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Rodents are widespread, opportunistic, and compe-
tent host reservoirs involved in the maintenance, 

circulation, and transmission of a wide panel of zoo-
notic pathogens (1). Rodent-related zoonoses cause up 
to 400 million human infections worldwide each year 
(1,2). Among zoonotic pathogens, hantaviruses (order 
Bunyavirales, family Hantaviridae, genus Orthohan-
tavirus) are among agents considered most likely to 
emerge and have a global public health impact (3). 

Hantaviruses are enveloped, negative, single-
stranded RNA viruses with a tripartite genome com-
prised of large, medium, and small segments. Trans-
mitted to humans via inhalation of aerosolized virus 
in contaminated rodent urine and feces, hantaviruses 

can cause hemorrhagic fever with renal syndrome 
(HFRS) or hantavirus pulmonary syndrome (4). 
Hantaviruses are generally carried by a rodent spe-
cies host, and geographic distribution of the host can 
determine the area in which the associated disease 
occurs among humans. From this perspective, Seoul 
orthohantavirus (SEOV), identified in South Korea in 
1982, deserves special attention because its cosmopol-
itan host, the Norwegian rat (Rattus norvegicus), also 
known as the brown rat, has been dispersed world-
wide, resulting in a global distribution of the virus 
today (5). Detection of SEOV is often considered an-
ecdotal and speculated to be driven by sporadic intro-
duction of infected brown rats via transportation but 
also by pet or laboratory rats (6,7). Diagnosing SEOV 
in humans remains a challenge due to milder and 
atypical HFRS pathology (8). However, mild symp-
toms can progress to acute renal disease associated 
with HFRS, in which patients experience low blood 
pressure, acute shock, and acute kidney failure, and 
the case-fatality rate is ≈1% (9). 

History of Hantaviruses in Africa
Fifteen years ago, no indigenous hantavirus was 
known in Africa (10). Since then, few studies have 
investigated hantaviruses, including SEOV, in Africa 
and consequences for human health. The dearth of 
studies gives the appearance that SEOV is not a ma-
jor public health threat on the continent because of 
the lack of local specific testing for SEOV among hu-
man serum samples (11). Nonetheless, suspicions of 
SEOV-like agents in humans and wild rats in 17 dif-
ferent countries in Africa are strong (5). Until recent-
ly, immunofluorescence assays positive for Hantaan 
virus (HTNV), a closely related orthohantavirus in 
rats, was the only indication that SEOV probably 
was in Africa. Unfortunately, these serologic analy-
ses were mainly based on cross-reactivity with bet-
ter documented hantaviruses from Eurasia within 
the Murinae-associated hantavirus virus genera  
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Seoul orthohantavirus (SEOV) is not considered a major 
public health threat on the continent of Africa. However, 
Africa is exposed to rodentborne SEOV introduction 
events through maritime traffic after exponential growth 
of trade with the rest of the world. Serologic studies have 
already detected hantavirus antibodies in human popu-
lations, and recent investigations have confirmed circu-
lation of hantavirus, including SEOV, in rat populations. 
Thus, SEOV is a possible emerging zoonotic risk in Af-
rica. Moreover, the range of SEOV could rapidly expand, 
and transmission to humans could increase because 
of host switching from the usual brown rat (Rattus nor-
vegicus) species, which is currently invading Africa, to 
the more widely installed black rat (R. rattus) species. 
Because of rapid economic development, environmental 
and climatic changes, and increased international trade, 
strengthened surveillance is urgently needed to prevent 
SEOV dissemination among humans in Africa.
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and did not enable identification of viruses at a finer 
specific level (12). In addition, these analyses usually 
lacked confirmatory assays (13). However, because 
of the high specificity of hantaviruses for their ro-
dent hosts, positive serologic tests in rats could be 
ascribed to cross-reactions with SEOV or SEOV-like 
variants (5), as seen in Senegal (12,13). Of note, older 
serologic studies in Africa, including regions in West 
Africa, have detected antibodies against hantavirus-
es in the human general population and in febrile 
patients with putative hantavirus disease (13–15). 
Detecting putative hantavirus in febrile patients is a 
crucial public health issue in Africa, where fever of 
unknown etiology is very common. However, in the 
absence of differential diagnosis and further labora-
tory confirmation, we cannot be certain of the virus 
involved in these cases. We also cannot consider 
these initial observations exhaustive because of the 
lack of a proper epidemiologic approach and the 
limits of the methods used. Nonetheless, those re-
ports might represent a primordial reflection of the 
health effects that hantavirus zoonoses could have 
in Africa. 

Since 2006, a genus-reactive pan-hantavirus 
PCR has been available to search for new hantavi-
ruses in small mammals (16,17). This PCR led to the 
discovery of the 2 molecularly characterized endem-
ic hantaviruses in mammals in Africa: Sangassou 

virus in the African wood mouse (Hylomyscus simus) 
and Tanganya virus in the Therese’s shrew (Croc-
idura theresae) (13,16,17). Since those discoveries, up 
to 10 indigenous hantaviruses have been identified 
in rodents, shrews, and even bats in Africa, making 
it the continent with the most recent scientific prog-
ress in hantavirus epizootiology and epidemiology 
(10). Recently, 2 studies using the pan-hantavirus 
PCR have molecularly assessed SEOV in rodents 
from southeastern Senegal (18) and southern Be-
nin (19), confirming that SEOV circulates in West 
Africa and could be a cause of hantavirus disease 
in humans (Figure). In both cases, phylogenic 
analyses grouped the retrieved viral sequences 
with SEOV strains from Asia but from 2 different 
genetic lineages (19). Strains from Benin belonged 
to SEOV lineage 7, whereas lineages from Senegal 
belonged to SEOV lineage 3 or 4, depending on the 
genomic segment considered (Figure); this differ-
ence could indicate different introduction events in  
these 2 countries (19).

Role of Seaports and Maritime Traffic in  
Global SEOV Dissemination 
Seaports have already been identified as potential 
entry points for hantavirus-infected brown rats, 
suggesting that brown rat–associated SEOV can be 
readily propagated worldwide through maritime 
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Figure. Seaports in which SEOV was detected in rats, West Africa. Detailed map shows localization of the 2 genetically characterized 
SEOV variants isolated from black rats (Rattus rattus) (18) and brown rats (R. norvegicus) (19). Red arrows indicate potential 
transmission between the rat species. Red question marks indicate current unknown SEOV infection status in the considered rat 
species. Inset shows the areas of interest on the continent of Africa. SEOV, Seoul orthohantavirus.
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transportation systems (20–22). In Japan, during 
the 1960s, brown rats captured in the Tokyo seaport 
area were shown to have a higher seroprevalence for 
an HTNV-like agent (5). Since then, hantavirus has 
been detected in rats in other port areas in Asia, in-
cluding China (21,23), and in Taiwan, where hanta-
virus antibody prevalence was much higher (20%) 
in rodents trapped in international seaports than in 
rural regions (≈5%), thus suggesting that hantavirus 
in Taiwan mainly originated from sea transportation 
(24). The role of seaports as the source of hantavirus 
was further supported by an inverse correlation be-
tween the seropositive rate of reservoir host species 
and the distance of small mammal sampling sites to 
the seaport (21). Of note, SEOV seroprevalence in 
brown rats from small islands closed to Taiwan was 
similar to that retrieved in seaports in Taiwan, and 
the SEOV lineage identified was genetically closely 
related to SEOV strains from Taiwan. In addition, 
since 1949, the only channels to trade or travel with 
those islands has been by boat or airplane to and 
from Taiwan, pointing again toward the critical 
role of ship-mediated transportation of rats (rats are 
more likely transported by boat) in disseminating 
SEOV in this region (24).

From this perspective, Africa is particularly ex-
posed to future introduction events of rodentborne 
pathogens through maritime traffic due to the 
exponential increase of trade with the other con-
tinents. Increased maritime traffic potentially in-
creases opportunities for ratborne pathogens, par-
ticularly SEOV, to expand their geographic range 
(18). Although one third of countries on the con-
tinent are landlocked, maritime trade constitutes 
Africa’s main gateway to international trade with 
the global marketplace (25). Therefore, seaports in 
Africa can constitute a gateway for allochthonous 
rodentborne pathogens, notably from Europe and 
the Americas, the main regions with trading part-
ners, but also from Asia, from which trade has been 
continuously increasing (26). Several rat species are 
well-known commensals to humans, among which 
brown rats live in close association with human 
infrastructure in many countries (11). This associa-
tion could translate into the omnipresence of po-
tential SEOV-carrying brown rats in human-made 
environments in Africa (5). In addition, brown rats 
can be numerous in seaports located within coastal 
cities (27,28), which provides opportunities for lo-
cal SEOV infection among rats and port workers. 
Indeed, higher SEOV seroprevalence has been re-
ported in workers in areas where seropositive ur-
ban rats were detected (29).

Ratborne Hantavirus Transportation and 
Spread Via Maritime Traffic
Ratborne hantavirus dissemination through mari-
time traffic is not a new phenomenon and prob-
ably has been occurring since human navigation 
for migration and trade, involuntarily transporting 
rodents aboard vessels (22). In Madagascar, molec-
ular evidence showed circulation of the variant An-
jozorobe virus (ANJZV), belonging to the Thailand 
hantavirus (THAIV) species, in black rats (R. rattus) 
and in the indigenous Major’s tufted-tailed rat (Eli-
urus majori) (30). THAIV is phylogenetically close 
to but distinct from SEOV, but the 2 viruses share a 
recent common ancestor (31). THAIV is associated 
with the greater bandicoot rat (Bandicota indica) in 
Thailand (31). In addition, THAIV strains Serang 
and Jurong have been found circulating in Asian 
house rats (R. tanezumi) in Indonesia and Singapore 
and in Cambodia in R. rattus rats (32). Detection 
of the ANJZV variant in Madagascar, far from its 
most probable areas of origin in South and South-
east Asia, is likely the result of black rat importa-
tion into Madagascar through the Arabian Penin-
sula 2,000–3,000 years ago, when humans colonized 
the island during a period of vast trading activity 
in the Indian Ocean (30,33). Serologic indication of 
hantavirus circulation in humans also was recently 
demonstrated in a large national population-based 
study in Madagascar (34), confirming previous 
observations (35). In another study conducted on 
nearby Mayotte Island, a novel hantavirus, Mayo-
tte virus (MAYOV), which clustered within the 
THAIV clade, was detected in 18% (29/160) of cap-
tured black rats (36). That finding also points to 
ship-transported virus by black rats from Southeast 
Asia via the Middle East during trade from Arabia 
thousands of years ago (30,36).

No available studies describe similar putative 
human-mediated scenarios for the introduction and 
spread of hantaviruses within continental Africa. 
However, SEOV was recently detected in invasive 
rats in Senegal and Benin (18,19), suggesting that 
human-mediated introductions have likely occurred.

Cross-Transmission from Brown Rats  
to Other Rodent Species
Although a strong virus–reservoir host specificity is 
globally accepted for hantaviruses, evidence of in-
terspecies spillover among wild rodents exists, chal-
lenging the strict rodent–hantavirus coevolution and 
giving rise to fears of potential rodent host spectrum 
expansion (37). In Madagascar, the indigenous Ma-
jor’s tufted-tailed rat was found to be infected by the  

22	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 1, January 2023w	



Role of Seaports and Rats in Seoul Hantavirus 

ANJZV variant, pointing toward a spillover event 
among rodents from the Muroidea superfamily (30). In 
the same manner, spillover infection is the suspected 
cause of MAYOV and ANJZV acquisition by R. rattus 
rats from other hantavirus rodent reservoirs in South-
east Asia, such as B. indica for THAIV in Thailand and 
R. tanezumi for Jurong and Serang variants in Indo-
nesia (36). Another study also showed that, although 
hantaviruses have preferred host species, spillover 
events can occur between black rats and domestic mice 
(Mus musculus) (38). Natural reassortment has already 
been documented for SEOV in brown rats and another 
hantavirus hosted by the striped field mouse (Apode-
mus agrarius) in Asia (39). Furthermore, the unambigu-
ous detection of SEOV, both molecularly and serologi-
cally, in black rats from Senegal (18) shows that SEOV 
is not restricted to brown rats in Africa and can po-
tentially jump to allied rat species via infected brown 
rats imported by ship (Figure). This hypothesis has not 
yet been investigated, but it could have major conse-
quences for SEOV ecology and epidemiology on the 
continent. Indeed, the brown rat is currently expand-
ing its range across the continent (40), which, by itself, 
might fuel SEOV dissemination in Africa. Even more, 
SEOV transmission and circulation in black rats could 
enhance geographic expansion because the R. rattus 
rat species was probably introduced centuries ago (41), 
is already widespread across the continent (40), and 
is still propagating because of its substantial invasive 
ability (42,43). When not dominated by other species, 
black rats are quite numerous in cities and live in close 
proximity to humans, including within households, 
especially in socioeconomically and environmentally 
degraded settlements where rat-to-human zoonotic 
spillover is possible (G. Dobigny et al., unpub. data, 
https://doi.org/10.5281/zenodo.6444777). Thus, if R. 
rattus rats are found to be a regular SEOV reservoir, the 
risk associated with this pathogenic but poorly docu-
mented virus in Africa could be even higher than is 
currently thought.

Discussion
Because of rapid economic development, environ-
mental and climatic changes, and increased inter-
national trade, Africa urgently needs strengthened 
surveillance and timely rodent elimination in seaport 
areas, where rats can be numerous, to prevent trans-
mission of rat-associated pathogens and potential 
disease outbreaks in humans (22,44). This strategy 
also represents an efficient way to limit the risk that 
newly introduced rodentborne viruses might dis-
seminate further across the continent from seaports. 
To delineate the eco-epidemiology of hantaviruses 

and their associated risks in Africa, surveillance of 
viral genetic variability would provide valuable in-
sights into pathogen transmission dynamics among 
animal reservoirs and the associated disease when 
human infection occurs. Low intrinsic genetic vari-
ability might reflect limited viral evolution and sug-
gest recent colonization events from infected rats ar-
riving via ships from a common source (20,36). This 
type of surveillance requires tools available on-site to 
amplify and characterize viral nucleic acid sequences 
from hantavirus-infected rodents or patients to un-
equivocally identify particular variants of SEOV or 
other hantaviruses, which is not possible with avail-
able serologic tests (45).

Surveillance in Africa should initially be directed 
to seaports and seaport workers, which represent the 
front lines for contamination by newly introduced 
viruses. However, surveillance is also needed inland 
because of passive dissemination of the rodent hosts 
(22,46), especially if SEOV has already jumped to 
more widely distributed rodent species. Urban envi-
ronments might further increase the risk for disease 
emergence because of close daily contact between hu-
mans and rodents, especially rats (47; G. Dobigny et 
al., unpub. data). 

No effective approved hantavirus diseases treat-
ment is available, and whole-virus inactivated vac-
cines are only licensed for use in South Korea and 
China but have uncertain protective efficacies (48). In 
addition, only supportive care is available to patients 
with Seoul virus disease (9). Follow-up for rodent 
biologic invasion, particularly in seaports, is explic-
itly recommended by the World Health Organiza-
tion International Health Regulations (2005) (49) and 
is critical for preventing future zoonotic emergence. 
Thus, seaports could play a role as sentinels of larger 
surveillance networks.

Conclusions
Because of associated risk for animal-to-human spill-
over of SEOV (3), prevention, detection, and health-
care personnel awareness of this often-misdiagnosed 
infection remain critical on the continent of Africa. 
Control of rats would require more effective and com-
prehensive collaboration between local authorities and 
the academic and research communities. This type of 
collaboration fits well with the World Health Orga-
nization 13th General Program of Work (49). Reduc-
ing the reservoir population by using a targeted pest 
management plan in areas where rodents are highly 
abundant and in frequent contact with humans could 
enable mitigation of rodent-related issues and the risk 
for human disease (K.R. Blasdell et al., unpub. data,  
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https://doi.org/10.1101/2021.03.18.436089). Howev-
er, eradication of rat populations in areas of the most 
concern likely constitutes a more ambitious and un-
attainable goal and can paradoxically have contrary 
effects (50). Thus, a surveillance rather than riposte-
based strategy, combined with medical staff training 
and implementation of on-site diagnostic methods 
(13), could reduce SEOV outbreak risk among humans 
in Africa.
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