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Abstract

The Great Green Wall is a cross-country initiative to improve the envi-

ronment of desertification areas in Sub-Saharan Africa. This paper refers

to the implementation of Great Green Wall projects in Nigeria to document

the local impact of environmental restoration on children’s food security and

health. Our identification strategy uses two types of variation to capture

these effects. The spatial variation comes from the heterogeneous exposure

of the children to these new environmental restoration programs. The tem-

poral variation comes from sudden changes between 2013 and 2016. Taking

the height-to-age z-score as main outcome of interest, we find a significant

and robust health improvement for children living next to community-based

orchards whereas proximity to shelterbelts generates mixed impacts. Gains

in health (+0.5 standard deviation in the height index) coexist with higher

dietary diversity score for children living near orchards.

Keywords: Environmental Restoration, Food security, Nigeria, Nutrition, Im-

pact evaluation
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1 Introduction

In the 1970s and 1980s, severe droughts struck Sub-Saharan Africa with harm-

ful consequences on local populations. These tragic events motivated the adop-

tion of The United Nations Convention to Combat Desertification (UNCCD) in

1994 with the dual objective of evaluating the desertification process and provid-

ing sustainable solutions against it.1 During the 2000-2010 period, Sub-saharan

Africa still experienced the largest increase (32%) in population living on degrad-

ing agricultural land (Barbier and Di Falco, 2021). Besides reducing agricultural

productivity, land degradation damages livelihoods through food insecurity, wa-

ter shortage, poverty, health problems and conflicts (Holden and Shiferaw, 2004;

Couttenier and Soubeyran, 2014; Olagunju, 2015).

Following this warming assessment, eleven African countries committed to

the creation of the Great Green Wall (GGW) in 2007.2 They agreed to join forces

to reforest the region through a 7000 km greenbelt across the continent. Initially

designed as a continuous wall of vegetation, the project has evolved to become

a mosaic of interventions to restore ecosystems and address the needs of local

populations (Goffner et al., 2019). Whether such an ambitious environmental

restoration project improves livelihoods of the surrounding households is still

an under-explored research question (Benjaminsen and Hiernaux, 2019).3 This

paper bridges this evidence gap by assessing the impacts of the program on chil-

dren’s health in Nigeria.

The motivation for the GGW program implementation echoes the growing

body of evidence showing that trees-based ecosystem services are correlated to

human well-being through diet quality, nutrition or health. Tree land cover helps

improving household livelihoods through its capacity to foster agricultural yields

and to provide households with products that address basic needs in terms of

food, fiber, energy and shelter (Angelsen et al., 2014; Ickowitz et al., 2014). Many

1The UNCCD defines desertification as “land degradation in arid, semi-arid and dry sub-
humid areas resulting from various factors, including climate variation and human activities”.

2The eleven countries include Burkina Faso, Chad, Djibouti, Ethiopia, Eritrea, Mali, Maurita-
nia, Niger, Nigeria, Senegal and Sudan.

3In November 2020, an editorial in Nature journal urged researchers to work on the evaluation
of the GGW project and to guide policy-makers towards the achievement of GGW key goals:
https://www.nature.com/articles/d41586-020-03080-z
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case studies bring evidence on the benefit of forests when a shock occurs, such

as a crop failure, to complement the income or meet with subsistence needs (Pat-

tanayak and Sills, 2001; McSweeney, 2005; Fisher et al., 2010; Baland et al., 2018).

Although trees planted as part of the GGW are unlikely to have reached the min-

imum height needed to be categorized as forest, high resolution data of some

GGW projects in Nigeria show an important change in the amount of land cov-

ered by trees and raises expectations of preliminary positive effects on welfare

outcomes.

Although trees can have many benefits, little work has yet analyzed the pos-

itive impacts trees might have on children’s well-being. Yet, early life condi-

tions are known to be very important for individual development (Behrman and

Rosenzweig, 2004; Black et al., 2007; Currie and Vogl, 2012). Malnutrition in

early stages of life has long-term consequences on human capital attainments

such as cognitive scores or health, educational and socio-economic achievements

as adults (Glewwe et al., 2001). For instance, Hoddinott et al. (2013) show that

individuals who enjoyed a correct growth in the first 3 years of life complete

more schooling, score higher tests of cognitive skills in adulthood, have better

outcomes in the marriage market, and are more likely to be employed in higher-

paying jobs. Similarly, a strong correlation between drought conditions in early

childhood and future health and socioeconomic outcomes has been shown for

many regions: Hyland and Russ (2019) show that women from Sub-Saharan

Africa who experienced water deficits as children are less wealthy as adults, Mac-

cini and Yang (2009) reach similar conclusions for Indonesian women. Therefore,

the context in which the child begins her life deserves special attention. Given

that children in Northern Nigeria grow up in harsh environment with potential

long-term negative impacts of droughts on their individual development, assess-

ing the ability of GGW program to enhance the health during early childhood is a

crucial task. This assessment is all the more important that the ongoing process of

forest loss in Nigeria has been shown to be associated with worsening children’s

health conditions (Berazneva and Byker, 2017) and that a recent cost-benefit anal-

ysis over the whole region showed that net gains of such land restoration pro-

gram would be the highest in Nigeria (Mirzabaev et al., 2021).

This article contributes to the existing literature on environmental restoration
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and children’s welfare in a number of aspects. To begin with, it is the first to

document the local impact of the Great Green Wall program on children’s health

outcomes. Although Duboz et al. (2019) displayed some correlations between the

implementation of GGW in Senegal and welfare and health outcomes, there is

surprisingly no causal impact assessment of its consequences on local commu-

nities’ welfare. Secondly, the distinct analysis conducted on the two main types

of project launched by GGW program allows to determine the specific greening

activity that benefits the most to children. Third, we investigate the food security

channel to better capture the source of health improvement for children. Nutri-

tion level is known as the most important factor affecting linear height growth

and explains most of the differences in stature among humans (Grasgruber et al.,

2014; Perkins et al., 2016).

To rigorously assess the impacts of environmental restoration on health and

food security, we exploit geographical heterogeneity of children in exposure to

GGW projects and conduct a difference-in-difference analysis. The 2013 and 2018

Nigeria Demographic and Health Survey and the information on the location of

GGW projects, both geocoded, are combined to assign a treatment status to the

community where the children reside. The distance cutoff used to define the

treatment status of the community is set at 15 km in the main model. The iden-

tification relies on the variation in environmental restoration programs imple-

mented between late 2013 and 2016 in the northern regions of Nigeria. However,

the main strategy suffers from the lack of credible counterfactual given that the

program was targeted and not randomly allocated to households. To overcome

this challenge, we augment the estimations with propensity score reweighting

and parallel trends checks for the period preceding the GGW projects. This em-

pirical methodology stays constant when we investigate the changes in children

nutrition proxied by their dietary diversity score.

The findings are twofold. First, the children living next to areas where envi-

ronmental restoration programs have been implemented appear to be in better

health than those who live further from the projects. In particular, this result sur-

vives all the specifications and robustness checks when the local project is a com-

munity orchard, with an important increase in height-to-age standard deviation.

This positive impact on children’s health becomes even more important when
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the orchard is coupled with the creation of a borehole. However, the estimated

impacts of shelterbelts fluctuate and are not conclusive for some specifications.

Second, the dietary diversity score of local children significantly and positively

increases, bringing evidence that health improvement coexists with better food

access in the case of orchard treatment. Although these results are consistent with

the presumption that access to fruit resources may increase, the higher diversity

in diets may also be driven by other potential channels that are likely to occur

in the short run. Further research would thus be needed to better understand

the channels that condition the persistence of the impacts. If the improvement of

food access and health conditions are due to public employment, investments or

the boost of local markets, they would be limited to the short run while one can

expect more sustainable impacts from ecosystemic services in the long-term.

The remainder of the paper proceeds as follows. Section 2 introduces the con-

text of the new environmental restoration program implemented in Nigeria as

well as the data used in the analysis. Section 3 describes the identification strat-

egy and section 4 displays the results. Section 5 concludes.

2 Context and Data

2.1 The Great Green Wall in Nigeria

2.1.1 The program

The Great Green Wall is a Pan-African initiative spearheaded by the African

Union and funded by the World Bank, the European Union and the United Na-

tions. The idea was formally approved in 2007 to slow down the expansion of the

Sahara by planting a barrier of trees spreading 7000 kilometers from Senegal to

Djibouti.

With the rising concerns about climate change in the Sahel region, the green-

belt intends to fill a new role: increasing the vegetation cover to eventually mit-

igate food insecurity, land conflicts and migration for millions of farmers living

in the region. On its official website, the project promises "to bring life back to

Africa’s degraded landscapes at an unprecedented scale, providing food security,
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jobs and a reason to stay for the millions who live along its path".4 To this end,

more than eight billion dollars have been mobilized and pledged for its support.5

The project has been progressing at different scales among the eleven coun-

tries committed to give birth to the GGW.6 In Nigeria, the implementation of the

project has been starting in 2013 with about 6,000,000 plants produced mainly for

shelterbelts and orchards managed at the community level. The program covers

eleven northern states of the country. The National Council on the Great Green

Wall (NCGGW) is the governing body deciding and monitoring the implementa-

tion of the program at the national level. At the community level, the head of the

community decides how to redistribute revenues or products from the activities

across households.7

All these activities have generated about 20,000 jobs in Nigeria.8 The UNCCD

claims that the GGW initiative trained and engaged 498 youths as forest guards,

several thousands in planting and other related activities and more than a thou-

sand in drilling boreholes. According to Gadzama (2017), more than 100,000 peo-

ple in the rural areas will be employed during the whole period of projects im-

plementation, beside the 1000 forest guards and 450 extension workers that will

be required.

Tree planting programs often face great challenges (Holl and Brancalion, 2020).

Previous land restoration programs in Nigeria were actually suspected of weak

integration and notable gaps in civil society participation, absence of use of in-

digenous knowledge, limited community and farmers implication, and limited

maintenance (Jalam et al., 2020; Medugu et al., 2010). These limitations may have

contributed the low observed survival rates of shelterbelts projects (Gadiga et al.,

2015). To ensure a sustainable implementation of the current program, policy-

makers try to learn from past errors in national land restoration initiatives, no-

tably by involving community members and vulnerable population in the land

4https://www.greatgreenwall.org/about-great-green-wall
5https://www.unccd.int/actions/great-green-wall-initiative
6The focus on the Nigerian case stems from the lack of national data on GGW implementation

for other countries involved in the project.
7The land where the projects take place mainly belong to community members’ institutions.

The land that belongs to the community members are voluntarily donated for the benefit that
comes with the project because after an agreed period of time, the community members will take
over the sustainability of the land and enjoy whatever proceeds gotten from the project.

8https://www.unccd.int/news-events/african-countries-accelerate-progress-great-green-wall
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use policy and redistribution of projects’ revenues (Turner et al., 2021) and by

adopting bottom-up approaches.

The implementation of the GGW project takes different forms in the coun-

try. Shelterbelts are rows of trees to protect soil from erosion and improve the

quality of farmlands. Between 2013 and 2016, 642 kilometers of such shelterbelts

grew along the northern part of the country. About 300 hectares of community

orchard have also been established to provide edible products such as mangoes,

guavas, cashews, or oranges among others. More than a hundred solar and wind-

powered boreholes have been constructed to support the maintenance of shelter-

belts and orchards, and are supposed to provide water to over 40,000 people and

150,000 livestock (PAG, 2018). Given that characteristics and channels associated

with each type of project differ (as discussed in 2.1.3), we distinctively assess the

impacts of orchards and shelterbelts on children’s health.

2.1.2 The data

The first task to answer our research question is to locate the environmental

restoration projects implemented through the GGW program. To this end, the

NCGGW provided data on the localisation, type and year of implementation of

about a hundred of orchards and boreholes and of more than two hundreds of

shelterbelts as shown in table 1. Figure 1 provides an overview of the different

types of projects implemented as part of the program between 2013 and 2016.

Most of the boreholes are placed in the very vicinity of orchards or shelterbelts in

order to increase the lifespan of both types of projects. Figures A1, A2 and A3 il-

lustrate the scope of such projects, by showing remote sensing images of different

types of projects before and after their implementation.9

9A systematic monitoring and checking of the GPS data is very complex since many projects
are not observed at the right date. The seasonality in vegetation makes it hard to distinguish
projects since an image is not available every year.
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Table 1: Distribution of GGW projects over the 2013-2016 period

Year of establishment
2013 2014 2015 2016 Total

Orchard 8 43 45 4 100

Shelterbelt 45 57 114 0 216

Borehole 10 50 43 1 104

Total 63 150 203 4 420

2.1.3 Ecosystemic services and other potential impacts

Environmental restoration programs, including land restoration programs, are

implemented to enhance various ecosystemic services (Benayas et al., 2009). Woody

vegetation in Sudano-Sahelian West Africa is known to provide numerous ecosys-

temic services including: pest control, soil nutrient concentration, erosion con-

trol, carbon storage, water flows regulation, shade provision and regulation of

micro climates (Sinare and Gordon, 2015; Davies, 2017). These services impact

local communities mainly by fostering agricultural yields, by reducing the prob-

ability and impacts of floods or heatwaves, and by contributing to groundwater

recharge.

The most important impacts of shelterbelts on agricultural yields in arid en-

vironments probably comes from the limitation of soil erosion, the protection

against windstorm and the run-off and evapotranspiration regulation (Wang et al.,

2008). Limiting soil erosion has indeed been proved to positively impact crop

growth yields in the Sahel (Michels et al., 1998). Such improvements in soil con-

dition consequently result in vegetation development in areas where shelterbelts

are established (Adesina and Gadiga, 2014). Kho et al. (2001) show that millet

grown under acacia trees (Faidherbia albida) canopy in Niger had a yield 36%

higher than those grown in open fields. Pest control plays also a key role in Nige-

ria: millet growing under acacia trees was not found infected by the millet pest

striga, in contrast to surrounding areas (Gworgwor, 2007).

Planting trees in arid environments also provides water availability and re-

duce floods through water flow regulation: it limits rainfall run-off and favorises

groudwater recharge by fostering water infiltration. By increasing water hold-
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Figure 1: Location of Great Green Wall Projects in Nigeria

ing capacity, tree roots regulate the water cycle and limits downstream flooding

by increasing evapotranspiration (Zhang et al., 2017; Zhang and Wei, 2021). Mc-

Carthy et al. (2021) show that green belts are effective to reduce flood risk for

maize production in Malawi and Ilstedt et al. (2016) that tree densities influence

groundwater recharge in Burkina Faso.

In addition to ecosystemic services, fruit tree planting may also improve food

security and diet diversification. Ickowitz et al. (2014) found a statistically signifi-

cant positive relationship between tree cover and dietary diversity. Their findings

suggest that children in Africa who live in areas with more tree cover have more

nutritious diets. Some species are identified to play a major role during certain

seasons, or gain importance during drought years, compensating in case of crop

loss (Sinare et al., 2016). Eventually, tree planting may also improve income from

medicinal, social, cultural, food additive, energy and material uses (Sinare and

Gordon, 2015).
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2.2 Health of Nigerian Children

In this paper, the main source of socio-economic data is the nationally represen-

tative Nigeria Demographic and Health Surveys (DHS). DHS are cross-sectional

surveys designed to provide information on households characteristics, health

and living conditions at the national. The data are geocoded at the DHS clus-

ter/community level. For confidentiality issues, the DHS program displaces the

latitude and longitude of the clusters. In particular, urban locations are displaced

0-2 kilometers while rural locations are displaced 0-5 kilometers with 1% dis-

placed 0-10 kilometers for anonymity purposes. We make use of data available

for 2013 and 2018, two years surrounding the implementation of GGW projects.

To perform parallel trend tests, DHS are also extracted for the year 2003.10 We

restrict our sample to rural households belonging to the eleven Northern States

where GGW projects have been implemented.11

**************************** HEIGHT TO AGE or HEIGHT FOR AGE ???? ****************************

All surveyed women aged between 15 and 49 years old present at the time of

the survey are interviewed. Each of their children who are less than 5 years old

are subject to anthropometric measurements. In particular, height was measured

in order to establish a height-for-age index and compare it to standards provided

by the World Health Organization (WHO). The height-for-age indicator informs

on the long-term nutritional status of the child and captures recurrent or chronic

illness at an early age. When the height-for-age standard deviation (HAZ) from

the WHO 2006 study medians is below minus two, the child is considered as

stunted or chronically undernourished. Children whose HAZ score is below mi-

nus three standard deviations from the median are considered severely stunted.

The DHS Final Report conducted in Nigeria in 2018 reveals that 37% of Nigerian

children below 5 years old are stunted. Investigating HAZ score allows us to

10Nigerian DHS are available for the year 2008. However, the food security indexes that
could be extracted from these data might be greatly distorted by the National Special pro-
gram for Food Security (NSPFS) implemented in Nigeria right before the 2008 DHS collection.
The broad objective of the NSPFS was to contribute to sustainable improvements in national
food security through increases in agricultural productivity and food production. Several sites
in northern Nigeria were selected to receive field activities from the 2003 cropping season to
2006. More information about implementation and objectives of the program is available here:
www.fao.org/3/a-bd346e.pdf.

11These states are Adamawa, Bauchi, Borno, Gombe, Jigawa, Kano, Katsina, Kebi, Sokoto,
Yobe and Zamfara.
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Figure 2: The evolution of height-to-age z-score under two treatment definitions

capture the impacts of environmental reforestation on children health and food

security on a long term, independently from recent changes in dietary intakes.

The children are assigned with a treatment status according to the distance of

their community to the GGW project, with a threshold established at 15 kilome-

ters for the main specification. Table A2 shows the distribution of children across

control and treated areas defined by a 10 km, 15 km and, 20 km buffer around the

centroid of the project. Figure 2 plots the trends in average HAZ score for treated

and control children across the three waves of DHS. Even though the 2003 aver-

age HAZ score is lower for the children living in the area selected for orchards

implementation, both treated and control children experience health improve-

ment following a parallel trend until 2013. During the period of orchards im-

plementation, HAZ scores display downward health trends for control children

(from -1.99 to -2.28, i.e. -15 %) and positive change in HAZ score for the treated

group (from -2.39 to -2.26, i.e. +1%). If we consider the shelterbelt projects, we see

that health conditions has increased in the treated group (from -2.62 to -2.22, i.e.

+15%) while it has decreased for the control group (from -2.02 to -2.28, i.e. -13%).

Further investigation helps understanding whether this difference in health evo-

lution between treated and control children is driven by the implementation of

environmental restoration projects.
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3 Empirical Framework

The goal of this empirical study is to identify how the GGW projects affect chil-

dren’s health in the local communities. To this end, we explore variations across

time (the project occurence) and space (children’s community distance to the

projects). This actually refers to a difference-in-difference (DiD) methodology.

To do so, it is crucial to determine a treated and a control group at best.

Many empirical studies rely on geospatial DiD to assess health impacts of

programs or public policies (Friedman, 2018; Lucas and Wilson, 2018; Benshaul-

Tolonen, 2019; Herrera-Almanza and Rosales-Rueda, 2020). This empirical strat-

egy first consists in defining a distance cutoff to the program used to identified

treated and control groups. To our knowledge, there are no papers relying on

a similar methodology to assess the impact of environmental restoration pro-

grams on health outcomes for surrounding communities. Therefore, we learn

from existing programs in other fields of economics and test several thresholds

from 10 to 20 km with a baseline distance at 15 km from the GGW project. Apart

from von der Goltz and Barnwal (2019) and Friedman (2018) who work on tight

distances, most of the authors who study the health impact of interventions us-

ing displaced household locations define the treatment status using larger band-

widths. Benshaul-Tolonen (2019) and Lucas and Wilson (2018) work with a min-

imum baseline distance fixed at 10 km whereas Wilson (2012), Kotsadam and

Tolonen (2016) and Aragon and Rud (2016) use a baseline cutoff of 20 km.

With precise data, we might define closeness even more restrictively. How-

ever, in the context of available data, we think that the 15 km distance cut-off is

reasonable for two reasons: (1) the practice of jittering DHS cluster geolocations

(displaced up to 5 km, and up to 10 km for 1% of the sample) risks introducing

excessive noise if the cut-off is tight; and (2) the sample size of treated households

increases rapidly with distance (see Table A2), which increases the power of the

results, all else equal.

The 15 km distance cutoff is eventually motivated by empirical evidence on

commuting distances in rural Africa, showing that areas of 10 or 15 km are likely

integrated markets (Schafer, 2000; Amoh-Gyimah and Nimako Aidoo, 2013; Kung

et al., 2014). At this distance, we can reasonably expect households to take part
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in the projects as direct employees or as potential buyers of food products from

newly created orchards.

Once the exposition status has been assigned, we rely on DiD to assess the im-

pact of the treatment on children’s height-to-age standard deviation. The follow-

ing equation illustrates the canonical set up with two units and two time periods,

with one of the units being treated in the second period:

Yijmys = β1POSTj.CLOSEj + β2POSTj + β3CLOSEj+

β4Xijmys + β5POSTj.Xijmys + αm + αy + αmy + αs + εijmys.
(1)

with Yijmys being the anthropometric measurement for child i born in month m

in year y and living in community j from state s. POSTj and CLOSEj are dummy

variables equal to one if the child’s community is in the post-treatment period

and one if the child is close to at least one project. β1 is the coefficient of inter-

est and captures an Intention-to-Treat effect; it gives the estimated impact of the

change in greening areas on the health of children who live next to a GGW site.

We control for the unobservable conditions during the very beginning of life by

including month of birth m, year of birth y, and month by year of birth fixed ef-

fects. One specification includes geographic fixed effects at the state level s. Xijmys

represent covariates that may influence the initial estimates on health outcomes

such as sex and age of the head of the household, the size of the household, the

birth order/birth interval/age/gender/twin status of the children, the educa-

tion/marital/religion/body mass index of the mother, the distance to the nearest

water source, and the number of droughts registered on the period 1980-2000. To

avoid as much as possible “fake controls” (children considered as control whereas

they are treated), we exclude from the analysis any children located between the

distance cutoff and twice its distance.12 POSTj and Xijmys are also interacted for

sensitivity checks. In all models, we cluster standard errors at the DHS cluster

level, which corresponds to community j.

12In the case of 15 km treatment for instance, the children located between 15 and 30 km are
dropped from the regressions.
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Propensity Score Reweighting In this study, the treatment assignment is not

randomly operated. The table 2 brings evidence that there are persistent differ-

ences across treated and control groups at baseline. Among the multiple tech-

niques that have been developed to help researchers capturing the impact of a

program on individuals with different characteristics at baseline, we decide to

employ the Inverse Probability Weighting (IPW) method. Its ability to recover

unbiased estimates of average treatment effects in observational studies has made

this method very attractive for causal inference (Hirano et al., 2003; Austin and

Stuart, 2015). The approach consists in estimating the probability of treatment

assignment conditional on observed covariates, also called the propensity score,

and using it to reweight each observation from the data in the DiD model de-

scribed in equation 1. The estimated probability of being treated by a project for

observation i, denoted pi, is computed based on the set of covariates X and the

geographic fixed effects.13 Using this probability, we derive weights 1
1−pi

and 1
pi

assigned to non-treated and treated observations respectively.14

The ideal approach to identify the set of covariates for the estimation of propen-

sity score is to focus on the selection process that sorts participants into treatment

and control conditions. However, relatively little is known about the factors that

influence exposure to the GGW projects and it is difficult to identify all the vari-

ables that are related to differential exposure. The solution is usually to balance

both groups based on variables that are observed at baseline. Since the DHS is not

a panel, we draw on Bargain et al. (2019) and use time-invariant characteristics to

compute the propensity scores. The set of covariates includes the age and level of

education of the household head, the religion of the household, the marital status

of the mother, the household size, and the number of drought episodes between

1980 and 2000.

The distribution of propensity scores among the two groups are reported on

the left-hand side of figure 3 and appear quite different with a large spike of con-

trol children with low probabilities of treatment, such that IPW will be necessary

to ensure the robustness of our estimates. The final goal of propensity scores is to

remove any selection bias that has made the groups different on those invariant

13In our case, this estimation relies on a logit estimator.
14The propensity score reweighting is separately executed for Orchard and Shelterbelt treat-

ments.
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Figure 3: Distribution of propensity scores, before (left panel) and after (right panel)
weighting

observed variables. A straightforward way to test the validity of the procedure is

to compare the propensity scores for treatment and control groups after reweight-

ing the sample. On the right-hand side of figure 3, the propensity scores between

the groups are balanced on their entire distributions and suggest that the two

samples suit our comparability requirements.15

Parallel trend checks The parallel trend estimations aim at checking whether

treated and control children had similar health trends before the occurrence pe-

riod. 2003 and 2013 DHS are two pre-treatment waves available to check for par-

allel trends. It allows to build a credible counterfactual for the control group and

tests if any difference occurs during the pre-treatment period. We do so by repli-

cating the baseline estimations on the pre-treatment period, with the difference

that children from 2013 DHS wave are considered to belong to the post-treatment

period (POSTj = 1).

15By comparison with the balance table 2, the age of household head, the religion of the house-
hold and the number of drought episodes are not anymore significantly different in the weighted
samples. This also suggests that comparability between the two groups has been improved, al-
though it is not fully achieved.
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Heterogeneity in treatment effects We study the heterogeneity in impacts ac-

cording to three main characteristics: the duration of exposure to GGW projects,

the age at which the child is exposed, and the size of the project.16 The vari-

able HETEROGENEITYij represents each of these characteristics and systemati-

cally equals 0 for children included in the control group. Equation 2 presents the

model. We show that the larger the project size, the longer the exposure and the

earlier the treatment, the higher the amplitude of the impacts (Table 5 section 4.2).

Yijmys = β1POSTj.HETEROGENEITYij + β2POSTj + β3CLOSEj+

β4Xijmys + β5POSTj.Xijmys + αm + αy + αmy + αs + εijmys.
(2)

Channels Investigation We use the same DiD model from equation 1 to investi-

gate the change in dietary diversity for children surveyed in the DHS. The results

are introduced in section 4.3. To do this, we compute a dietary diversity score

at the child level. This dietary diversity score is increasingly accepted as an es-

sential component of healthy diets and associated with nutrient intake and thus

recognized as a good proxy for food security (Ruel, 2002). In particular, many

studies suggest that dietary diversity is significantly associated with HAZ score,

either as a main effect or in an interaction (Arimond and Ruel, 2004; Stey et al.,

2006). We restrict the analysis to children between the ages of 12 and 60 months

because children are heavily dependent on breast milk during their first year and

thus have limited diets. The dietary diversity score is the number of food groups

consumed by a child during the last twenty-four hours. The score ranges from

0 to 10, 10 being the maximum number of nutritional food groups including ce-

reals, roots and tubers, vegetables, fruits eggs, meat, fish and seafood, milk and

dairy products, pulses and nuts, and beverages.

Robustness checks Several robustness checks are run to complement the main

analysis and discuss the persistence of the results with more details. First, we

alternatively control for geographic linear-time trends by using fixed effects at

16The exposure to the projects depends on the year of the project implementation and the birth
information of surveyed children and varies from 2 to 5.5 years.
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the annual cumulative rainfall averages level in A5.17 To restrain the sample to

areas with comparable environments, the tables A4 exclude from the analysis

the children located more than 100 km away from the closest GGW project. In

appendix A7, we compare the magnitude of the coefficient estimates when the

project is jointly created with a borehole.

We explore the possibility that our results could be unspecific to GGW activi-

ties, but rather due to other factors that would correlate with systematically better

health around places where projects settled. For instance, we could suspect that

the critical food insecurity situation in the areas targeted by the GGW program

could have also attracted new health or development programs. To rule out the

hypothesis that HAZ score improvement is driven by local health programs such

as initiatives related to malaria prevention, we run a fake treatment on alternative

health outcomes including the incidence of cough, diarrhea, and fever. The table

A8 also shows the results for preventive health outcomes, such as vaccination

and family planning, that should not be affected by the GGW program.18

Eventually, the analysis involves a concern about residential sorting, that is

the possibility that households with different potential health outcomes may be

selectively moving in or out of an area targeted by the GGW program. To control

for this issue, we restrict model 1 to the sample of children belonging to house-

holds who have not moved between 2013 and 2018 (see appendix A3).

17We built 10 rainfall zones, using average annual cumulative precipitations over the 1980-
2015 period. The 10 rainfall zones correspond to the deciles of the distribution of long run average
cumulative precipitations in all DHS clusters considered.

18The variables related to fever, diarrhea and cough are dummies equal to one if the child has
been ill with this symptom for the last two weeks. The vaccination variable is a dummy equal to
one if the child received at least one vaccine injection. The family planning variable is equal to
one if the household heard of family planning in the last few months.
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Table 2: Balance Table for Pre-Treatment variables for children in 2013 DHS

Control group Treatment group Difference
Child variables :
Height-to-age standard deviation -1.973 -2.337 -0.365***

(2.063) (1.974) (0.065)
Child’s food diversity scale (from 0 to 10) 1.701 1.630 -0.071

(1.801) (1.653) (0.051)
Birth order number 4.513 4.562 0.049

(2.832) (2.856) (0.075)
1 if child is a girl, 0 if not 0.498 0.487 -0.011

(0.500) (0.500) (0.013)
Age of child (months) 27.720 27.871 0.152

(17.285) (17.353) (0.501)
Preceding birth interval (months) 33.949 33.446 -0.503

(16.743) (15.828) (0.480)
1 if child is twin, 0 if not 0.044 0.036 -0.008

(0.269) (0.242) (0.007)
Mother variables :
Mother’s body mass index 2,188.108 2,102.707 -85.401***

(383.704) (328.123) (10.036)
Household variables :
Number of household members 7.862 7.540 -0.322***

(3.668) (3.482) (0.097)
1 if female headed-household, 0 if not 0.041 0.031 -0.010*

(0.197) (0.173) (0.005)
Age of household head 41.202 40.260 -0.941***

(11.735) (11.267) (0.309)
Education of household head (years) 1.297 0.553 -0.744***

(3.005) (1.937) (0.075)
1 if respondent is Christian, 0 if not 0.056 0.003 -0.053***

(0.230) (0.053) (0.006)
1 if respondent is Muslim, 0 if not 0.929 0.991 0.063***

(0.258) (0.092) (0.006)
1 if respondent is currently married, 0 if not 0.974 0.991 0.017***

(0.159) (0.092) (0.004)
Time to get to water source (minutes) 19.338 22.041 2.702***

(28.120) (24.261) (0.730)
Cluster variables :
Drought Episodes 6.419 4.621 -1.798***

(2.276) (1.638) (0.058)
Distance to GGW project 69.938 8.567 -61.371***

(37.772) (3.952) (0.904)
Observations 7,420 1,751 9,171

Treatment group includes all the rural children who are less than 15 km far from any Great Green
Wall Project, including orchards, shelterbelts, and boreholes. *** p<0.01, ** p<0.05, * p<0.1.
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4 Results

4.1 Main results

The tables introducing the main results are split between the panel with children

surveyed for the period of interest (2013 and 2018 DHS) and the children sur-

veyed during the pre-treatment period (2003 and 2013 DHS) for parallel trend

checks. They aim at checking whether treated and control children had similar

health improvement trends before their exposure to environmental restoration

projects.

Table 3 displays the results of the DiD estimation of the orchard 15 km buffer

treatment on children’s height-to-age standard deviations. The results show per-

sistent positive and significant causality between orchard development and chil-

dren’s health across all specifications. The coefficients range from 0.37 to 0.72

according to the specification at stake. Living in a community with at least one

orchard at 15 km significantly increases the height-for-age by 0.50 standard devia-

tions in the most conservative specification with IPW. The DiD estimates without

IPW show lower but still substantial and significant improvement in children’s

height-to-age z-scores. The lower panel in Table 3 shows that none of the parallel

trend estimates of β1 are statistically different from zero in the pre-treatment pe-

riod. Living in the areas that would later be exposed to orchard activities did not

imply a specific trend in terms of children’s health improvement.

Results are robust to the exclusion of children born to recent migrants (A3).

Excluding all mothers who arrived after the launch of orchard projects does not

alter the magnitude of the results. This indicates that the positive impact of or-

chard activities on health is not driven by children from newly arrived house-

holds. The positive impact of orchards activities on children HAZ score is also

robust to the exclusion of children living further than 100 km from an orchard

(A4) and to alternative specifications with annual cumulative rainfall averages

fixed effects (A5). Eventually, Table A7 shows that the magnitude of the impact

is higher when the orchard is coupled with the creation of a borehole. Figure 4

plots the coefficient estimates for the three thresholds for treatment assignment

and shows that the positive impact on health of being close to at least one orchard
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Table 3: Impacts of orchards on children height-to-age z-score

Orchard treatment at 15 km

Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Period of Interest : 2013 and 2018 DHS
Post x Close 0.478*** 0.437*** 0.367** 0.724*** 0.687*** 0.496***

(0.159) (0.156) (0.142) (0.177) (0.174) (0.149)

Observations 7,352 7,350 7,350 6,600 6,597 6,597
R-squared 0.088 0.167 0.196 0.095 0.171 0.198

Placebo Period : 2003 and 2013 DHS
Post x Close 0.177 0.227 -0.287 0.118 0.385 -0.145

(0.249) (0.276) (0.234) (0.224) (0.233) (0.212)

Observations 5,930 5,929 5,929 5,786 5,785 5,785
R-squared 0.087 0.166 0.198 0.094 0.190 0.208

Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
State FE X X

DiD estimations based on 2003 and 2013 DHS for the parallel trend, and on 2013 and 2018 DHS for
the main period of interest. The child is defined as Close if her community is less than 15 km to at
least one orchard. Children residing 15-30 km from an orchard are excluded from the regressions.
Birth FE includes month of birth of child i, year of birth, and the interaction between the two.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1

persists at 20 km.

Table 4 displays the results for the DiD estimation for the other main treatment

assignment, that is the proximity to shelterbelt projects. The positive and signif-

icant results identified in the first specifications do not hold when state fixed-

effects are included, showing that the positive relationship between proximity to

at least one shelterbelt and the improvement in HAZ score is affected by omitted

variable bias due to factors that are constant over states. We find the same result

when we estimate the regressions with annual cumulative rainfall average fixed

effects (table A5 or restrict the sample to newly arrived migrants (table A3). How-

ever, the set of estimates becomes significant if we exclude all children who reside

more than 100 km far from a shelterbelt as shown in A4. Figure 4 shows that pos-

itive impact of shelterbelt activities on children’s health are expected on short

distances, such as 10 km, but fails to benefit to further communities. Put together,

the mixed evidence from the different specifications and robustness checks pre-

vents us from concluding on a strong impact of shelterbelt activities on health of

children living more than 10 km far from the projects.
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Table 4: Impacts of shelterbelts on children height-to-age z-score

Shelterbelts treatment at 15 km

Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Period of Interest : 2013 and 2018 DHS
Post x Close 0.740** 0.747** 0.583** 0.931** 0.907*** 0.503

(0.355) (0.326) (0.289) (0.361) (0.302) (0.347)

Observations 7,666 7,664 7,664 5,305 5,303 5,303
R-squared 0.087 0.168 0.196 0.083 0.165 0.176

Placebo Period : 2003 and 2013 DHS
Post x Close 0.0934 0.262 -0.150 0.252 0.389 0.0403

(0.361) (0.305) (0.279) (0.301) (0.457) (0.456)

Observations 6,321 6,321 6,321 3,058 3,052 3,052
R-squared 0.083 0.165 0.194 0.069 0.176 0.183

Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
State FE X X

DiD estimations based on 2003 and 2013 DHS for the parallel trend, and on 2013 and 2018 DHS
for the main period of interest. The child is defined has Close if her community is less than 15
km to at least one shelterbelt. Children residing 15-30 km from a shelterbelt are excluded from
the regressions. Birth FE includes month of birth of child i, year of birth, and the interaction
between the two.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1
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Coefficient estimates for different thresholds

Figure 4: Evolution of coefficient estimates of HAZ scores following different treatment
thresholds (10 km, 15 km, and 20 km). The coefficient estimates shown in this figure are
the results of the most restrictive specification including covariates, all fixed effects and
IPW.
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Table A6 in appendix introduces the coefficients when the treatment definition

includes all type of projects together, such as orchards, shelterbelts or boreholes.

Cumulative effects of the three types of projects show significant and greater

magnitude than one type of project alone.

Eventually, Table A8 shows that alternative health outcomes including fever,

cough, and diarrhea, and preventive health outcomes such as the incidence of

vaccination are not significantly affected by the proximity to GGW activities.

The awareness of family planning seems to decrease in households living close

to shelterbelts. This mitigates the hypothesis that other health or development

projects have been implemented in same areas than the GGW and strengthens

the causal impact of the environmental restoration programs on health improve-

ments.

4.2 Heterogeneous impacts

Taking advantage of variations in birth date (month), date of the surveys and

project year, we compute the duration of treatment and the age at treatment for

each treated child, respectively for orchards and shelterbelts projects. We also use

available information about the project size (see Table A1) to look at heterogeneity

in impacts across those metrics.

Table 5 shows the impact of these heterogeneity variables on children’s health.

It reveals that being exposed to an orchard that is one hectare bigger increases its

effect on height-for-age by 0.10 to 0.15 standard deviations according to the spec-

ification. Being exposed longer or being treated at a younger age also amplifies

the positive impact of GGW projects on HAZ scores. These results are consistent

with evidence of a high sensitivity to food shortage and more generally to income

shocks during early childhood (Hyland and Russ, 2019; Maccini and Yang, 2009).

Results on shelterbelts show the same patterns but are again less significant.

4.3 Channels

The previous results show to which extent the impact of the project plays a key

role for health improvement of children who were living nearby, in particular
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Table 5: Heterogeneous impacts of orchards and shelterbelts on children height-to-age
z-score, depending on intensity of treatment and age at treatment

Period of Interest : 2013 and 2018 DHS

Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Orchards at 15 km

Post x Close x Size (ha) 0.0988*** 0.0962** 0.0957** 0.149*** 0.148*** 0.120**
(0.0380) (0.0374) (0.0388) (0.0490) (0.0505) (0.0496)

Observations 7,508 7,506 7,506 7,114 7,111 7,111
R-squared 0.007 0.133 0.174 0.008 0.136 0.175

Post x Close x Duration (month) 0.00991*** 0.0103*** 0.00999*** 0.0135*** 0.0139*** 0.0122***
(0.00345) (0.00337) (0.00314) (0.00366) (0.00365) (0.00326)

Observations 8,775 8,773 8,773 7,897 7,894 7,894
R-squared 0.007 0.133 0.173 0.010 0.134 0.170

Post x Close x Age (month) -0.0220*** -0.00861** -0.00695 -0.0224*** -0.00970** -0.00792*
(0.00372) (0.00414) (0.00436) (0.00365) (0.00412) (0.00479)

Observations 8,775 8,773 8,773 7,897 7,894 7,894
R-squared 0.009 0.132 0.172 0.011 0.131 0.168

Shelterbelts at 15 km

Post x Close x Size (km) 0.273 0.351* 0.381** 0.307* 0.408** 0.399**
(0.214) (0.211) (0.179) (0.168) (0.175) (0.175)

Observations 7,810 7,808 7,808 5,550 5,549 5,549
R-squared 0.008 0.134 0.172 0.004 0.132 0.151

Post x Close x Duration (month) 0.0139** 0.0145** 0.0109* 0.0123** 0.0129** 0.00834
(0.00674) (0.00669) (0.00595) (0.00512) (0.00522) (0.00555)

Observations 9,162 9,160 9,160 6,379 6,378 6,378
R-squared 0.007 0.132 0.170 0.004 0.128 0.145

Post x Close x Age (month) -0.0255*** -0.0138 -0.00671 -0.0153** -0.00226 0.00593
(0.00953) (0.00983) (0.00967) (0.00716) (0.00778) (0.00794)

Observations 9,162 9,160 9,160 6,379 6,378 6,378
R-squared 0.007 0.132 0.170 0.003 0.127 0.145
Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
State FE X X

DiD estimations based on 2013 and 2018 DHS. The child is defined has Close if her community is less
than 15 km to at least one orchard or one shelterbelt. Children residing 15-30 km from an orchard or a
shelterbelt are excluded from the regressions. Birth FE includes month of birth of child i, year of birth, and
the interaction between the two.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1
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when community-based orchards are at stake. Following the literature, we con-

sider that nutrition and food intake in early stages of life is a determining factor

in health status. Therefore, we rely on additional information from DHS to study

if this health improvement is supported by some changes in the dietary diversity

for children belonging to exposed communities.

Table 6 displays significant changes in the dietary diversity score of children

living within a 15 km buffer of at least one orchard. In the most conservative re-

striction, living close to at least one community-based orchard is associated with

a 0.52 increase in the dietary diversity. These results are in line with the persis-

tent health improvements for children living nearby orchard projects. The diet of

children living in communities near shelterbelts do not appear to be significantly

more diverse.

A first interpretation of these results relies on the capacity of orchards to pro-

vide edible products to the surrounding households, hence participating directly

into food security improvement. This hypotheses is strengthened by the capacity

of some fruit trees to bear fruits relatively early.19 The second assumption builds

on the 20,000 jobs created for GGW implementation in Nigeria and assumes that

the more diverse food consumption reflects an additional income earned by local

communities.20 Unfortunately, DHS data do not allow to further investigate these

transmission channels and to conclude on whether the impact of GGW projects

on child health is directly linked to public expenditures, to an increased access to

edible products or indirectly through increase of agricultural productivity.

19Mango trees start to bear fruits at the age of 5–6 years (Meena and Asrey, 2018). While
a guava grown from seed, will take up to 8 years to produce fruit, trees are more commonly
propagated via cuttings and layering. In this case, guava tree fruiting should occur when the tree
is 3-4 years of age. Orange trees may bear fruits after three to four years. The traditional cashew
tree takes three years from planting before it starts production, and eight years before economic
harvests can begin.

20Some analysis has been run on the impact of GGW projects on labor outcomes but the main
caveat is that the recall period for labor activities is 12 months and doesn’t capture any employ-
ment at the time when the project was created.
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Table 6: Impacts of orchards and shelterbelts on children dietary diversity score

Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Orchard treatment at 15 km :
Post x Close 0.0646 0.0539 0.0618 0.469** 0.450** 0.523**

(0.204) (0.186) (0.188) (0.223) (0.209) (0.209)
Observations 6,503 6,501 6,501 5,825 5,822 5,822
R-squared 0.093 0.317 0.325 0.090 0.313 0.323

Shelterbelt treatment at 15 km :
Post x Close 0.247 0.231 0.253 0.339 0.126 0.0889

(0.305) (0.221) (0.237) (0.324) (0.217) (0.270)
Observations 6,761 6,759 6,759 4,453 4,451 4,451
R-squared 0.087 0.312 0.322 0.085 0.321 0.324

Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
State FE X X

DiD estimations based on 2013 and 2018 DHS. The child is defined has Close if her
community is less than 15 km to at least one specific GGW activity (orchard or shel-
terbelt respectively). Children residing 15-30 km from the specific GGW activity are
excluded from the regressions. Birth FE includes month of birth of child i, year of
birth, and the interaction between the two.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1
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5 Discussion

Western African households are particularly vulnerable to growing soil erosion

under arid climate. This harmful process leaves them with fewer alternatives to

find sources of edible products and to protect their lands. In 2007, policy makers

across the continent committed to an environmental restoration program named

the Great Green Wall. This paper presents the first evidence that an environmen-

tal restoration program, such as the GGW in Nigeria, improves children’s health

by providing better food access to the local populations. We match nationally

representative socio-demographic surveys to precise location of Nigerian GGW

environmental restoration projects to explore the impact of the program on chil-

dren’s height-to-age and dietary diversity score. The heterogeneous exposure to

the projects in time and space allows to distinguish treated households from con-

trol one and establish a DiD model. Parallel trend estimations and IPW method

enrich the empirical framework and control for the identification issues that may

occur from the not-random location of the projects.

The results have important implication for program design since they inform

about the specific types of GGW activities that benefit the most to local children.

First, the estimates show a positive and long-distance impact of orchard activi-

ties on children health whereas shelterbelts are associated with strong health im-

provement of children at a short distance only. The orchards seem to have long

distance impacts on children health since some positive spillovers are still cap-

tured at 20 km. We bring evidence that this health improvement is coupled with

a higher dietary diversity for the surrounding children.

As first causal impact evaluation of the GGW program, we believe that this

paper provides useful preliminary evidence on the positive spillovers of land

restoration projects. However, the GGW program has been implemented hetero-

geneously across Sub-Saharan Africa. For instance, Niger decided to distribute

grains to the local population whereas Burkina Faso tried to rehabilitate lands

through the development of traditional practice in the communities. Therefore,

our results are specific to the Nigerian case but does not provide an overall assess-

ment of GGW effectiveness. The vast range of initiatives undertaken to restore

lands deserve a cross-country and comparative analysis to better capture the spe-
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cific greening activities that may benefit the most to the local population. The

growing availability of remote sensing data and household surveys with GPS co-

ordinates offer a promising path to investigate this question in other settings.
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A Appendices

A.1 Satellite view and summary statistics of the projects

Figure A1: Two Google Earth views of Great Green Wall projects in Nigeria during the
2013-2020 period. Project in these views include 5 shelterbelts and 3 solar powered bore-
holes, which are observed during the winter, before (in 2013) and after (in 2020) their
implementation (in 2015).
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Table A1: Project size summary statistics
Variable Mean Std. Dev. Min. Max. N

Shelterbelts lenght (km) 1.338 0.868 0.65 5 204
Orchards size (ha) 2.829 1.228 1 7 111

Figure A2: Two Google Earth views of Great Green Wall projects in Nigeria during the
2013-2020 period. Project in these views include 4 shelterbelts, a solar powered borehole
and an orchard, which are observed during the winter, before (in 2013) and after (in 2019)
their implementation (2014-2015).
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Figure A3: Two Google Earth views of Great Green Wall projects in Tumbo, Bachaka,
Kebbi, Nigeria (on the border between Niger and Nigeria) during the 2013-2020 period.
Project in these views include a shelterbelt and an orchard, which are observed during
the winter, in 2014 and 2020
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A.2 Distribution of households across DHS waves

Table A2: Distribution of observations among treated and control groups in DHS surveys

10 km 15 km 20 km
2013 2018 2013 2018 2013 2018

Treated Control Treated Control Treated Control Treated Control Treated Control Treated Control
(after 2013) (after 2013) (after 2013)

Orchard 865 9,081 941 8,921 1,441 7,575 1,663 7,498 2,257 6,613 6,313 2,339

Total Sample 9,766 9,862 9,016 9,161 8,870 8,652

Shelterbelt 197 10,530 326 10,329 447 10,097 472 9,522 808 8,867 931 8,665

Total Sample 10,727 10,665 10,544 9,994 9,675 9,596
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A.3 Drop Newly Arrived Households in 2018

Table A3: Impacts of orchards and shelterbelts on children height-to-age z-score

Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Orchard treatment at 15 km :
Post x Close 0.487*** 0.443*** 0.363** 0.728*** 0.683*** 0.487***

(0.162) (0.157) (0.142) (0.178) (0.175) (0.151)
Observations 7,244 7,241 7,241 6,498 6,496 6,496
R-squared 0.088 0.167 0.196 0.095 0.171 0.198

Shelterbelt treatment at 15 km :
Post x Close 0.779** 0.789** 0.636** 1.017*** 0.966*** 0.557

(0.360) (0.332) (0.291) (0.368) (0.309) (0.354)
Observations 7,557 7,555 7,555 5,248 5,246 5,246
R-squared 0.087 0.167 0.195 0.084 0.165 0.177

Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
State FE X X

DiD estimations based on 2013 and 2018 DHS. The child is defined has Close if her com-
munity is less than 15 km to at least one specific GGW activity (orchard or shelterbelt re-
spectively). Children residing 15-30 km from the specific GGW activity are excluded from
the regressions. Birth FE includes month of birth of child i, year of birth, and the interaction
between the two.
All children belonging to households who migrated between 2013 and 2018 are excluded
from the analysis.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1

39



A.4 Exclusion of children above 100 km

Table A4: Impacts of orchards and shelterbelts on children height-to-age z-score

Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Orchard treatment at 15 km :
Post x Close 0.480*** 0.414*** 0.364** 0.765*** 0.710*** 0.547***

(0.164) (0.159) (0.146) (0.184) (0.173) (0.153)
Observations 5,954 5,953 5,953 5,489 5,488 5,488
R-squared 0.090 0.176 0.197 0.096 0.182 0.198

Shelterbelt treatment at 15 km :
Post x Close 0.784** 0.817** 0.652** 0.938** 0.963*** 0.596**

(0.351) (0.320) (0.283) (0.402) (0.322) (0.301)
Observations 4,667 4,665 4,665 3,675 3,675 3,675
R-squared 0.085 0.178 0.204 0.079 0.178 0.192

Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
State FE X X

DiD estimations based on 2013 and 2018 DHS. The child is defined has Close if her com-
munity is less than 15 km to at least one specific GGW activity (orchard or shelterbelt re-
spectively). Children residing 15-30 km from the specific GGW activity are excluded from
the regressions. Birth FE includes month of birth of child i, year of birth, and the interaction
between the two.
All children living in communities more than 100 km away from an orchard or a shelterbelt
are dropped from the analysis.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1
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A.5 Annual cumulative rainfall averages fixed effects

Table A5: Impacts of orchards and shelterbelts on children height-to-age z-score

Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Orchard treatment at 15 km :
Post x Close 0.478*** 0.437*** 0.475*** 0.540*** 0.505*** 0.450**

(0.159) (0.156) (0.172) (0.173) (0.160) (0.180)
Observations 7,352 7,350 7,350 6,655 6,653 6,653
R-squared 0.088 0.167 0.176 0.087 0.165 0.182

Shelterbelt treatment at 15 km :
Post x Close 0.740** 0.747** 0.895*** 0.740* 0.713** 0.829**

(0.355) (0.326) (0.315) (0.381) (0.322) (0.339)
Observations 7,666 7,664 7,664 3,357 3,355 3,355
R-squared 0.087 0.168 0.178 0.088 0.177 0.195

Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
Rainfall FE X X

DiD estimations based on 2013 and 2018 DHS. The child is defined has Close if her com-
munity is less than 15 km to at least one specific GGW activity (orchard or shelterbelt re-
spectively). Children residing 15-30 km from the specific GGW activity are excluded from
the regressions. Birth FE includes month of birth of child i, year of birth, and the interaction
between the two.
The child is defined has Close if her community is less than 15 km to at least one orchard
or one shelterbelt.
*** p<0.01, ** p<0.05, * p<0.1
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A.6 Orchards, shelterbelts and boreholes together

Table A6: Impacts of all GGW projects on children height-to-age z-score
Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Orchard or shelterbelt or borehole treatment at 15 km :
Post x Close 0.414*** 0.385** 0.300** 0.640*** 0.602*** 0.393***

(0.155) (0.151) (0.144) (0.179) (0.173) (0.151)
Observations 7,509 7,507 7,507 6,766 6,764 6,764
R-squared 0.087 0.165 0.193 0.092 0.168 0.193

Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
State FE X X

DiD estimations based on 2013 and 2018 DHS. Treatment assignment is defined as being closed (less than 15
km) to at least one orchard, one shelterbelt, or one borehole. Children residing 15-30 km from any GGW activity
are excluded from the regressions. Birth FE includes month of birth of child i, year of birth, and the interaction
between the two.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1
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A.7 Joint Projects (Shelterbelt/Borehole and Orchard/Borehole)

Table A7: Impacts of joint projects on children height-to-age z-score

Without IPW With IPW

(1) (2) (3) (1) (2) (3)

Joint orchard/borehole treatment at 15 km :
Post x Close 0.713*** 0.732*** 0.557*** 0.851*** 0.920*** 0.645**

(0.248) (0.234) (0.201) (0.274) (0.265) (0.254)
Observations 7,363 7,361 7,361 4,345 4,344 4,344
R-squared 0.088 0.171 0.199 0.076 0.165 0.195

Joint shelterbelt/borehole treatment at 15 km :
Post x Close 1.012*** 1.034*** 0.691** 0.918** 0.869*** 0.331

(0.371) (0.301) (0.315) (0.389) (0.322) (0.374)
Observations 7,448 7,446 7,446 3,079 3,077 3,077
R-squared 0.091 0.172 0.200 0.103 0.196 0.205

Individual Controls Xijmys X X X X X X
POSTj x Xijmys X X X X X X
Birth FE X X X X
State FE X X

DiD estimations based on 2013 and 2018 DHS. Treatment assignment is defined as being closed (less
than 15 km) to a Orchard project joint with a borehole or to a Shelterbelt Project joint with a borehole.
Children living close to orchard or shelterbelt projects alone are dropped from the analysis to avoid
biased estimates.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1
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A.8 Impacts on other health outcomes

Table A8: Impacts of orchards and shelterbelts on other health outcomes
Fever Diarrhea Cough Vaccination Family planning

Orchard treatment at 15 km :
Post x Close -0.00789 -0.0381 0.0726** 0.0259 -0.0116 -0.0286 0.104 0.0380 -0.0532 0.0301

(0.0347) (0.0382) (0.0319) (0.0322) (0.0263) (0.0325) (0.0635) (0.0670) (0.0477) (0.0500)
Observations 8,316 7,424 8,321 7,436 8,293 7,403 7,528 6,743 8,350 7,458
R-squared 0.146 0.147 0.120 0.137 0.111 0.115 0.202 0.172 0.127 0.126

Shelterbelt treatment at 15 km :
Post x Close 0.0321 0.00927 0.0227 -0.00375 0.0201 0.0686 -0.0798 -0.0513 -0.248*** -0.183*

(0.0534) (0.0535) (0.0536) (0.0381) (0.0344) (0.0512) (0.0901) (0.102) (0.0590) (0.0950)
Observations 8,668 5,967 8,673 5,976 8,648 5,953 7,884 5,472 8,705 5,995
R-squared 0.141 0.145 0.110 0.122 0.107 0.126 0.206 0.178 0.126 0.121

Individual Controls Xijmys X X X X X X X X X X
POSTj x Xijmys X X X X X X X X X X
Birth FE X X X X X X X X X X
State FE X X X X X X X X X X
IPW X X X X X

DiD estimations based on 2013 and 2018 DHS. The child is defined has Close if her community is less than 15 km to at least one
specific GGW activity (orchard or shelterbelt respectively). Children residing 15-30 km from the specific GGW activity are excluded
from the regressions. Birth FE includes month of birth of child i, year of birth, and the interaction between the two.
Standard errors in parentheses are clustered at the community level (DHS clusters).
*** p<0.01, ** p<0.05, * p<0.1

44



CEE-M Working Papers1 - 2023 
 

 
WP 2023-01  Pauline Castaing & Antoine Leblois 

« Taking firms’ margin targets seriously in a model of competition in supply 
functions » 

 
 
 

 
 
 
 
 
 
 
 

                                                           
1 CEE-M Working Papers / Contact : laurent.garnier@inrae.fr 

 RePEc https://ideas.repec.org/s/hal/wpceem.html  
 HAL https://halshs.archives-ouvertes.fr/CEE-M-WP/ 

 

mailto:laurent.garnier@inrae.fr
https://ideas.repec.org/s/hal/wpceem.html
https://halshs.archives-ouvertes.fr/CEE-M-WP/

	Introduction
	Context and Data
	The Great Green Wall in Nigeria
	The program
	The data
	Ecosystemic services and other potential impacts

	Health of Nigerian Children

	Empirical Framework
	Results
	Main results
	Heterogeneous impacts
	Channels

	Discussion
	Appendices
	Satellite view and summary statistics of the projects
	Distribution of households across DHS waves
	Drop Newly Arrived Households in 2018
	Exclusion of children above 100 km 
	Annual cumulative rainfall averages fixed effects
	Orchards, shelterbelts and boreholes together
	Joint Projects (Shelterbelt/Borehole and Orchard/Borehole)
	Impacts on other health outcomes


