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Abstract

The main goal of this work was to investigate the impact of impaired mastication on nutrient bioaccessibility of gluten-free bread in the elderly. 

In vitro boluses were produced with the AM2 masticator by using two types of programming: normal mastication (NM) and deficient mastication 

(DM). Static in vitro gastrointestinal digestion was performed with the digestive physiology conditions of the elderly. Subsequently, the 

granulometric properties of the in vitro boluses produced, their starch and protein digestibility, and lipid peroxidation after in vitro oral and 

gastrointestinal digestion were evaluated. DM boluses presented higher proportions of large particles, resulting in insufficiently fragmented boluses. 

A delay in oral starch digestion was observed in DM boluses, probably due to the presence of larger particles that limited the bolus-saliva exchanges. 

Furthermore, DM boluses exhibited a lower degree of protein hydrolysis at the end of gastric digestion, whereas no differences were observed for 

protein hydrolysis, sugar release, and lipid peroxidation at the end of digestion (intestinal phase). The results of this study show that impaired 
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mastication somewhat delays the nutrient bioaccessibility of the gluten-free bread tested. Such understanding of the effect of oral decline on the 

nutrient bioaccessibility of foods is crucial when designing food commodities with enhanced functionalities for the elderly.

Keywords: ageing; gluten-free bread; in vitro mastication; starch; protein; in vitro digestion
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1. Introduction

Increasing life expectancy and decreasing mortality have led to a society in which elderly people constitute an important segment of the 

worldwide population. In 2019, the number of people over 60 years old was 1 billion and this is estimated to increase to 1.4 billion by 2030 and 

2.1 billion by 2050 (World Health Organization, 2022). Ageing is a natural process characterised by different changes that alter the functioning 

and balance of the human body, oral health being highly relevant since it can affect mastication, food bolus formation, and swallowing (Peyron et 

al., 2018). These deficiencies are often caused by ageing factors such as dental loss and oral function impairments, including decline in the 

masticatory muscle mass, consecutive bite force, jaw reflexes, and reduced salivation and xerostomia (Gaszynska et al., 2017; Müller et al., 2007; 

Steele et al., 2000). In elderly populations, the swallowable boluses produced are often defined by the presence of greater proportions of large 

particles, higher hardness, and a lower degree of structural breakdown, which could alter the oral release of nutrients and their bioaccessibility 

(Peyron et al., 2018; Peyron et al., 2021). Consequently, feeding this population properly is one of the most important challenges for achieving 

wellness in the elderly.

In recent years, commercial gluten-free products have attracted interest in both academia and the food industry due to the increasing number of 

gluten-related disorders detected (Henggeler et al., 2017; Sapone et al., 2012). These disorders have traditionally been recognised in children and 

young adults, but are often underdiagnosed in the elderly and an increasing frequency has been reported in the over-60s (Cappello et al., 2016; 
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Holt, 2003; Rashtak & Murray, 2009). Unfortunately, the only currently available and useful treatment for these people is a strict lifelong gluten-

free diet (Ludvigsson & Murray, 2019). 

Gluten is formed from glutenin and gliadin in the presence of water during kneading. It is responsible for the gas holding ability of dough during 

fermentation, its elasticity, resistance to extension, and extensibility (Hu et al., 2021). In baking, the removal of gluten-like proteins increases the 

relevance of starch in providing structure and texture to gluten-free products (Horstmann et al., 2017). These products are mainly composed of 

carbohydrates (38.0-58.0%), protein (1.6-8.6%), lipids (2.0-8.0%), and dietary fibre (2.0-10.4%) (Romão et al., 2020). Starch is the primary source 

of stored energy in plants, including cereals, legumes, tubers, and roots, and it is considered the main source of digestible carbohydrates in the 

human diet (Gropper & Smith, 2013). In bread and in gluten-free bread, the digestion of starch begins in the oral cavity owing to the action of the 

salivary α-amylase and continues to early gastric digestion (Freitas et al., 2019; Hoebler et al., 1998; Pentikäinen et al., 2014). Furthermore, 

pancreatic α-amylase and brush border enzymes conclude starch hydrolysis in the small intestine, where glucose is absorbed (Gropper & Smith, 

2013). The digestion of proteins, such as whey protein, egg protein, and soybean protein among others, starts in the stomach and it is completed in 

the small intestine due to the action of proteases and peptidases (Gropper & Smith, 2013). Lipids are mostly digested in the small intestine by the 

emulsification of pancreatic lipase and bile (Carey et al., 1983), which is especially important since their peroxidation and production of lipid 

oxidation products could take place during digestion (Aksoy et al., 2022). Nevertheless, it is important to highlight that gastrointestinal functions 

also decline with age (Shani-Levi et al., 2017), the reduction of pepsin levels and achlorhydria and lack of gastric acid secretion in the stomach 

being the most typical age-related gut disorders (Wang et al., 2022). This outcome together with the presence of insufficiently fragmented food 
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boluses probably impacts on the oral release and bioaccessibility of nutrients (Peyron et al., 2018; Peyron et al., 2021). In this sense, some studies 

suggest that insufficiently fragmented food boluses, resulting from impaired mastication, alter the initiation of oral starch digestion in pasta products 

and affect digestive gastric events in the elderly by delaying the kinetics of lipids, protein, and peptide release in meat products (Blanquet-Diot et 

al., 2021; Peyron et al., 2021). Nonetheless, the effect of a deficient masticatory performance on the oral and gastrointestinal nutrient 

bioaccessibility of gluten-free bread has not yet been investigated. In this sense, the absence of gluten could increase starch digestibility due to the 

elimination of the gluten protein network, thus favouring the access of α-amylase to starch granules. Berti et al. (2004) observed higher glycaemic 

responses when evaluating the starch digestibility of gluten-free products; however, the fact that the oral transformation of food was not considered 

in the study could explain the contradictory results reported.

Therefore, the purpose of this work was to evaluate the impact of a deficient masticatory performance on the oral and gastrointestinal nutrient 

bioaccessibility of gluten-free bread in the elderly. To this end, the digestive physiology of the elderly was simulated to determine the impact of 

impaired mastication on the starch and protein digestibility and lipid peroxidation of gluten-free bread after in vitro oral and gastrointestinal 

digestion. Fourier-transform infrared (FT-IR) microspectroscopy was also employed to evaluate the effects of mastication on oral starch digestion. 

2. Materials and Methods

2.1 Materials and reagents
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The gluten-free bread (Dr. Schär AG/SPA, Burgstall, Italy) used in this study was bought in a local supermarket (Clermont-Ferrand, France). 

Table 1 presents the nutritional composition (g/100 g) and formulation of the gluten-free bread tested. The following enzymes were used to study 

static in vitro oral and gastrointestinal digestion: salivary α-amylase from human saliva (ref: A1031-5KU), pepsin from gastric porcine mucosa 

(ref: P6887-10g), lipase A from Aspergillus niger (ref: 534781-10g), pancreatin from porcine pancreas (ref: P7545-100g), and porcine bile extract 

(ref: B8631-100g). Analytical grade salts (potassium dihydrogen phosphate, potassium chloride, sodium chloride, sodium bicarbonate, ammonium 

carbonate, magnesium chloride hexahydrate, and calcium chloride dihydrate) were also employed.  For analytical measurements, sodium 

hydroxide, boric acid, hydrochloric acid (37%), sulphuric acid (95–97%), trichloroacetic acid, phosphotungstic acid, L-methionine, DL-

dithiothreitol solution 1 M, o-phthaldialdehyde, sodium tetraborate, sodium dodecyl sulphate, butylated hydroxytoluene (BHT), malondialdehyde 

(MDA), 1,1,3,3-tetraethoxypropane, and 2-thiobarbituric acid were employed. All these reagents were supplied by Sigma-Aldrich Co. (St. Louis, 

MO, USA). 

Enzymatic kits (Maltose/Sucrose/D-glucose K-MASUG and Digestible Starch and Resistant Starch K-DSTRS) were purchased from Megazyme® 

(Bray, Ireland).

2.2 Masticatory experiments

The AM2 masticator was used to perform the in vitro masticatory experiments. This device was designed and validated to produce in vitro food 

boluses with granulometric characteristics resembling to those noted in in vivo food boluses (Peyron et al., 2018; Peyron et al., 2021). AM2 
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masticator programming was based on prior in vivo trials to achieve the dynamic parameters of the masticatory sequence. This was confirmed by 

the superimposition of in vivo and in vitro particle size distribution curves of both gluten-free bread boluses. In vivo boluses were produced by 10 

young subjects with good oral health, while in vitro boluses were prepared with the AM2 masticator using normal mastication programming (NM) 

or deficient mastication programming (DM). To this end, 2.5 g of bread, 1.6 mL of tap water, 21 masticatory cycles, and a spring stiffness of 10.38 

N/mm were used to programme the AM2 masticator. The DM boluses were prepared by leaving a 4 mm space between the masticator jaws at 

closing, thus allowing, particles to escape compression and fragmentation. As previously indicated, tap water was added to the AM2 masticator 

chamber with the aim of mimicking mouth coating and avoiding uncontrolled oral digestion by salivary α-amylase during the masticatory sequence 

and bolus collection; nevertheless, saliva was subsequently employed (see section 2.4). After each masticatory sequence, in vitro gluten-free bread 

boluses were recovered and analysed granulometrically. Finally, the in vitro boluses prepared to determine nutrient bioaccessibility after in vitro 

oral and gastrointestinal digestion were kept at - 80 °C until analysed. 

2.3 Granulometric assays of in vivo and in vitro food boluses 

Granulometric analyses of the in vivo and in vitro gluten-free bread boluses were conducted with a mechanical dry sieving shaker for 3 min at 

a vibratory amplitude of 1.7 mm (Retsch Gmbh, AS 200-digit CA, Düsseldorf, Germany). For that, the recovered gluten-free bread boluses were 

placed on a nylon cloth of 0.3 mm (Sefar, Switzerland) and rinsed with tap water to spread the particles out, as well as to eliminate saliva in the 

case of in vivo gluten-free bread boluses.  A ventilated oven was used to dry the boluses for 30 min at 37 ºC and the dried particles were then 
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mechanically sieved by employing 10 sieves with apertures of 7.1, 6.3, 4.0, 2.5, 2.0, 1.4, 1.0, 0.8, 0.4, and <0.4 mm (Saulas, France). Subsequently, 

the particles retained on each sieve were weighed and the results were expressed as the cumulative weight curve of particles passing through each 

specific sieve. Lastly, the median particle size (d50) from each curve was reported, which was graphically extracted from each individual curve. It 

is defined as the aperture of a theoretical sieve through which 50% of the gluten-free bread bolus particles’ could pass (Peyron et al., 2018). The 

tests were conducted on each gluten-free bread bolus collected after conducting the in vivo and in vitro masticatory assays (10 in vivo boluses, 10 

in vitro NM boluses, and 10 in vitro DM boluses). 

2.4 In vitro oral and gastrointestinal digestion

In vitro oral and gastrointestinal digestion of gluten-free bread was performed according to the standardised static INFOGEST protocol 

(Brodkorb et al., 2019; Minekus et al., 2014), with minor modifications to mimic the digestive physiology of the elderly (Denis et al., 2016; Duval 

et al., 2020). A shaking incubator chamber (NB-205 L, Kisker Biotech GmbH & Co. KG, Steinfurt, Germany) at 180 rpm and at 37 ºC was used. 

To mimic the oral phase (pH 7), simulated salivary fluid and α-amylase enzyme (75 U/mL) were mixed with the in vitro NM and DM boluses in a 

ratio 1:1 (v/w) for 30 sec. In the gastric phase, simulated gastric fluid, pepsin (1200 U/mL), and gastric lipase (12 U/mL) were blended with each 

oral phase (1:1, v/v) for 120 min, after adjusting the pH to 3.54 with HCl (6 M). Upon completion of the gastric phase, 1 mL from each tube was 

withdrawn and mixed with 1 µL of NaOH (40 M) to block the enzymatic reaction. In the intestinal phase, subsequent to pH adjustment to 7 with 

NaOH (1 M), simulated intestinal fluid, pancreatin suspension (66.3 U/mL trypsin activity), and bile solution (6.7 mM) were mixed with the gastric 
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chyme (1:1, v/v) for 120 min. Ten µL of Pefabloc® (500 mM) per mL of digesta was added to inhibit the proteolysis of samples, which were 

immediately kept at -80 ºC until analysed. Blank samples (without gluten-free bread but with the different simulated fluids, all enzymes, and bile) 

and undigested samples (gluten-free bread with the different simulated fluids) were also prepared. In vitro oral and gastrointestinal digestion tests 

were performed in triplicate.

2.5 Analysis of starch digestion products

2.5.1 In vitro starch digestibility

The in vitro starch digestibility of the different gluten-free bread boluses, which were collected after mimicking in vitro oral digestion, was 

determined according to the manufacturer’s instructions (Megazyme® K-DSTRS kit). After in vitro oral digestion of NM and DM boluses (section 

2.4), α-amylase activity was promptly inhibited by setting the pH to 3 with HCl (6 M). Subsequently, each sample was centrifuged (4000 g, 10 

min, 4 °C), the pellets were recovered, and the supernatants were stored at -80 ºC for further analysis. Then, 0.5 g of each pellet was incubated at 

37 °C with amyloglucosidase (17 KU/g) and pancreatic α-amylase (40 KU/g) and different aliquots were withdrawn at 20 min, 120 min, and 240 

min to determine rapidly digestible starch (RDS), slowly digestible starch (SDS), and total digestible starch (TDS), respectively. The residual starch 

after 240 min of digestion, described as resistant starch (RS), was also estimated. For this purpose, samples were dissolved in NaOH (1.7 M) and 

digested by employing amyloglucosidase (3300 U/mL). Finally, the glucose oxidase/peroxidase (GOPOD) reagent was used to estimate the release 
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of glucose at 510 nm with a Multiskan™ Spectrum Microplate Spectrophotometer (Thermo Fisher Scientific, Waltham, MA USA). Results were 

expressed in percentage (%) and all measurements were run in triplicate. 

2.5.2 FT-IR microspectroscopy analysis

FT-IR microspectroscopy analyses were employed to determine starch-related variations in the boluses at the end of in vitro oral digestion. For 

that, the in vitro gluten-free bread boluses collected after simulating in vitro oral digestion (pellet; section 2.5.1) were cryofixed in isopentane, 

which was chilled with liquid nitrogen (-196 °C), and stored at -80 ºC until analysed. Serial sections of 6 µm of the in vitro NM and DM boluses, 

which were cut with a cryomicrotome (Leica CM 1950, Leica Biosystems, Nussloch, Germany), were collected on a barium fluoride window and 

kept at – 20 ºC until further analysis. A FT-IR microscope (Thermo Scientific, Nicolet iN10) scanning over a wavelength range from 4000 cm−1 to 

675 cm−1, with a spectral resolution of 4 cm−1 and an aperture size of 30 µm x 30 µm, was employed to acquire the IR spectra.  Each spectrum was 

the result of 64 accumulated scans and the cumulative spectra were averaged and subtracted from a background spectrum obtained at the beginning 

of the scan by compiling 128 scans (Renaud et al., 2022).

2.5.3 Determination of sugar content

Maltose and D-glucose analyses were performed according to the provider (Megazyme® K-MASUG kit), with minor modifications. The 

supernatants recovered after simulating the in vitro oral digestion of both in vitro gluten-free bread boluses (section 2.5.1), as well as the centrifuged 

https://www.sciencedirect.com/topics/chemistry/ir-spectrum
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aliquots (4000 g, 10 min, 4 °C) obtained at the end of the gastric and intestinal digestion, were utilised to estimate the amounts of sugar released 

during in vitro oral and gastrointestinal digestion. The quantity of nicotinamide-adenine dinucleotide phosphate (NADPH) developed in the 

presence of the enzyme glucose-6-phosphate dehydrogenase was determined at 340 nm by using a Multiskan™ Spectrum Microplate 

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA USA). The results were expressed in g/L and determinations were performed in 

triplicate.

2.6 Analysis of protein digestion products

2.6.1 Determination of nitrogen fractions 

Total nitrogen content of in vitro gluten-free bread boluses and digesta was determined with a micro-Kjeldahl (VELP Scientifica Srl, Usmate, 

Italy). In the case of digesta, the trichloroacetic acid-soluble nitrogen fraction was measured accounting for all peptides and free amino acids. This 

fraction was estimated by mixing 3.3 mL of trichloroacetic acid (48%, w/v) with 10 mL of digesta. The mixture was maintained for 30 min at 20 

ºC, centrifuged (4000 g, 20 min, 20 °C), and the supernatant was recovered. Moreover, the phosphotungstic acid-soluble nitrogen fraction was 

analysed to account for small peptides and free amino acids. It was estimated by mixing 4.9 mL of sulphuric acid (3.95 M) and 2.1 mL of 

phosphotungstic acid (33.3%, w/v) with 7 mL of digesta. This mixture was kept at 4 °C overnight and then centrifuged (4000 g, 20 min, 20 °C). 

Aliquots of 5 mL from both centrifuged extracts were determined by using the micro-Kjeldahl. Big peptides, expressed as the difference between 

all peptides and free amino acid content and small peptides and free amino acid content, were also reported. Additionally, non-digested nitrogen, 
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which is defined as the difference between total nitrogen content and all peptides and free amino acid content, was recorded. Data were expressed 

in g/100 g and a nitrogen-to-protein conversion factor of 5.53 was utilised (Tkachuk, 1969). All determinations were done in triplicate. 

2.6.2 Determination of the protein degree of hydrolysis

The free amino groups of the digested, undigested, and blank samples were determined by using the OPA (o-phthalaldehyde) method (Nielsen 

et al., 2001). The free amino groups were quantified with a L-methionine standard curve from 0 mM to 2 mM. Prior to analysis, all samples were 

centrifuged (4000 g, 10 min, 4 °C) and, afterwards, 50 μL of each sample was mixed with 100 μL of the OPA reagent, which was composed of 

sodium dodecyl sulphate (20%, w/v), DL-dithiothreitol solution (1 M), OPA solution in ethanol (10 mg/mL), and sodium tetraborate (20 mM). The 

blend was incubated at 20 °C for 40 min and absorbance was measured at 340 nm by means of a Multiskan™ Spectrum Microplate 

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA USA). The tests were run in triplicate. 

The degree of protein hydrolysis (DH), corresponding to the proportion of cleaved peptide bonds within samples (Halabi et al., 2020), was 

calculated using Eq. (1). 

                             (1)DH (%) =  
[NH2 digested samples] ―  [NH2 undigested samples] ― [NH2 blank]

[NH2 digested samples]  x 100
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where [NH2 digested samples] represents the free amino group content in the samples upon completion of the gastric and intestinal phases (mg/L), 

[NH2 undigested samples] represents the free amino group content in undigested samples, and [NH2 blank] represents the free amino group content 

in the digestion blank.

2.7 Lipid oxidation analysis

The thiobarbituric acid reactive substances (TBARS) assay was used to measure lipid degradation related to oxidation, a marker of oxidative 

stress, of the gluten-free bread boluses at the end of in vitro oral and gastrointestinal digestion (gastric and intestinal phases). In the case of boluses, 

1 g of sample was mixed with 10 mL of KCl-BHT buffer (0.15 M-0.1 mM), centrifuged (13000 g, 10 min, 20 ºC), and the supernatant was collected. 

Afterwards, 200 µL of the supernatant or centrifuged digesta samples (4000 g, 10 min, 4 °C) was mixed with 600 µL of an aqueous solution of 2-

thiobarbituric acid (0.07 M), kept at 95 °C for 60 min in a water-bath, and subsequently cooled for 10 min in an ice-bath. Lipid degradation related 

to oxidation was quantified by using a 1,1,3,3-tetraethoxypropane standard curve from 0 µM to 120 µM. Absorbance was measured at 532 nm with 

a Multiskan™ Spectrum Microplate Spectrophotometer (Thermo Fisher Scientific, Waltham, MA USA) and the tests were run in triplicate. The 

major product stemming from the oxidation chain reaction is the toxic MDA. Thus, results were expressed in µg eq MDA/g (boluses) and µg eq 

MDA/mL (digesta).

2.8 Statistical analysis
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Data were statistically treated by XLSTAT 2020.3.1 software (XLSTAT statistical and data analysis solution, Addinsoft, New York, USA) and 

presented as mean ± standard deviation (SD). Student’s t-test, followed by a Fisher's F-test, was employed to evaluate the differences between 

samples in starch digestibility, protein digestibility, and lipid peroxidation. A one-way repeated measures ANOVA test, followed by the Tukey-

Kramer post-hoc test, was performed to evaluate the differences between particle size distribution of in vivo and in vitro boluses, as well as NM 

and DM boluses. Statistical significance was considered for p < 0.05.

3. Results 

3.1 Programming of the AM2 masticator

The granulometric characteristics of the in vivo and in vitro gluten-free bread boluses are shown in Figure 1. Non-significant differences (p > 

0.05) were observed between the particles size distribution curves of the in vivo boluses and in vitro NM boluses produced with the AM2 masticator 

(Figure 1 A), which confirms the correct programming of the device. Additionally, non-significant differences (p > 0.05) were observed for the 

median particle size (d50) values of the in vivo boluses (4.34 ± 0.43 mm) and in vitro NM boluses (4.32 ± 0.30 mm). 

Regarding the deficient mastication programming, significant differences (p < 0.001) were noted between the particle size distribution curves 

of both in vitro NM and DM boluses (Figure 1 B). As can be seen, the DM boluses presented greater proportions of large particles and the 

cumulative weight did not reach 100% owing to the presence of particles larger than the largest sieve aperture. Finally, an increase in the d50 values 
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of DM boluses (5.72 ± 0.30 mm) in comparison with NM boluses (4.32 ± 0.30 mm) was observed, which can be attributed to the formation of 

poorly fragmented food boluses as a consequence of impaired mastication.  

3.2 Analysis of starch digestion products

Table 2 summarises the starch digestibility data of both gluten-free bread boluses analysed after mimicking in vitro oral digestion. Concerning 

the starch digestibility products, non-significant (p > 0.05) differences were noted between in vitro NM and DM boluses when determined by 

enzymatic analysis. For instance, the rapidly digestible starch (RDS) content of in vitro gluten-free bread boluses ranged from 5.7 ± 0.6% to 6.9 ± 

0.6%, the slowly digestible starch (SDS) values was ranged between 3.8 ± 0.4% and 4.2 ± 0.5%, and the total digestible starch (TDS) content 

ranged from 12.3 ± 1.2% to 12.6 ± 1.5%; whereas the resistant starch (RS) content was lower than 1.5% and the total starch content (TS) was 

greater than 13.0 %. In contrast, starch-related variations between in vitro NM and DM boluses were observed when analysed by FT-IR 

microspectroscopy. This technique is recognised as a non-invasive and valuable tool for the examination of bread composition and for monitoring 

structural changes (Kong & Yu, 2007; Ozkoc et al., 2009). Figure 2 A shows the normalised spectra of the in vitro gluten-free bread boluses in the 

carbohydrate region after mimicking in vitro oral digestion, as well as the FT-IR images for carbohydrates. The carbohydrate region (1200-900 

cm-1) was selected for more detailed analysis of the starch digestibility of gluten-free bread boluses. The FT-IR spectrum of the in vitro gluten-free 

bread boluses presented a strong tensile vibration of C–O in the saccharide structure (1023 cm-1), which was greater in DM boluses (Figure 2 A). 

Furthermore, Figure 2B presents the FT-IR images for carbohydrates at 1023 cm-1. The colour bar indicates the carbohydrate intensity in which 
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red represents high relative absorption intensity and blue represents low intensity. As can be seen, the greenness in the IR microspectroscopy 

images is more marked in DM boluses than in NM boluses after simulating in vitro oral digestion. This could be explained by a weaker initiation 

of oral starch digestion, probably due to the presence of higher particle sizes that could diminish the food-saliva exchanges and amylase penetration. 

When interacting with starch, salivary α-amylase uses a multiple attack mechanism resulting in the production of a series of branched 

oligosaccharides, as well as sugar molecules, including maltose and D-glucose. Table 2 shows the maltose and D-glucose contents present in the 

liquid phase of both gluten-free bread boluses after mimicking in vitro oral and gastrointestinal digestion. Upon completion of in vitro oral digestion, 

non-significant differences (p > 0.05) were observed between in vitro gluten-free bread boluses regarding the maltose (> 11.0 g/L) and D-glucose 

(> 7.0 g/L) contents. At the end of the gastric phase, the maltose content was lower than 1.5 g/L whereas the D-glucose content was slightly higher 

(ca. 2.2 g/L). Conversely, the maltose and D-glucose contents increased at the end of the intestinal phase. In this phase, the maltose content was 

greater than 8.0 g/L, while lower values of D-glucose were detected (> 5.0 g/L). These data may be explained by the pancreatic α-amylase activity, 

which promotes the amylolytic procedure, thus favouring the hydrolysis of starch into maltose and D-glucose. 

3.3 Analysis of protein digestion products

Figure 3 presents the total protein content and the nitrogen fractions of the different samples at the end of in vitro oral and gastrointestinal 

digestion (intestinal phase). Non-significant differences (p > 0.05) were noted between samples in total protein content and nitrogen fractions. The 

total protein content of the in vitro gluten-free bread boluses at the end of in vitro oral digestion was close to 2.90 g/100 g, whereas the total protein 
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content of NM and DM samples was close to 0.35 g/100 g upon completion of the intestinal phase (Figure 3 A-B). In addition, all peptides and 

free amino acid content of the NM and DM samples were higher than 0.01 g/100 g at the end of in vitro gastrointestinal digestion. Regarding the 

big peptides content, the values of both samples were close to 0.12 g/100 g, while the small peptides and free amino acid fraction was 0.02 ± 0.00 

g/100 g and 0.03 ± 0.01 g/100 g for NM and DM samples, respectively (Figure 3 D-E). Finally, the non-digested nitrogen content was slightly 

greater than 0.20 g/100 g, regardless of the sample tested. 

The degree of protein hydrolysis (DH, %) of NM and DM samples at the end of each stage of in vitro gastrointestinal digestion is shown in 

Figure 4. In relation to the gastric phase, significant differences (p < 0.05) were observed between the NM and DM samples, the DH being lower 

in the case of DM sample, probably due to its poor fragmentation (Figure 4 A). Higher particle sizes minimise protein surface exposure, thus 

reducing enzyme accessibility to cleavage sites. Moreover, non-significant differences (p > 0.05) were detected at the end of the intestinal phase 

between samples, with a DH higher than 91% in both cases.

3.4 Lipid oxidation analysis

Figure 5 shows the TBARS results of the different samples after simulating in vitro oral and gastrointestinal digestion (gastric and intestinal 

phases). Non-significant differences (p > 0.05) were noted between samples after mimicking oral digestion, with values of 3.3 ± 0.3 µg eq MDA/g 

and 3.7 ± 0.5 µg eq MDA/g for NM and DM boluses, respectively. Moreover, these values significantly decreased (p < 0.05) at the end of the 
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gastric stage and increased later upon completion of the intestinal phase (> 3.8 µg eq MDA/mL). The latter could be explained by oxidative 

processes occurring during digestion.

4. Discussion

The well-being of the elderly is a global concern that includes lifestyle and nutritional issues. Unfortunately, older people may experience 

various changes linked to feeding, chewing, or swallowing owing to anatomical and physiological alterations, which may impact on food intake, 

digestion, and nutrients assimilation. Food digestion is a complex combination of versatile and multiple-scale physicochemical processes that drive 

food consumption, structural breakdown, absorption of nutrients, transportation to related organs, and purging of the remaining waste (Sensoy, 

2021). Digestion begins in the oral cavity and its objective is to form ready-to-swallow boluses owing to the food’s mechanical breakdown and 

lubrication by mastication and saliva incorporation, respectively (Rémond et al., 2015; Peyron et al., 2018). The major age-related changes linked 

to mastication are: i) decline in motor activity of tongue and masticatory muscles; ii) lower bite force and mandibular reflexes; iii) decrease in the 

number of oro-sensory receptors; and iv) decline in saliva secretions (Peyron et al., 2018; Razak et al., 2014). It is important to highlight that 

swallowable food boluses produced by elderly people are frequently characterised by higher proportions of large particles, which can modify the 

bioaccessibility of nutrients (Peyron et al., 2018; Peyron et al., 2021). Additionally, ageing is frequently accompanied by modifications in 

gastrointestinal physiology, such as decreased gastrointestinal motility and reduced levels of gastric acid secretion and digestive enzymes (Mackie 

et al., 2020; Soenen et al., 2016). 
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The present work aimed to determine the effect of impaired mastication on the starch and protein digestibility of gluten-free bread in the elderly. 

To this end, a deficient masticatory performance was mimicked by employing the AM2 masticator, which was designed to produce fractures in 

food matrices similar to those observed in in vivo food boluses (Peyron & Woda, 2016). After simulating the deficient masticatory performance, 

in vitro DM boluses exhibited higher proportions of large particles in comparison with in vitro NM boluses. Poorly fragmented food boluses are 

commonly observed in older people with impaired dental status and oral functions. In this sense, Assad-Bustillos et al. (2019) reported that elderly 

people with poor dental status produced significantly fewer degraded boluses than those with satisfactory dental status, when consuming two 

different soft cereal products. Similarly, Mishellany-Dutour et al. (2007) observed that older people using dentures presented certain difficulties in 

preparing carrot or groundnut boluses with small enough particles, which finally resulted in poorly fragmented food boluses. 

Regarding the starch digestibility of samples, remarkable changes were observed between NM and DM boluses by means of FT-IR 

microspectroscopy analyses. This technique is recognised as a non-invasive and valuable tool for the examination of bread composition and for 

monitoring structural changes (Kong & Yu, 2007; Ozkoc et al., 2009). In this sense, a greater vibrational band corresponding to the C-O vibration 

in the saccharide structure (1023 cm-1) of DM boluses was noted. This could be attributed to a weaker initiation of oral starch digestion as a 

consequence of high particle sizes, lowering the exchanges between the gluten-free bread boluses tested and saliva (Blanquet-Diot et al., 2021). 

This outcome was also observed in different studies where the degree of oral starch digestion increased in boluses presenting lower particle sizes 

(Blanquet-Diot et al., 2021; Bornhorst et al., 2013; Ranawana et al., 2010). It is noteworthy that non-significant differences were detected between 

samples by enzymatic tests. These could be attributed to the lower sensitivity of such tests compared to FT-IR microspectroscopy analysis given 
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that standard errors close to 10% are seen with samples containing > 2% w/w of digestible starch or resistant starch, whereas higher errors (ca. 

50%) are obtained when those contents are < 2% w/w. 

Following with the starch digestion products, it is important to highlight that salivary α-amylase is crucial in the starch hydrolysis of bakery 

products, since it attacks α-1,4 glycosidic bonds leading to a series of branched oligosaccharides and sugar molecules like dextrin, maltose, and 

glucose (Sharma et al., 2020; Zhang et al., 2022). Moreover, some studies report that starch can be hydrolysed during both the gastric and intestinal 

phases (Bustos et al., 2017; Freitas et al., 2018; Freitas & Le Feunteun, 2019). For both samples, the maltose and D-glucose contents observed at 

the end of the gastric phase could be ascribed to the starch hydrolysis occurring as a consequence of salivary α-amylase activity, which continues 

until early gastric digestion (Freitas & Le Feunteun, 2019). This outcome was also reported by Di Cairano et al. (2022) when determining the starch 

hydrolysis of gluten-free biscuits. Nevertheless, higher maltose and D-glucose contents were noted at the end of the intestinal phase owing to the 

action of pancreatic α-amylase, which favours the amylolytic process (Freitas et al., 2018). In this sense, it is well-known that glucose tolerance 

decreases with age due to impaired insulin secretion and action. Hence, the recommendation of gluten-free products in the elderly population 

should be carefully studied since these products could impact on the prevalence or development of cardiovascular diseases such as diabetes (Braun 

et al., 2013; Lau et al., 2015). Labelling foods with the glycaemic index, which is a value assigned to foods based on how quickly and to what 

extend those foods cause increases in blood glucose levels, could help consumers to select starch-based products based on their potential 

physiological effects (Romão et al., 2021; Venter et al., 2003). In this vein, there is evidence that food products with low glycaemic index improve 
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overall blood glucose, reduce body serum lipids, enhance insulin sensitivity, and decrease the risk of diabetes and other cardiovascular diseases 

(Bohn et al., 2018; Brand-Miller et al., 2009). 

In relation to the protein digestibility of samples, the results obtained in this work suggest that poor food fragmentation resulting from a deficient 

masticatory performance is crucial in the kinetics of protein hydrolysis, as observed during gastric digestion. During mastication, the surface area 

of intracellular nutrients exposed to digestive fluids increases, augmenting their accessibility to digestive enzymes and improving overall digestion 

efficiency and gastrointestinal absorption of nutrients (Mandalari et al., 2008; Parada & Aguilera, 2007). Nonetheless, food boluses resulting from 

a deficient mastication and presenting greater proportions of large particles would hamper the access of enzymes to cleavage sites owing to their 

lower protein surface exposure, compared to normal masticated boluses (Paz-Yépez et al., 2019). Thus, the gastric breakdown of gluten-free bread 

boluses is based on the mechanical status in which they reach the stomach (Peyron et al., 2021), altering gastric digestive events by delaying protein 

hydrolysis. Similar results were observed by Peyron et al. (2021) who elucidated that oral impairments in elderly people significantly lower the 

amount of meat peptides available in the gastric compartment. Ranawana et al. (2011) also reported that small particles significantly reduce the 

duration of gastric emptying. Conversely, non-significant differences were observed between NM and DM samples upon completion of the 

intestinal phase, where hydrolysis of macronutrients is concluded. In this sense, a high degree of protein hydrolysis was obtained, which could be 

associated with the lower interaction between proteins and starch in gluten-free breads, making them more accessible to enzymes in the intestinal 

phase (Sahagún et al., 2020). 
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Lastly, the lipid peroxidation of gluten-free bread boluses during gastrointestinal digestion has been determined. Ageing has been linked with a 

decline in the ability to maintain homeostasis and triggers mitochondrial dysfunction, which favours oxidative stress and inflammatory processes 

extending the risk of developing diseases (López-Otín et al., 2013; Pingitore et al., 2015; Van Hecke et al., 2019). Oxidative stress happens when 

there is an imbalance between reactive species and antioxidant defences, resulting in cellular damage (Miranowicz-Dzierzawska, 2018; Poprac et 

al., 2017). The elderly population is more vulnerable to oxidative stress due to a reduction in the endogenous antioxidant system (Dani et al., 2021). 

In this work, lipid peroxidation significantly increased at the end of the intestinal phase probably due to the oxidative process taking place during 

digestion. This outcome was also observed by Ranawana et al. (2016) while investigating the effect of fortification of white breads with freeze-

dried vegetables. Nevertheless, the results reported by these authors are at least 2 times lower than those observed in the present work with the 

gluten-free bread tested. This suggests once again the importance of being careful when recommending gluten-free breads to elderly people owing 

to the reduction in their endogenous antioxidant system (Dani et al., 2021), as mentioned above.  

5. Conclusions

The evaluation of the oral capabilities of older people and of the physical state of swallowable boluses after mastication is essential in designing 

foods for specific populations, since it could affect nutrient release and bioaccessibility. The present work shows that a deficient masticatory 

performance has an impact, albeit slight, on the oral and gastrointestinal nutrient bioaccessibility of the studied gluten-free bread in the elderly. For 

the gluten-free bread tested, the level of food breakdown occurring during mastication delays oral starch digestion and gastric protein hydrolysis. 
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In contrast, it does not significantly affect sugar release and protein hydrolysis at the end of digestion. These results broaden knowledge of food 

oral processing and digestion in elderly people presenting impaired oral abilities, which is a key in formulating novel and adapted products with 

enhanced functionalities. However, further studies should be conducted on a huge variety of baked gluten-free products prior to recommendation 

to older people, since they could impact the prevalence or development of several diseases owing to the possibility of increased blood glucose 

levels and oxidative stress. Additionally, formulation and characteristic of gluten-free bread like texture, volume, or crumb structure should be also 

taken into consideration due to its relevance in starch and protein digestibility and nutrients bioaccessibility.
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Figure captions

Figure 1. Granulometric properties of gluten-free bread boluses: (A) superimposed particle size distribution curves of in vivo and in vitro NM 

boluses that validate the programming of the AM2 masticator, and particle size distribution curves of in vitro DM boluses. Curves express the mean 

cumulative percentages of particle weight passing through each sieve; (B) median particle size values expressed as d50 (mm). The d50 values were 

graphically extracted from each individual curve. Mean values (n=10) ± SD. NM: normal mastication; DM: deficient mastication. ***: p < 0.001.

Figure 2. FT-IR microspectroscopy analysis of starch: (A) example of normalised spectra of NM and DM in vitro boluses in the carbohydrate 

region after simulating in vitro oral digestion and (B) FT-IR images for carbohydrate at 1023 cm-1. The colour bar shows the intensity of 

carbohydrates in which red represents high relative absorption intensity and blue represents low intensity. OP: oral phase; NM: normal mastication; 

DM: deficient mastication. 

Figure 3. (A-B) Total protein content (g/100 g) of in vitro gluten-free bread boluses and intestinal digesta. (C-F) All peptides and free amino acids 

(g/100 g), big-peptides (g/100 g), small peptides and free amino acids (g/100 g), and non-digested nitrogen contents (g/100 g) of NM and DM 

samples at the end of the intestinal phase of in vitro digestion. OP: oral phase; IP: intestinal phase; FAA: free amino acids; NM: normal mastication; 

DM: deficient mastication.  Mean values (n=3) ± SD. p-values > 0.05 in all cases.
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Figure 4. Degree of protein hydrolysis (DH, %) of the samples at the end of the gastric (A) and intestinal (B) phases of in vitro digestion. GP: 

gastric phase; IP: intestinal phase; NM: normal mastication; DM: deficient mastication. Mean values (n=3) ± SD. *: p < 0.05.

Figure 5. TBARS (µg eq MDA/g and µg eq MDA/mL) measurements of in vitro gluten-free bread boluses (A) and gastric and intestinal digesta 

(C and B). OP: oral phase; GP: gastric phase; IP: intestinal phase; NM: normal mastication; DM: deficient mastication. Mean values (n=3) ± SD.  

p-values > 0.05 in all cases.
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Graphical abstract
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o FT-IR tests revealed in situ lower oral starch digestion in impaired masticated boluses.

o Gastric protein digestibility was lower in the poorly masticated gluten-free bread tested.

o Deficient mastication did not alter protein hydrolysis and sugar release at the end of digestion.

o Deficient mastication did not impact on lipid peroxidation at the end of digestion.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Table 1. Nutritional composition (g/100 g) and formulation of the gluten-free bread tested (Dr. Schär AG/SPA).  

Nutrients g/100 g

Energy (KJ/Kcal) 1108/262

Fat 3.1

Saturated fats 0.5

Carbohydrates 51

Sugars 2.6

Fibre 6.8

Proteins 4.1

Salt 1.1

Formulation: maize starch, water, sourdough (rice flour, water) 14%, 

buckwheat flour 8%, rice flour, rice syrup, vegetable fibre (psyllium), rice 

starch, sunflower oil, soya protein, sorghum flour 2.1%, thickener: 

hydroxypropyl methylcellulose, yeast, salt, sugar. May contain traces of 

mustard. LACTOSE FREE (lactose < 0.007g/100g).
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Table 2. Percentage (%) of rapidly digestible starch (RDS), slowly digestible starch (SDS), total digestible starch (TDS), resistant starch (RS), and 

total starch (TS) values of the in vitro gluten-free bread boluses obtained after simulating the in vitro oral digestion, as well as maltose (g/L) and 

D-glucose (g/L) contents present in the liquid phase of samples after simulating the in vitro oral and gastrointestinal digestion. Mean values (n=3) 

± SD.

In vitro starch digestibility (%) Sugars analysis (g/L)

In vitro 
mastication RDS SDS TDS RS TS Maltose D-glucose

NM 5.7 ± 0.6 4.2 ± 0.5 12.3 ± 1.2 1.1 ± 0.6 13.5 ± 0.7 11.6 ± 0.5 7.0 ± 0.4
Boluses: OP

DM 6.9 ± 0.6 3.8 ± 0.4 12.6 ± 1.5 1.4 ± 0.3 14.0 ± 1.5 11.6 ± 2.2 8.4 ± 1.0

NM n.d. n.d. n.d. n.d. n.d. 1.2 ± 0.2 2.2 ± 0.2
Digesta: GP

DM n.d. n.d. n.d. n.d. n.d. 1.1 ± 0.4 2.1 ± 0.3

NM n.d. n.d. n.d. n.d. n.d. 8.4 ± 1.4 5.1 ± 1.4
Digesta: IP

DM n.d. n.d. n.d. n.d. n.d. 11.1 ± 4.5 6.2 ± 1.4
NM: normal mastication; DM: deficient mastication. OP: Oral phase; GP: gastric phase; IP: intestinal phase.
n.d.: no determined.
p- value > 0.05 in all cases. 


