe how the statistics can be adapted

to account for unphased and/or unpolarized data. For the within-population test, we compared

the false discovery rate (FDR) between original and modified statistics in simulated whole-

genome scans and collated them with the above-mentioned frequency spectrum–based meth-

ods; we limited our simulations to a single evolutionary scenario that we deem, despite its sim-

plicity, sufficient to provide a qualitative picture. For all three statistics, we calculated the overlap

of candidate regions found by means of original and modified versions on empirical data. Along

the way, we aimed at giving potential users an intuitive feel for the various statistics involved.

2 Materials and methods

2.1 Definitions of statistics iHS, XP-EHH, and Rsb
At the beginning, we want to clarify that the word homozygosity as part of the term EHH refers

to the probability that two randomly chosen chromosomes from a population are identical (at

a certain locus or region).

Let s denote a site of interest within a chromosome. We call s the focal marker
(whereas Wang et al. [30] use the term primary locus) and designate variants at that

marker as core alleles. Suppose na means the number of sequences with core allele a,

and ns = ∑a na represents the total number of sequences. If there are no missing data at the

focal marker, then ns equals (haploid) sample size n. All chromosomes sharing a core allele are

by definition homozygous at the focal marker. EHH measures the decay of this homozygosity

with increasing distance to the marker and is calculated independently in each direction

(upstream/downstream) from the marker. To be precise, suppose t is another marker on the

same chromosome, and let us consider the region between s and t. Any two (or more) chromo-

somes identical in that region constitute a shared haplotype. Let Ks,t denote the number

of all distinct shared haplotypes in the sample, and Ka
s;t the subset with allele a at focal marker s.

nk refers to the number of sequences sharing haplotype k. Quantity EHHa as defined by ref.

[17] is calculated for chromosomes carrying core allele a as

EHHa
s;t ¼

1

naðna � 1Þ

XK
a
s;t

k¼1

nkðnk � 1Þ : ð1Þ

To summarize EHHa
s;t as a single number assignable to allele a at site s, Voight et al. [18]

have opted for the integration of EHH and named the resulting quantity integrated
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haplotype homozygosity (iHH):

iHHaðsÞ ¼
Z

EHHa
s;t dt : ð2Þ

The integration is performed numerically and stopped when EHH, monotonically decreasing

with increasing distance to the focal marker, reaches a lower threshold or cutoff, usually set to

0.05.

Note that although iHS has historically been defined in this two-step way, it is equivalent

but conceptually simpler to regard it as the average of lengths lij(s) of shared haplotypes among

all pairs of chromosomes i and j carrying core allele a:

iHHaðsÞ ¼
1

naðna � 1Þ

Xna

i6¼j

lijðsÞ : ð3Þ

Given iHH for ancestral (A) and derived (D) alleles of a focal marker, Voight et al. [18] have

favored a log-ratio for their comparison, yielding the (as yet unstandardized) integrated
haplotype homozygosity score (iHS)

uniHSðsÞ ¼ ln
iHHAðsÞ
iHHDðsÞ

� �

: ð4Þ

Finally, this statistic is standardized:

iHSðsÞ ¼
uniHSðsÞ � meanðuniHSjpsÞ

sdðuniHSjpsÞ
: ð5Þ

Because the expected values under neutrality of uniHS strongly depend on derived allele fre-

quency ps at focal marker s, the standardization is ideally performed separately for all markers

with the same frequency. In practice, the standardization is carried out across small frequency

bins. Voight et al. [18] state that iHS approximately follows a standard normal distribution.

To detect selection using iHS, both alleles of a site must be present in enough sequences for

obtaining a reliable estimate of their respective EHHa. Typically, a minor allele frequency

(MAF) of at least 5% is required, which excludes variants near fixation.

To overcome this limitation, Sabeti et al. [19] and Tang et al. [20] have independently mod-

ified the above statistic to compare two populations instead of two alleles. Although Sabeti

et al. [19] have kept the term EHH, we follow Tang et al. [20] in distinguishing site-
specific EHH by means of EHHS:

EHHSs;t ¼
1

nsðns � 1Þ

XKs;t

k¼1

nkðnk � 1Þ : ð6Þ

Keep in mind that EHHSs,s is an estimate of the focal marker’s homozygosity. Subsequent

statistics are built analogously to Eqs (2)–(5). Sabeti et al. [19] first integrated this statistic to

calculate integrated EHHS (iES)

iESðsÞ ¼
Z

EHHSs;t dt ; ð7Þ

which is then compared between two populations to obtain as yet unstandardized XP-EHH

unXP-EHHðsÞ ¼ ln
iESpop1ðsÞ
iESpop2ðsÞ

 !

; ð8Þ
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which in turn is standardized, yielding

XP-EHHðsÞ ¼
unXP-EHHðsÞ � meanðunXP-EHHÞ

sdðunXP-EHHÞ
: ð9Þ

The approach from ref. [20] differs in so far as EHHSs,t is normalized to its value at marker t
= s. Thus, we refer to the integral as an integrated normalized EHHS score:

inESðsÞ ¼
1

EHHSs;s

Z

EHHSs;t dt ¼
iESðsÞ
EHHSs;s

ð10Þ

to obtain first the (unstandardized) ratio between populations (Rsb). Note that

for the sake of uniformity, our notation differs slightly from that given in ref. [20], where (12)

is referred to as ln(Rsb), and the log-nontransformed value is used only for plotting.

unRsbðsÞ ¼ ln
inESpop1ðsÞ
inESpop2ðsÞ

 !

; ð11Þ

and, finally, we standardize by the median instead of the mean,

RsbðsÞ ¼
unRsbðsÞ � medianðunRsbÞ

sdðunRsbÞ
: ð12Þ

It should be noted that for standardization of cross-population statistics XP-EHH and Rsb,

no binning with respect to core allele frequencies is undertaken and hence no variant polariza-

tion is presupposed.

2.2 Modifications for unphased sequences

The probability that two sequences of a population are identical can be estimated not only by a

pairwise comparison of all sequences in a sample (as formulated above) but also via the pro-

portion of homozygous diploid individuals, under the assumption of the Hardy–Weinberg

equilibrium. The latter does not require phase information, and the authors of [20, 30] have

used the idea to estimate EHH (under a different name) and EHHS, respectively: the crucial

difference from Eqs (1) and (6), respectively, is that only the two chromosomes of each indi-

vidual are compared. Statistics EHH and EHHS are then estimated as above via the proportion

of shared haplotypes among all sequence comparisons. Let Is,t denote the number of individu-

als homozygous in the region between s and t, and suppose Ias;t represents those among them

that carry core allele a. At marker t, quantities EHHa and EHHS are respectively estimated as

EHHa
s;t ¼

Ias;t
Ias;s

ð13Þ

EHHSs;t ¼
Is;t
Is;s

: ð14Þ

Fig 1 illustrates the original and modified way to estimate EHH (and iHH). All subsequent

steps to obtain iHS, XP-EHH, and Rsb remain the same as above. Because EHHS calculated

via Eq (14) is normalized (giving 1.0 at the focal marker), for unphased data, XP-EHH is essen-

tially identical to Rsb; they differ only in the use of the median and mean, respectively, at the

standardization step.
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It must be pointed out that only the chromosomes of individuals homozygous at that focal

marker can share a haplotype. The resulting set of mutual chromosome comparisons is hence

a (typically much smaller and possibly even empty) subset of those made by the original

approach.

Fig 2 shows why this state of affairs entails a major problem: the length of shared haplotypes

is distributed very unevenly among the chromosomes of a sample, and even in the absence of

selection, a few shared haplotypes of extreme length can occur. In small samples, these can eas-

ily give rise to “outlier” values of the final statistics, thereby confounding the signal arising

from selection. In an attempt to reduce this statistical noise, we imposed the following

restrictions:

• only focal markers with at least 10 homozygous sequences (five individuals) are considered:

sample-wise for XP-EHH and Rsb and independently for each core allele in case of iHS
(the latter on top of the original requirement of a MAF of at least 0.05),

• the cutoff that stops integration of EHH/EHHS is increased from its original value of 0.05 to

0.10,

• another integration cutoff is added, leading to stoppage when fewer than four chromosomes

(two individuals) remain homozygous (for the original statistics, this condition follows from

the preceding two).

Fig 1. An example of the calculation of EHH using the estimator for phased (Eq (1)) and unphased sequences (Eq (13)). The

left-hand panel depicts the variants seen in four aligned sequences belonging to two diploid individuals. At the central marker

(position 40), taken here as focal, all sequences share the same allele. Next to the sequences, the range of shared extended

haplotypes around the focal marker is indicated. The boundaries of shared haplotypes are determined by the position of the

marker that introduces a difference between the hitherto identical sequences. Without phase information, only the two sequences

of each individual can be compared, and the resulting shared haplotypes are visualized by dashed lines. For instance, the two

sequences of individual 1 become different at the first marker to the left of the focal marker, and consequently their shared

haplotype ends at position 30. In contrast, when variants are phased, all sequences can be compared with each other. The panel

depicts for each sequence its longest shared haplotype, indicated by a solid line, with the constituent sequences in the same color.

The remaining shared haplotypes end at position 30 and 50, respectively. The right-hand panel shows the EHH values calculated

at each marker position as the proportion of sequences sharing a haplotype among all comparisons. Note that the EHH curve is

typically defined as linearly interpolating between consecutive markers (as depicted), although for completely sequenced data, a

stepwise constant function would be more appropriate. With the latter definition, the integral over the EHH curve, iHH, becomes

identical to the average length of shared haplotypes: 30þ40

2
¼ 35 and 180

6
¼ 30 for unphased and phased sequences, respectively.

https://doi.org/10.1371/journal.pone.0262024.g001
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2.3 Modifications for unpolarized variants

There is only one step where information about allele ancestry status is exploited, namely, the

standardization of uniHS in Eq (5), depending on the frequency of the derived core allele. To

avoid arbitrary assignment of ancestry status, we replaced the ancestral and derived allele in

Eq (4) by a major (most frequent) and minor (second most frequent) allele, respectively.

uniHSðsÞ ¼ ln
iHHMAJðsÞ
iHHMINðsÞ

� �

: ð15Þ

For unpolarized variants, the frequency dependence of EHH under neutrality cannot be

accounted for by a binning with respect to MAF because such a binning would group derived

alleles of frequency ps together with those of frequency p1−s, whose respective expected values

differ increasingly with decreasing MAF. Hence, for lack of a better solution, we suggest that

standardization be performed without considering allele frequencies:

iHSðsÞ ¼
uniHSðsÞ � meanðuniHSÞ

sdðuniHSÞ
: ð16Þ

Fig 2. The length of shared haplotypes. A region of 50 Mb was simulated in a neutrally evolving population with a sample size of n = 100. We considered only SNPs

where both core alleles have a sample frequency of 50%, and we assumed that the phase is known. As in the middle panel of Fig 1, the lines in the left panel symbolize

the range of the longest shared extended haplotypes, here for the most central SNP in the first simulation, ordered along the y-axis by their length. The extreme length

of a single shared haplotype stands out. The middle left panel indicates that this is not an exceptional feature: here, shared haplotype lengths (restricted to those to the

“right” of the focal marker) are averaged across SNPs from 100 independent simulation runs, restricted to those less than 5 Mb away from the center in order to

minimize boundary effects. The ends of the bars represent 5% and 95% quantiles. For the same SNPs, the middle right panel presents length distributions of all

pairwise shared haplotypes (50�49

2
per SNP and allele). The distributions are overlaid with a fitted Gaussian curve. The right panel shows Q–Q plots of the distributions.

Note that the largest lengths are actually capped, because in 11 simulation runs, shared haplotypes reached the chromosomal boundary.

https://doi.org/10.1371/journal.pone.0262024.g002
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2.4 Delineation of regions under selection

Ref. [18] shows that stand-alone markers with extreme values of iHS are less indicative of

selective sweeps than a cluster of high values (see Fig 2, S2 Text). In effect, those authors identi-

fied intervals that are candidates for selection by requiring that half of markers have values

above the 99th genome-wide percentile. We followed this approach with a modification: we

adapted the threshold value to obtain a fixed number of candidate regions. We used overlap-

ping sliding windows of width 250 kb with an offset of 50 kb, and overlapping candidate win-

dows were merged. For empirical data, we decided that the number of markers in any window

had to exceed the (arbitrary) value of 150 to exclude regions with few genotyped markers; if

the phase was ignored, then this number was halved for iHS, corresponding to a similar

decrease for the markers for which a score could be obtained.

To facilitate the comparison, we applied sliding windows of the same size and overlap to

the values of the frequency spectrum–based tests, although here, stand-alone markers had to

exceed a given threshold. Because the values of TAJIMA’S D and FAY & WU’S H are calculated for

intervals, we designated the interval centers as the corresponding positions.

2.5 Whole-genome scans in simulated data

We performed coalescent simulations using MSMS [31]. We assumed an effective population

size of Ne� 10, 000 for humans. In some simulation studies, both a population-scaled muta-

tion rate and recombination rate have been set to θ = ρ = 0.001 per base per generation [32,

33], and we followed this approach for simplicity, although we should acknowledge that

depending on the estimation method, for humans, rates of half that size can be inferred for

both quantities [34–37].

For our simulated regions, we set population-scaled rates θ and ρ both to 50, 000; thus, they

corresponded to a physical length of 50 Mb in humans. This large size proved necessary to

reduce boundary effects, because as displayed in Fig 2, shared haplotypes can span several

megabase pairs even under neutrality. We ignored the fact that recombination events in reality

occur within hot spots [38] because MSMS cannot handle varying recombination rates, whereas

other tools that can (e.g., MSHOT [39]), are not able to simulate selection. We could, nonethe-

less, replicate our results under neutrality by means of MSPRIME [40]. To investigate distribu-

tional properties under neutrality, for iHS, we simulated chromosomes evolving in a single

constant-size population, and for XP-EHH/Rsb, in two neutrally evolving populations that

split symmetrically from an ancestral population 4Ne � 0.05 generations ago (*50,000 years in

humans), without subsequent migration.

To analyze selection signals, we created a “genome” consisting of 100 independently simu-

lated samples of chromosomes, each experiencing a single ongoing selective sweep located at

its center while otherwise evolving neutrally. The selected allele was designated as fully domi-

nant with a population-scaled selection coefficient of 2Ne s = 500—having reached at sampling

time a population frequency of 50%, 70%, or 90%—or at a population-scaled time of 0.01 (cor-

responding roughly to 10000 years in humans) after fixation. The simulated (haploid) sample

size was n = 400, from which we took subsamples down to sample size n = 50. For the calcula-

tion of statistical power, we created a neutrally evolving “genome” of 20 independent chromo-

somes with parameters otherwise identical to those above.

To these genomes, we applied the original or modified iHS statistics. For the estimator

with unphased data, we tried two cutoffs: the standard one of EHH = 0.05 and a more stringent

cutoff of EHH = 0.10. Furthermore, we computationally reconstructed phase information

from randomized genotypes using FASTPHASE [41] with subsequent application of the original

statistics. Additionally, we computed values for TAJIMA’S D [9] and FAY & WU’S H [10] as well
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as the COMPOSITE LIKELIHOOD SCORE as implemented by SWEEPFINDER [15] and SWEED [16]. The

latter was calculated with and without allowance for variant ancestry status.

To evaluate the performance of the various approaches, we estimated the FDR and statisti-

cal power. A delineated candidate region was considered a “true positive” when it overlapped

with a true selected site. Consequently, the FDR measures the proportion of mislocated regions

among regions deemed significant. For each statistic and sample size, the significance thresh-

old was adjusted so as to call exactly 100 candidate regions. With these settings, the lower the

FDR, the more optimal is the test. The FDR is zero when each of the 100 simulated selected

sites is identified by means of a distinct candidate region. If, on the contrary, candidate regions

are assigned to random places within the genome, then the probability of a “true positive”

equals combined length of all candidate regions divided by genome length; in this case, the

expected FDR is 1.0 minus this probability. Note that the number but not the length of delin-

eated candidate regions is fixed because a region may comprise several merged windows. For

the computation of statistical power, we adjusted a threshold such that approximately 1% of

the neutral genome was (falsely) designated as selected. The thresholds were calculated for

each statistic and each sample size independently and then applied to the genome undergoing

selection.

See S1 Protocol regarding software and technical details.

2.6 Whole-genome scans in empirical data

We used data from ref. [42], where researchers called variants on reads (from the 1000

GENOMES PROJECT [43]) realigned to human reference genome assembly GRCh38. The data

comprise only autosomes and contain fully phased biallelic SNPs with imputed missing values.

The ancestral alleles, inferred from an alignment of 12 primates, were obtained from

ENSEMBL release 91 [44]. Almost 91% of the 73 million SNPs are covered by ancestral states

classified as “high confidence” and another 6% as “low confidence”; using both, we were able

to polarize 95.8% of SNPs. We calculated the statistics for samples of European origin (CEU
and GBR), Asian origin (CHB and JPT), and African origin (YRI; see Table 1). Additionally,

we combined the samples of two closely related populations (see S5 Table of ref. [43]), namely

the two European samples mentioned and Chinese samples CHB and CHS, respectively.

We assessed the robustness of the statistics vis-à-vis a loss of phase or ancestry information

by means of the number of overlapping candidate regions.

3 Results

3.1 General properties of the statistics under neutrality

3.1.1 Dependence on core allele frequencies. Under neutrality, we examined the depen-

dence of the three original statistics on the frequency of derived allele ps at focal marker s. For

uniHS, this was already reported in ref. [18] (see their Fig 4). By recalculating uniHS using

Table 1. The population samples of the 1000 GENOMES PROJECT used in this study.

Sample Population # Individuals

CEU Central Europeans in Utah (CEPH individuals) 99

CHB Han Chinese in Beijing, China 106

CHS Han Chinese South, China 105

GBR British from England and Scotland 100

JPT Japanese in Tokyo, Japan 105

YRI Yoruba in Ibadan, Nigeria 107

https://doi.org/10.1371/journal.pone.0262024.t001
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subsamples containing an equal number of the two core alleles, we confirmed that uniHS
indeed depends on population frequency of the derived allele and is not an artifact of its sam-

ple frequency (Fig 1 of S2 Text, left and middle panel).

Cross-population statistics XP-EHH and Rsb are defined symmetrically with respect to the

compared populations, and as a consequence, the expected values have to be zero for markers

with the same derived allele frequency from populations of identical demography. This does

not hold when derived frequencies differ between populations (Figs 2 and 3 of S2 Text): an

observation not made by the authors of [19, 20] and consequently not taken into account at

the standardization step. Fortunately, the effect is smaller than that for the uniHS statistics,

making correction less necessary. Furthermore, frequency-dependent standardization in the

vein of iHS would require two-dimensional bins, and contrary to iHS, the implicit assump-

tion that each bin is dominated by neutral variants does not hold because large frequency dif-

ferences are indicative of differential selection. Consequently, in the absence of a better

solution, we continue to utilize these statistics as is. Note, however, that any such hypothetical

bin-wise standardization would make XP-EHH and Rsb essentially identical, except for the

respective use of the mean and median in Eqs (9) and (12).

3.1.2 Distributions of the statistics. Statistics iHS, XP-EHH, and Rsb have been con-

structed to be approximately standard-normally distributed under neutrality. Our simulations

confirmed this principle for the original statistics while the modified ones manifested notable

deviations: disregarding ancestry information leads to a skew in iHS values, and using the esti-

mator for unphased variants results in “heavier tails” in all three statistics (Figs 4 and 6 of S2

Text). Both deviations can be easily explained. On the one hand, in a neutral setting, a sample

is expected to contain much more variants of low derived frequency than of high frequency.

Without frequency-wise normalization, the center of the resulting distribution of ihs will be

closer to negative values of the low-frequency variants than to positive values of the high-fre-

quency variants, hence yielding the skew for unpolarized data. On the other hand, the few very

long shared haplotypes arising under neutrality are much more likely to give rise to extreme

values when averaging by length is restricted to within-individual shared haplotypes, hence

producing “heavier tails” for unphased data.

3.2 Whole-genome scans in simulated data

3.2.1 A single selective sweep in detail. In Fig 3, we present an example of the iHS values

obtained in the vicinity of a strongly selected variant located in the middle of a chromosome

that otherwise evolves neutrally. The variant has reached a population frequency of 70%. It is

evident that the omission of ancestry status causes a decrease of values around the selected site.

Lack of the phase, by contrast, primarily increases statistical “noise” from the neutral part of

the chromosome. This can be observed too for unstandardized iHS in the right-hand panel of

Fig 1 in S2 Text. The relative lack of low values around the selected site in each case is a more

prominent feature of the sweep than the attainment of extreme values is, thus giving us a rea-

son to search for such “clusters.” Further examples, including those of the frequency spec-

trum–based tests and calculated for different sample sizes, are given in Figs 8–15 in S2 Text.

These plots indicate that our requirement of at least 10 sequences per allele in unphased data is

of lesser importance when the sample size is large but drastically reduces the number of suit-

able markers in small samples. Note that the selected variant neither necessarily has the most

extreme value nor lies in the exact center of the region containing elevated values.

3.2.2 The FDR and statistical power. Figs 4 and 5 summarize the results of our whole-

genome scan in simulated data. Fig 4 shows the FDR: the proportion of the 100 delineated can-

didate regions that did not overlap with one of the 100 true selected sites. Given that only the
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number of identified candidate regions was fixed a priori, we checked whether for each test

and sample size, the average areas covered by the regions were of similar size. Indeed, they

constituted *500 kb per chromosome, hence *1% of its length. Fig 5 presents statistical

power: the proportion of true positives for a given significance level. Note that this level was

set by adjusting thresholds such that identified candidate regions cover 1% of a neutrally evolv-

ing genome. The thresholds chosen for Fig 4 are therefore somewhat lower than those used for

Fig 5, but other than that, the results are largely complementary.

First, we can see that ongoing sweeps in early stages can be better recognized by iHS than

by frequency spectrum–based tests, whereas the opposite is true after the selected site is fixed.

Second, in every case and almost independently of sample size, the lack of polarization yields

an increase in the number of “false positives,” with the effect being smaller for iHS than for

the other statistics. After fixation, knowledge of ancestry status reduces the FDR for iHS,

although in this case, its overall performance remains poor. Third, the lack of the phase drasti-

cally increases the FDR for iHS for all but the largest sample sizes, and an increased cutoff

offers only partial compensation. Lastly, at least in our high-density simulated data, computa-

tional phasing of genotypes is much more effective than applying the modified estimator to

unphased sequences; to our surprise, the FDR turned out to be even somewhat lower for the

reconstructed phase than for the “true” data. We do not know the reason and can only specu-

late that FASTPHASE does not detect all recombination events, thereby increasing the length of

shared haplotypes and hence the signal of selection.

3.3 Whole-genome scans in empirical data

3.3.1 Two selective sweeps in detail. Several variants in the enhancer of human gene LCT
give lactase persistence, which enables adults to digest raw milk [45–47]. Although

this capability is undisputedly under strong selection, the precise advantage of this trait is still

debated [48]. Here we are concerned with SNP rs4988235 whose derived variant attains its

highest frequency of 74% in population CEU, while it is virtually absent in all East Asian and

nonadmixed African populations documented in the 1000 GENOMES PROJECT. Fig 6 depicts EHH
around this SNP for its two alleles. Readers can see that EHH extends much farther for the

derived variant than for the ancestral one: a sign that the allele has reached its current popula-

tion frequency faster than under neutrality. The curves for EHH when the estimator for

Fig 3. iHS values of a single simulation “run” (arbitrarily chosen as the first of the 100 runs) around a site containing a selected

variant of population frequency 70% at a sample of size n = 200. The value for the site with the selected variant is highlighted in dark

orange, and identified regions that are candidates for selection are marked in gray. See also Figs 8–15 of S2 Text.

https://doi.org/10.1371/journal.pone.0262024.g003
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Fig 4. A comparison of the FDR among different statistics, sample sizes, and frequencies of the selected allele. A hundred regions–candidates for selection were

delineated in a simulated genome containing 100 sites under selection. The FDR represents the proportion of incorrectly located regions, i.e., regions that do not overlap

with any “true” site subject to selection. An ideal test should output an FDR of zero. Rephasing was performed only for sample sizes 50 and 100 with a still segregating

selected variant.

https://doi.org/10.1371/journal.pone.0262024.g004

PLOS ONE EHH-based statistics for unphased or unpolarized data

PLOS ONE | https://doi.org/10.1371/journal.pone.0262024 January 18, 2022 12 / 22

https://doi.org/10.1371/journal.pone.0262024.g004
https://doi.org/10.1371/journal.pone.0262024


Fig 5. A comparison of statistical power among different statistics, sample sizes, and frequencies of the selected allele. These graphs are similar to those in Fig 4, but

here, the proportions of correctly identified selected sites are shown, and thresholds were set such that 1% of a neutrally evolving genome is (falsely) designated as

selected.

https://doi.org/10.1371/journal.pone.0262024.g005
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unphased data is employed are more coarse-grained but still quite similar in shape and scale.

Fig 7 shows genome-wide standardized iHS values around the LCT gene. As with the simu-

lated data, the omission of polarization leads to a reduction of high values but leaves the overall

pattern intact. The omission of phasing instead causes a notable increase of “noise” in the

sense that many low values get inflated. Again, the most conspicuous is the massive lack of val-

ues in the putative center of the sweep owing to our discarding the sites where the minor allele

is present in fewer than 10 sequences (or five individuals). In fact, only seven individuals are

homozygous for the ancestral allele of SNP rs4988235. Figs 16–19 of S2 Text indicate that

the situation is similar in other candidate regions. Out of curiosity, we computed standard

iHS values for additional populations as well (Fig 20 of S2 Text): almost all European popula-

tions from the 1000 GENOMES PROJECT have a similarly strong signal, while none of the African

Fig 6. EHH for ancestral and derived alleles of SNP rs4988235 in population CEU from the 1000 GENOMES PROJECT. The SNP is

located on chromosome 2, approximately 13 kb upstream (in 30 direction) of the LCT gene.

https://doi.org/10.1371/journal.pone.0262024.g006

Fig 7. iHS values in a region around the LCT gene in population CEU. The value of the putatively selected site is highlighted in dark

orange, and the identified regions–candidates for selection are marked in gray. That the putatively causal site has a more prominent score in

unpolarized estimation is entirely accidental in our opinion.

https://doi.org/10.1371/journal.pone.0262024.g007
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populations do. Nonetheless, another African population investigated within the HAPMAP3

project [49] shows a signal similar to that of Europeans [50].

SNP rs1426654 within gene SLC24A5 causes the Ala111Thr polymorphism in the

corresponding protein and influences skin pigmentation [51]. The level of pigmentation has to

balance the opposing requirements: protection from UV radiation and ensuring sufficient vita-

min D production [52]. The derived variant has low frequency in the African populations, is

almost fixed in the European populations, and all but absent in the East Asian populations

from the 1000 GENOMES PROJECT. Because population sample CEU is monomorphic for the

derived variant, only cross-population statistics are applicable. Fig 8 shows that EHHS extends

much farther in population CEU than in populations CHB and YRI. Again, ignoring phase

information, we obtain a coarser but otherwise similar picture. In Fig 9, we compare the origi-

nal XP-EHH and Rsb statistics with their counterpart for unphased data (where both statistics

are essentially identical) around the SLC24A5 gene. The panels look quite similar, suggesting

that the statistics are largely equivalent.

Fig 8. Normalized EHHS around SNP rs1426654 in populations CEU, CHB, and YRI. The SNP is located within gene

SLC24A5.

https://doi.org/10.1371/journal.pone.0262024.g008

Fig 9. XP-EHH and Rsb values in a region around the SLC24A5 gene for a comparison of populations CEU and YRI. The value of

the putatively selected site is highlighted in dark orange, and the identified regions–candidates for selection are marked in gray.

https://doi.org/10.1371/journal.pone.0262024.g009
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3.3.2 Distributions of the statistics in empirical data. The statistics from empirical data

have more extreme values, or in other words, their distributions have heavier “tails” than those

seen in simulated neutral evolution, especially when the estimators for unphased data are

applied (Figs 5 and 7 of S2 Text).

3.3.3 The overlap of the found candidate regions. We are interested in whether the

delineated putative regions under selection are robust with respect to the adjustments we

made to the original statistics. As discussed in the section, we largely borrowed the settings

from ref. [18] but adjusted the threshold value to obtain exactly 20 candidate regions for each

statistic. Table 2 presents the number of overlapping regions when iHS is used. Readers can

see that there is a considerable overlap between the regions called from the original statistics

and those where ancestral information is ignored, whereas ignoring phase information yields

only a modest overlap, even for large sample sizes. In Table 3, standard statistics Rsb and

XP-EHH are compared with each other and with the version for unphased data. Here, the

overlap between the modified statistics and the original ones is not much less than that

between the two original statistics, except for the comparison of populations CHB and JPT.

Because these two populations are rather similar, the signal of differential selection might be

too small to detect without phasing.

The precise chromosomal locations of all ascertained candidate regions as well as strengths

of the signals are listed in S2 Text. The computed iHS, XP-EHH, and Rsb values are available

on Dryad [53].

4 Discussion

While ever more sophisticated methods for detecting selective sweeps are being developed

[54–56] and other, more subtle modes of selection [57] are under increasing scrutiny, the rela-

tively simple summary statistics presented here will continue to serve as a first-pass analysis of

Table 2. The number of overlapping identified regions that are candidates for selection, according to two different

estimators of iHS. For each estimation of iHS, the threshold was adjusted to obtain exactly 20 candidate regions.

iHS phased polarized/unpolarized iHS polarized phased/unphased

CEU 10 2

CHB 12 1

JPT 9 2

YRI 14 5

CEU+GBR 11 4

CHB+CHS 12 3

https://doi.org/10.1371/journal.pone.0262024.t002

Table 3. The number of overlapping identified regions–candidates for differential selection, as determined by two different estimators (phased and unphased) or

two statistics (XP-EHH and Rsb). The threshold was adjusted to obtain exactly 20 candidate regions for each combination of an estimator and statistic. Note that

unphased XP-EHH and Rsb are by definition almost identical and hence afford almost identical candidate regions.

Rsb/XP-EHH phased XP-EHH phased/unphased Rsb phased/unphased Rsb/XP-EHH unphased

CEU vs CHB 12 11 11 20

CEU vs JPT 11 9 14 18

CEU vs YRI 11 7 10 20

CHB vs JPT 13 4 3 20

CHB vs YRI 12 6 10 18

JPT vs YRI 11 8 11 20

CEU+GBR vs CHB+CHS 13 12 12 20

https://doi.org/10.1371/journal.pone.0262024.t003
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population genetic data. The aim of our study was to test whether established scores iHS,

XP-EHH, and Rsb can be used without the requirement for sequences to be phased and for

variants to be polarized. Although the issue of phasing can often be solved computationally

and its importance is likely to wane soon because of rapid improvements in sequencing tech-

nologies, in the meantime, methods that can deal with unphased data may find their niche. In

contrast, the polarization of alleles will always remain imperfect and incomplete, notwith-

standing rare cases of available ancient DNA. This is true even more for cases of “reticulate”

evolution such as hybridization/admixture, where the very concept of an ancestral allele gets

blurred. Accordingly, we expect any method able to handle unpolarized variants to remain a

useful complement to methods that cannot.

We compared the different approaches to detection of selective sweeps by the FDR and

their statistical power. We would like to emphasize the importance of the former, because typi-

cally, in whole-genome scans, only a handful of most extreme “outlier” regions can be investi-

gated in detail further, and it is more important to identify them correctly than to know the

overall level of selection as would be described by statistical power. We even want to caution

readers that reporting large numbers of putative selective sweeps may inadvertently be sugges-

tive of a precision level that cannot be warranted. The fine-scale plots of our candidate regions

in Figs 16–19 of S2 Text should serve as a reminder that their delineation depends on various

often overlooked parameters such as the handling of gaps and boundary regions, the clustering

of significant scores, and not the least, the thresholds applied, which are notoriously uncertain

given that in many cases, null-models can be specified only roughly.

The selection parameters we implemented in the simulations were inspired by the human

LCT locus, where a single dominant allele is generally believed to have undergone long-term

strong selection in Europeans. Dealing with such variants should be an easy task for all the

methods we investigated; however, we do not claim that they represent a typical or even major

mode of biological evolution. Likewise, we are well aware that nontrivial demographic charac-

teristics can have a decisive impact on the FDR and power of statistical tests of neutrality [33,

58]. On the other hand, we do not expect them to overturn our qualitative claims about relative

importance of phase or ancestry information.

Our simulations revealed that SFS-based methods, constructed for the detection of sweeps

near completion, are unable to detect ongoing sweeps when the selected variant still has an

intermediate frequency. Polarization is more important for these methods than for EHH-based

ones, yet, unexpectedly, sample size is not (at least in the range investigated).

Concerning EHH-based statistics, we demonstrated that although omission of ancestry

information entails a substantial decrease in peak values, the conspicuous absence of low

scores can still be exploited to delineate candidate regions. In contrast, the claims of some

authors, [20, 30], that the phase can be ignored without a major loss of information must be

regarded as too optimistic. The main reason is that in this case, the estimation of the statistics

relies solely on individuals that are homozygous at the respective focal markers. This drawback

is less of a problem for EHHS because under Hardy–Weinberg proportions, more than half of

individuals in a population can be expected to be homozygous for a given marker. Conse-

quently, in a sample of 100 chromosomes, typically *50 chromosomes are suitable for calcu-

lating EHHS and the derived XP-EHH and Rsb. This seems enough to obtain substantial

similarity with their homologs for phased data as Table 3 shows for empirical data. For iHS,

however, EHH has to be estimated for each allele independently, and this approach often ren-

ders the estimation for the minor allele unreliable because few sequences can be utilized.

To increase the robustness of estimation in unphased data, we chose 10 as the minimum

number of sequences to be available for estimation at the focal site. Nonetheless, the depletion

of variants with intermediate frequency is a major hallmark of a selective sweep near
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completion [9, 10]; hence, for iHS, this seemingly mild condition can entail the exclusion of

many markers around the selected site because few individuals will be homozygous for the cor-

responding minor alleles. This pattern is most obvious at the LCT locus (Fig 7) but seems to be

a general phenomenon (Figs 16–19 of S2 Text). Furthermore, we increased the cutoff for EHH/

EHHS integration from 0.05 to 0.1 and stopped integration too when only a single homozygous

individual (a single shared haplotype) remained. These added restrictions are aimed at pre-

venting a single (or very few) shared haplotype(s) with extreme length to cause high scores

only by chance. Nevertheless, as Fig 4 indicates, the improvement is moderate. The authors of

both [20, 30] have invented more sophisticated metrics: the former did not integrate EHH but

rather adjusted a logistic function describing its decay (actually an increase in 1

2
(1–EHH)) with

increasing distance from the focal marker. The latter research group repeated a whole-genome

scan 50 times in a bootstrapped sample to eliminate the most volatile 50% of significant mark-

ers. We doubt, however, that any such noise reduction can overcome the general problem of

an insufficient number of exploitable sequences.

Therefore, the extremely uneven length of shared haplotypes under neutrality like the one

seen in Fig 2 produces difficult-to-handle background noise. Were this length log-normally

distributed as suggested by the right-hand panels of the figure, then the remedy would be to

replace the arithmetic average in Eq 3 by a geometric one. We briefly probed such a replace-

ment but recognized that the cutoff parameters are more important than the type of averaging.

Indeed, the authors of [50] have concluded via coalescent-based reasoning that this problem

cannot have an “optimal” solution because the expected length of shared haplotypes is infinite.

Accordingly, we do not expect that our ad hoc cutoff rules can be substantially improved or

even justified by theory.

To summarize, without phasing information, selective sweeps can be located by iHS only

in very large samples. Even under the idealized conditions of our simulations, at least 200

sequences are necessary to detect sweeps where the selected variant reaches an intermediate

frequency, whereas for sweeps in later stages, the sample size should exceed 400 sequences.

Consequently, phasing should be performed whenever possible. The poor overlap of inferred

regions when iHS is used with and without the phase in empirical data (Table 2) confirms this

conclusion. The required sample sizes may be lower in partially self-crossing species, where

more individuals are expected to be homozygous. Some investigators [59] have reasoned that

EHH-based statistics “should be robust to any levels of selfing,” yet we want to caution the

reader that these statistics presuppose a certain number of detectable recombination events to

be meaningful. This is an active field of research on its own [60] and is beyond the scope of

our study.
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