

Calibration comparison between two passive samplers -o-DGT and POCIS- for 109 hydrophilic emerging and priority organic compounds

Bertille Bonnaud, Nicolas Mazzella, Pierre Boutet, Amandine Daval, Cécile Miège

► To cite this version:

Bertille Bonnaud, Nicolas Mazzella, Pierre Boutet, Amandine Daval, Cécile Miège. Calibration comparison between two passive samplers -o-DGT and POCIS- for 109 hydrophilic emerging and priority organic compounds. *Science of the Total Environment*, 2023, 869, pp.161720. 10.1016/j.scitotenv.2023.161720 . hal-03958711

HAL Id: hal-03958711

<https://hal.inrae.fr/hal-03958711v1>

Submitted on 31 Mar 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Calibration comparison between two passive samplers -o-DGT and POCIS- for 109 hydrophilic emerging and priority organic compounds

Bertille Bonnaud^{a*}, Nicolas Mazzella^a, Pierre Boutet^b, Amandine Daval^b, Cécile Miège^b

^aInrae, UR EABX, 50 avenue de Verdun, 33612 Cestas, France

^bInrae, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France

* Corresponding author.

1 **ABSTRACT**

2 The Polar Organic Chemical Integrative Samplers (POCIS) is the most widely used passive
3 sampler for hydrophilic compounds, but unsuitable for certain ionic organic contaminants.

4 The Diffusive Gradient in Thin-Film technique (o-DGT) has shown positive results for both
5 ionic and hydrophilic compounds. However, a calibration step is now needed to evaluate
6 kinetic constant of accumulation for a wide range of molecules.

7 In this study, o-DGT and POCIS were compared for the sampling of three families of
8 micropollutants of potential risk to aquatic environments: 53 pesticides, 36 pharmaceuticals
9 and 20 hormones. A calibration experiment was conducted to compare the kinetic models and
10 constants from a scientific and practical perspective. The results are discussed in a single table
11 that summarizes the performance of both passive samplers for the 109 compounds of interest.

12 The advantage of o-DGT is that it allows linear accumulation for 72 compounds versus only
13 33 with POCIS. The mean times to equilibrium obtained with o-DGT are higher than those
14 obtained with POCIS. These results confirm that the presence of a diffusion gel delays the
15 achievement of equilibrium during compound accumulation. Therefore, o-DGT can be
16 considered for situations where POCIS cannot be used due to non-linear accumulation over a
17 typical 14-day deployment period. However, overall sampling rates and mass transfer
18 coefficients also appear reduced with o-DGT, which is explained by the smaller exchange
19 surface area, as well as the consideration of an additional diffusive layer in this device. This
20 paper also showed that the most appropriate membrane to sample polar compounds with o-
21 DGT was a polyethersulfone polymer with a pore size of 5 μm .

22

23 **INTRODUCTION**

24 Passive sampler devices (PSD) were developed in order to improve sampling and thus the
25 determination of the chemical contamination level in aquatic environments (Huckins et al.,
26 2006; Vrana et al., 2005). These passive sampling tools have several advantages. For example,
27 sampling over a more or less long period of time (a few days to several months) makes it
28 possible to obtain a better temporal representativeness by determining the average
29 micropollutant concentration over the exposure period (TWAC for time-weighted average
30 concentration). Passive sampling also allows the pollutants to be extracted and pre-
31 concentrated in situ, which limits the problems of sample conservation and allows the
32 assessment of the concentration of trace pollutants ($< \text{ng L}^{-1}$). Recently, PSD were officially

33 adopted in France as possible tools for improving the regulatory monitoring of water quality
34 (introduction of these tools for certain substances in the new French monitoring decree of
35 2022, establishing the monitoring program for water status, , April 2022,
36 <https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000045780020>).

37 For TWAC calculation, kinetic constants for each compound have to be determined in
38 laboratory or *in situ* by achieving calibrations.

39 Passive sampling of hydrophobic compounds is now well developed but many uncertainties
40 still exist, in particular for the sampling of hydrophilic and ionic compounds (Miège et al.,
41 2015). Currently, the most commonly used passive sampler for hydrophilic compounds is
42 POCIS (Polar Organic Chemical Integrative Sampler). However, POCIS remains unsuitable
43 for sampling some ionic organic contaminants such as acid herbicides. It has been shown that
44 the half time to reach equilibrium ($t_{1/2}$) for ionic compounds was often lower than that
45 observed for neutral compounds and mostly lower than 14 days (Morin et al., 2013). This is a
46 problem given that PSD cannot be placed in the field for a longer time than their $t_{1/2}$,
47 otherwise the linear regime of accumulation is not applicable. In addition, a phenomenon of
48 delayed accumulation (i.e. "lag phase") can be observed, most generally for neutral
49 hydrophobic compounds ($\log K_{OW} > 4$), such as hormones (Morin et al., 2013). On the
50 contrary, a rapid accumulation at the beginning of exposure leading to a biphasic
51 accumulation (i.e. "burst effect") has been observed for anionic compounds (Bäuerlein et al.,
52 2012, Fauville et al. 2014; Morin et al. 2013), and less generally for a few neutral compounds
53 with a $\log K_{OW} < 3$ (Morin et al., 2013). This phenomenon may be partly due to the initial
54 wetting of the membrane and/or the adsorbent phase, which would increase accumulation
55 rates (Mazzella et al., 2007). These different phenomena can make kinetic models
56 inapplicable in this case (anisotropic exchanges), making any TWAC estimation difficult.

57 Given the limitations noted to date, an alternative to POCIS is to adapt the DGT (Diffusive
58 Gradient in Thin film) technique, initially developed for metals in labile form (Davison and
59 Zhang, 1994), to organic compounds (Chen et al., 2012). Nowadays, many compounds are
60 studied with this technique, mainly pharmaceuticals and pesticides (Amato et al., 2018; Chen
61 et al., 2013; Ren et al., 2018; Stroski et al., 2018). Each component of o-DGT can be chosen
62 according to the compounds studied. o-DGT was generally optimized only for fewer than 20
63 compounds, mainly from the same chemical family or similar structures. Membranes used on
64 o-DGT device have to respect two criteria: (i) to ensure the protection of o-DGT and thus of
65 diffusive gel and resin, (ii) not to interfere with the diffusion of compounds from the sampled

medium to the resin. Polyethersulfone (PES) is the most used and reported membrane for the sampling of many organic compounds (Mechelke et al., 2019) including pharmaceuticals and especially antibiotics (Chen et al., 2015, 2014, 2013, 2012; Ren et al., 2018; Xie et al., 2018; Zhang et al., 2018). This PES material, also used with POCIS, has the advantage of being effective in limiting biofouling (Uher et al., 2012). However, this membrane presents the disadvantage of accumulating some hydrophobic compounds (Challis et al., 2016; Chen et al., 2017; D'Angelo and Starnes, 2016; Xie et al., 2018; Zhang et al., 2019; Zheng et al., 2015). Concerning diffusive gel, agarose gel is mainly used for the sampling of many organic compounds including pharmaceuticals, pesticides, bisphenols, parabens or flame-retardants. Resin is composed of a gel and a receiving phase. The gel used is generally the same as that used as a diffusive gel, while receiving phases are chosen according to their affinity to the compounds studied. For this purpose, the accumulation of compounds in the receiving phases or resins, the elution yield and the maximum capacity of the receiving phases or resin are studied. The Oasis® HLB and XAD-18 phases are the two most used receiving phases (Amato et al., 2018; Challis et al., 2016; Chen et al., 2012; Guo et al., 2017; Zhang et al., 2018; Zou et al., 2018). In the case of o-DGT, the calibration step is not essential, when diffusive constants are available. Indeed, the diffusion of the compounds through the diffusive layer (gel and/or membrane) can be determined using other methods such as the diffusion cell method or slice stacking method (Bonnaud et al., 2021). However, these methods do not provide access to the accumulation kinetics and sampling rates of the entire tool. Consequently, calibration experiments were carried out in few studies for some organic compounds such as pharmaceuticals and pesticides (Belles et al., 2017; Buzier et al., 2019; Challis et al., 2016; Fauville et al., 2015; Urík and Vrana, 2019; Xie et al., 2018; Zhang et al., 2019).

The aim here was to calibrate the assembled o-DGT under controlled flow and temperature conditions, in order to determine its performances (i.e. sampling rates, half time to equilibrium, achievable limits of quantifications, etc.). This calibration was performed with a large panel of 109 compounds covering a wide range of physico-chemical properties. They represent three families of micropollutants (pesticides, pharmaceutical compounds and hormones), occurring in aquatic environments and presenting a potential risk of toxicity. In this study, the more usual POCIS were also studied allowing comparison with o-DGT.

97 1. **EXPERIMENTAL SECTION**

98

1.1. Consumables and standard solutions

99 Ultrapure water (UPW) was produced by a Synergy UV system from Millipore (Billerica,
100 MA, USA). Methanol (MeOH), acetonitrile (ACN) and ethyl-acetate (EA) were purchased
101 from Biosolve (Dieuze, France). Pharmaceuticals POCIS were purchased from Exposmeter
102 (Tavellsjö, Sweden). o-DGT media were purchased from DGT Research (Lancaster, UK). For
103 o-DGT preparation, PES membranes (both pore sizes) and 0.45 µm nylon membranes
104 (Nylaflo) were purchased from Pall (USA). The 5 µm nylon membranes, were purchased
105 from Fisher Scientific (France) and cellulose membranes (0.45 and 5 µm pore sizes) were
106 purchased from Whatmann (UK). For diffusive gel and resin, agarose powder was purchased
107 from Sigma-Aldrich (Schnelldorf, Germany). Oasis® HLB phase used for resins is packaged
108 in the form of a 6 g polypropylene cartridge (particle size 30 µm, specific surface 810 m² g⁻¹,
109 divinylbenzene N-vinyl-pyrrolidone, Waters, France). Suppliers and purity of analytical
110 standards and internal standards are described in Table S2 and Table S3. Associated
111 pesticides and internal standards were purchased from Dr. Ehrenstorfer GmbH (Augsburg,
112 Germany) (purity > 95.5%). Hormones were obtained from Sigma Aldrich (Schnelldorf,
113 Germany) and from LGC Standards (Luckenwalde, Germany) (purity > 95.6%). Internal
114 standards associated to hormones were purchased from CDN isotopes (Sainte-Foy-la-Grande,
115 France), AlsaChim (Illkirch-Graffenstaden, France) and Santa Cruz (Heidelberg, Germany)
116 (purity > 95.1%). Pharmaceuticals were obtained from CIL (Sainte-Foy-la-Grande, France),
117 Sigma Aldrich (Saint-Quentin Fallavier, France), VWR (Fontenay-sous-Bois, France) and
118 CIL (Sainte-Foy-la-Grande, France) (purity > 95%). Internal standards of pharmaceuticals
119 were obtained from CIL (Sainte-Foy-la-Grande, France) (purity > 98%). Stock solution of
120 studied compounds were prepared at 200 mg L⁻¹ in ACN or MeOH, which was used to
121 prepare a solution at 5 mg L⁻¹. Internal standard solutions were also prepared in ACN or
122 MeOH at 1 mg L⁻¹ for pesticides and hormones and at 200 µg L⁻¹ for pharmaceuticals. All
123 working solutions were stored at -18°C for six months at the longest.

124

1.2. Characteristics of the studied molecules

125 The 109 studied compounds, as well as their physico-chemical properties, are reported in the
126 supplementary information (SI) (Table S1). The studied compounds were chosen to cover a
127 wide range of physico-chemical properties.

128

129 A total of 60 pesticides, 20 hormones and 45 pharmaceutical compounds were studied. Their
130 physico-chemical properties are described in Table S1. The molar masses of the compounds
131 studied ranged from 129 to 749 g mol⁻¹. The log Dow of the compounds studied, taking into
132 account the log Kow (hydrophobicity) and the pKa (ionisation), ranged from - 3.6 to 5.2 at pH
133 7.4. Insecticides and fungicides studied are all in their neutral form at pH 7, while the
134 herbicides and metabolites studied are, depending on the compound, in anionic or neutral
135 form. The majority of the pesticides are hydrophilic (log Kow < 2) to moderately hydrophilic
136 (log Kow < 3) and only 15 are hydrophobic (log Kow > 4) to moderately hydrophobic (log
137 Kow > 3). Hormones are in their neutral form at pH 7 and are predominantly hydrophobic to
138 moderately hydrophobic. The pharmaceutical compounds studied are predominantly
139 hydrophilic to moderately hydrophilic. They are found in their neutral, anionic or cationic
140 form at pH 7.

141 1.3. DGT preparation

142 AG diffusive gels (1.5 % AG) were prepared by placing AG in boiling UPW until dissolution.
143 The mixture was cast between two preheated glass plates separated by Teflon spacers (1 mm
144 thickness) and left to cool down until gelling. For the preparation of resins, 12 mL of mixture
145 AG were mixed with 2 mg of Oasis HLB phase, cast between glass plates separated by Teflon
146 spacers (0.5 mm thickness) and left for polymerization.
147 All gels and resins were hydrated in UPW for at least 24 hours (UPW was changed 2 times).
148 For all gels and resins, we obtained 1 and 0.5 mm thick gel plates respectively. Indeed, gels
149 and resins do not swell during hydration. Diffusive gels and resins of 2.5 cm diameter were
150 cut out. Gels and resins were stocked in UPW at 4°C before o-DGT preparation. In order to
151 choose the most adapted membrane, several experiments were carried out: protection of
152 diffusion gel and resin by six membranes (PES, cellulose and nylon at two pore size (0.45 µm
153 and 5 µm)) *in situ*, accumulation compounds in the six tested membranes and effect on
154 diffusion compounds of 4 membranes (PES and nylon at both pore size) (see SI for details on
155 experiment procedure). o-DGT were prepared by superposing a resin, an AG diffusive gel and
156 a PES membrane (5 µm) inside a piston type molding (DGT Research, Lancaster, UK).
157 Before exposure, o-DGT were stored at 4°C.

158 1.4. Calibration setup

159 The calibration system consisted of two aquariums filled with 50 L of tap water initially
160 spiked at a nominal concentration of 5 $\mu\text{g L}^{-1}$. In order to prevent concentration variation
161 during the experiment, 15 % of total water volume was renewed every day with freshly spiked
162 tap water using a peristaltic pump (15 L day $^{-1}$ for both aquariums) and overflow. Tap water
163 was spiked using a syringe pump filled with spiking solution (50 mg.L $^{-1}$). The calibration
164 system used in this study was the same as the one used by Morin et al (2013) which provides
165 a water flow of around 10 cm.s $^{-1}$ by a diffusion ramp connected to an immersed pump. The
166 system was maintained at 20°C by a thermostated water-bath. Water concentration was
167 measured twice a week. Triplicates of o-DGT were exposed for 1, 3, 7, 10, 14, 21 and 28 days
168 and triplicates of POCIS were exposed for 1, 2, 6, 12 hours and 1, 3, 7, 10, 14, 21 and 28 days.
169 Temperature and physico-chemical parameters such as pH, conductivity and ionic strength
170 (IS) were followed throughout the entire calibration period in each aquarium. Conductivity
171 was $369.5 \pm 12.1 \mu\text{S.cm}^{-1}$ (n=44), pH was 8.2 ± 0.1 (n=44), ionic strength was $1.1 \pm$
172 $0.003.10^{-2}$ mol L $^{-1}$ (n=10) and temperature was 20.8 ± 0.4 °C (n=4104). For all these
173 parameters, relative standard deviations were inferior to 3 %.

174 **1.5. Sample preparation before analysis**

175 *Passive sampler.* After exposure, o-DGT were disassembled immediately and resins were
176 eluted. The elution procedure consists of leaving resin in 5 mL of MeOH for 24 h, then in 2.5
177 mL of MeOH twice for 10 min (ultrasonic). Eluents were evaporated under a dry gentle flow
178 of N $_2$ and reconstituted into 1 mL of ACN. POCIS were disassembled and the sorbent was
179 transferred into an empty solid-phase extraction (SPE) cartridge using ultrapure water and
180 then dried under N $_2$. Elution of pesticides was performed using 3 mL of MeOH and then 3 mL
181 of MeOH/EA 75/25. After elution, samples in solvents were evaporated under a gentle
182 nitrogen flow and reconstituted with 1 mL of ACN. Elution of pharmaceuticals and hormones
183 was performed using 10 mL of MeOH, then 10 mL of MeOH/DCM 50/50. In order to purify
184 the extracts, they were filtered through an Oasis[®] HLB (6 mL, 200 mg) cartridge. Extracts
185 obtained were divided into two parts (one part for hormones analysis and the other for
186 pharmaceuticals analysis). After elution, extracts were evaporated under a gentle nitrogen
187 flow at 30 °C (TurboVap, Uppsala, Sweden). For hormones, extracts were reconstituted with
188 500 μL of UPW/MeOH 65/35 (v/v) and for pharmaceuticals analysis, extracts were
189 reconstituted with 500 μL of UPW/ACN 95/5 (v/v). To stay in analytical calibration range,
190 each PSD extract was diluted, depending on exposure time, to obtain adequate mobile phase

191 mixtures (65/35 UPW/MeOH for hormones, 95/5 UPW/ACN for pharmaceuticals, 95/10
192 UPW/ACN for neutral pesticides and 10/90 UPW/ACN for anionic pesticides).

193 Water. For hormones and pharmaceuticals analysis, water samples were analyzed by direct
194 injection after dilution to obtain the adequate mobile phase mixtures described above. For
195 pesticides analysis, 2 mL of water were evaporated using a Speedvac concentrator SAVANT
196 SPD121P (Thermo Fisher Scientific; Villebon sur Yvette, France) and reconstituted into
197 adequate mobile phase mixture.

198 **1.6.Theory and modelling – determination of sampling rates & accumulation**
199 **model selection**

200 After the exposure of a passive sampler to an aquatic environment, contaminant transfer
201 occurs from the water to the passive sampler receiving phase. The accumulation of
202 compounds in the receiving phase of the passive sampler can be generally modelled by the
203 following Fickian diffusion relationship:

$$dN/dt = R_s(C_W - (N/(M_S K_{SW}))) \quad \text{Equation 1}$$

204 with N being the amount sampled (g), R_s the sampling rate (L d^{-1}), M_S the sorbent mass (g),
205 C_W the concentration in water (g L^{-1}), and K_{SW} the global equilibrium constant between the
206 sampler and aqueous media (L g^{-1}).

$$N = C_W M_S K_{SW} (1 - \exp(-R_s t / M_S K_{SW})) \quad \text{Equation 2}$$

207 By dividing both sides of Equation 2 by the sorbent mass, it allows the use of the
208 concentration in the sampler (C_S) (Equation 3), and thus the determination of the
209 concentration factor (CF) (Equation 4)

$$C_S = C_W K_{SW} (1 - \exp(-(R_s t) / M_S K_{SW})) \quad \text{Equation 3}$$

$$CF = C_S / C_W = K_{SW} (1 - \exp(-(R_s t) / M_S K_{SW})) \quad \text{Equation 4}$$

210 In addition, the elimination rate constant (k_e) can be defined by Equation 5. This constant can
211 also be related to $t_{1/2}$, corresponding to the time it takes to reach 50 % of equilibrium
212 (Equation 6).

$$k_e = R_s / M_S K_{SW} \quad \text{Equation 5}$$

$$t_{1/2} = \ln 2 / k_e \quad \text{Equation 6}$$

213 During the linear regime ($t < t_{1/2}$), or when considering $K_{SW} \rightarrow \infty$, Equation 4 can be
214 reduced and expressed with the sampling rate as follows:

$$CF = C_S / C_W = R_s t / M_S \quad \text{Equation 7}$$

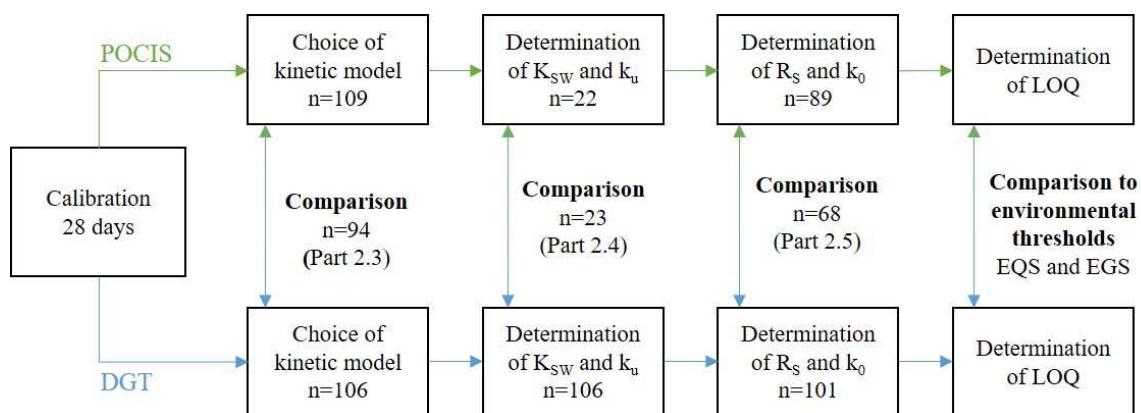
215

216 The mass transfer resistance, which is related to sampling rates, depends on thickness,
217 distribution constant and diffusion coefficient between each compartment. For o-DGT, this
218 mass transfer resistance can be described by Equation 8.

$$1/k_0 = A/R_S = 1/k_w + 1/k_m K_{MW} + 1/k_g K_{GM} + 1/k_s K_{SG} \quad \text{Equation 8}$$

219 with k_0 being the overall transfer mass coefficient, k_w , the transfer mass coefficient in DBL,
220 k_m , the transfer mass coefficient in membrane, k_g , the transfer mass coefficient in diffusive
221 gel, k_s , the transfer mass coefficient in receiving phase, K_{MW} , the partition coefficient
222 between membrane and water, K_{GM} , the partition coefficient between gel and membrane and
223 K_{SG} , the partition coefficient between gel and receiving phase.

224 **1.7. Analytical methods**


225 Pesticides were analyzed with Dionex Ultimate 3000 HPLC (Thermo Fisher Scientific,
226 Villebon-sur-Yvette, France). An API 2000 tandem mass spectrometer (Sciex, Villebon-sur-
227 Yvette, France) was used for detection. Chromatographic separation of anionic pesticides was
228 performed on Macherey-Nagel zwitterionic Nucleodur HILIC 3 μm , 100 \AA , 125 mm \times 2 mm
229 while neutral pesticides were separated with a Gemini-NX C18 (3 μm , 100 \times 2 mm) column
230 by a SecurityGuard cartridge Gemini-NX C18 (4 \times 2.0 mm) (Phenomenex, Le Pecq, France).
231 Pharmaceuticals and hormones were analyzed using Acquity H Class coupled XECO TQ-XS
232 tandem mass spectrometer (Waters, Saint-Quentin-en-Yvelines, France). Chromatographic
233 separation of pharmaceuticals was performed by a C18 HSS T3 column (1.8 μm , 2.1 \times 100
234 mm), while a C18 BEH (1.7 μm , 2.1 \times 100 mm) column was used for hormones separation
235 (Waters, Saint-Quentin-en-Yvelines, France). Internal calibration was performed by a linear
236 curve from 0 to 100 $\mu\text{g L}^{-1}$ for pesticides and from 0.01 to 50 $\mu\text{g L}^{-1}$ for pharmaceuticals and
237 hormones. The accuracy of analysis was ensured by quality controls (standards at 0.5 and
238 25 $\mu\text{g L}^{-1}$ for pesticides and at 0.5 and 10 $\mu\text{g L}^{-1}$ for hormones and pharmaceuticals) and
239 analytical blanks every 10 samples. All mass parameters, elution gradients and
240 chromatographic conditions are described in SI (from Table S4 to Table S10).

241 **1.8. Data processing and procedure**

242 To clarify the results presented and discussed in parts 2.3 to 2.6, the Figure 1 gives an
243 overview on the number of molecules for which it was possible to choose a kinetic model and
244 to calculate kinetic constants, equilibrium constants and limit of quantification (LOQ). A

245 decision tree representing method used to choose the model is described in Figure S1. Quickly,
 246 when CF could be calculated for more than 3 points, CF were fitted with a non-linear (NLS)
 247 regression model (i.e. Equation 4) for each compound and each PS. In the case that the non-
 248 linear model cannot be fitted for the accumulation of compounds (i.e. either because $t_{1/2} > 21$
 249 days or no convergence of the K_{SW} variable occurs), then CF were fitted with a linear (LM)
 250 regression model (i.e. Equation 7). In order to choose and evaluate the fitting of the regression
 251 models, regression characteristics (intercept, p-values and R^2) and standardized residuals were
 252 studied. Data processing (choice of kinetic model and kinetic constant determination) and
 253 graphical representations were performed with R software (R Core Team, 2018) using the
 254 packages “dplyr” (Wickham et al., 2019), “tidy” (Wickham and Henry, 2019), “tidyverse”
 255 (Wickham, 2017), “purr” (Henry and Wickham, 2019), “broom” (Robinson and Hayes, 2019)
 256 and “ggplot2” (Wickham, 2016).

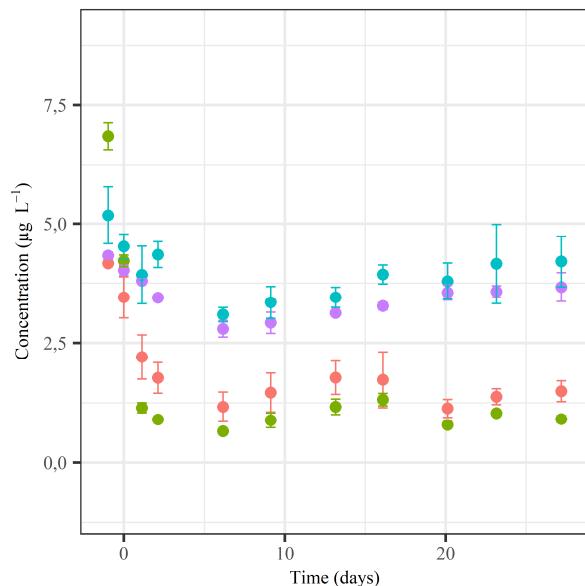
257

258
 259
 260

Figure 1: Number of substances with reliable kinetic model and accumulation constants, according to the PSD.

261 2. RESULTS AND DISCUSSION

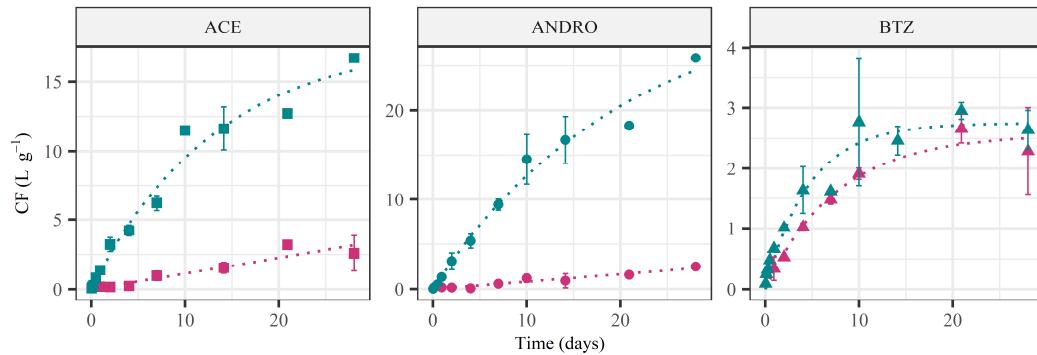
262 2.1. Most adapted membrane for sampling of studied compounds using o- 263 DGT


264 The following section describes results of the experiment carried out with the aim of choosing
 265 a membrane. More details are indicated in SI. The experiment to test protection of the
 266 diffusion gel and the resin by membranes showed that the agarose gel not protected by a
 267 membrane completely disappeared, contrary to gel protected by a membrane. Membranes
 268 were effective in protecting the diffusion gel in the field. Mass loss was higher with cellulose
 269 membranes, which can be explained by the fact that cellulose membranes are probably

270 degraded by microorganisms in the field (Alvarez et al., 2004). Mass loss is lower with PES
271 membranes of both pore sizes. Mass losses seemed to depend mainly on the membrane used
272 and not on pore size. The percentage of accumulated mass in membranes is represented in
273 Figure S4. The number of accumulated compounds decreased with increasing pore size for all
274 membranes tested. Membranes with a pore size of 5 μm therefore appear to be the most
275 suitable for these compounds. Among the 5 μm pore size membranes, the nylon and PES
276 membranes accumulated fewer compounds than the cellulose membrane. As the cellulose
277 membrane accumulates too many compounds, it will not be studied in the following sections.
278 In order to quantify the effect of the membranes on the diffusion coefficients, the ratio of the
279 diffusion coefficients determined in the presence and absence of the membrane were
280 determined and represented in Figure S5. For all tested membranes, diffusion coefficients were
281 less impacted with 5 μm pore size membranes. With PES membrane, a majority of the
282 compounds had similar diffusion coefficients with and without the membrane and
283 consequently did not seem to affect the diffusion of a large proportion of the compounds
284 studied. Based on the results, PES membrane with pore size of 5 μm was chosen for sampling
285 pesticides, pharmaceuticals and hormones using the o-DGT technique. This is a good
286 compromise between compound accumulation, gel protection in the field and the effect on
287 diffusion coefficients.

288 **2.2. The water concentration during calibration**

289 Concentrations determined during the calibration experiment are reported in Table S12 and
290 represented for 4 compounds throughout the calibration experiment in Figure 2.
291 Concentration in water decreased slightly in the beginning of the calibration (6 days)
292 experiment and then remained stable until the end of experiment. This decrease is
293 proportionally linked to hydrophobicity of compounds. Concentration in water ranged from
294 0.3 to 7.9 $\mu\text{g L}^{-1}$ (median = 3.5 $\mu\text{g.L}^{-1}$). For 54 compounds, measured concentration was close
295 to the nominal value (5 $\mu\text{g L}^{-1}$). For 52 compounds, measured concentration was inferior to
296 nominal value (difference > 30 %). Measured concentration was less than 1 $\mu\text{g L}^{-1}$ for 5
297 compounds (FENO, SPIRO, DPA, MSF and DIES). For FENO, SPIRO and DIES, a 90%
298 decrease in concentration was observed during the 24 hours preceding the start of PSD
299 exposure. FENO and DIES may adsorb onto the calibration system due to their highly
300 hydrophobic nature. Moreover, a diminution of FENO concentration in calibration system
301 was already observed (Morin et al., 2013). The low concentration of these compounds could


302 be explained by half-life probably lower than the daily turnover rate of the water in the
303 calibration system. To avoid bias in the determination of FC, the water concentrations used
304 were the average ones during the PSD exposure period and not over the whole calibration
305 experiment.

306
307 *Figure 2: Concentration in water measured during calibration experiment for 4 compounds :*
308 *CLINDA in red (pharmaceutical, cationic compound), DES in green (hormone, neutral*
309 *compound), FLM in blue (pesticide, neutral compound) and ISF in purple (pesticide, anionic*
310 *compound).*

311 **2.3. Comparison of kinetic models**

312 This section describes and discusses accumulation kinetics obtained during the calibration
313 experiment for both PS. Concentration factor versus time curves (example represented in
314 Figure 3) allow us to assign an accumulation type to the studied compound (see decision tree
315 illustrated in Figure S1). The type of accumulation attributed to each compound in the
316 function of PSD is indicated in Table 1.

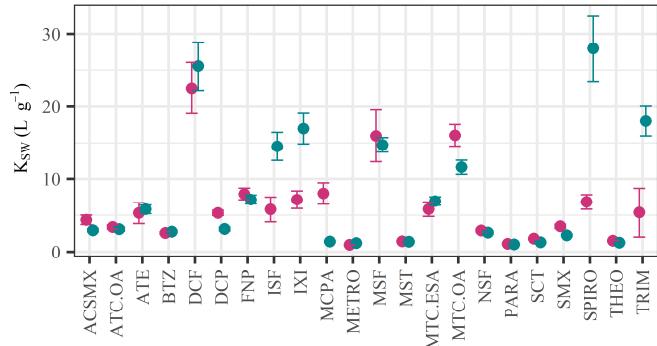
317

318 *Figure 3 : Concentration factor (CF) throughout the calibration experiment for three organic*
 319 *compounds (acetamiprid (ACE), androstenedione (ANDRO) and bentazone (BTZ)) and*
 320 *associated regressions with POCIS (in green) and o-DGT (in pink).*

321 For some compounds, accumulation kinetics could not be determined due to the very low
 322 accumulation of compounds throughout the exposure period ($CF < 1$). This is the case for
 323 dicamba and metformin with both types of PS. Consequently, these compounds were not
 324 studied. Moreover, accumulation kinetics of compounds for which the concentration factor
 325 was determined for less than 3 exposure times were not studied. This is the case for 9
 326 compounds with o-DGT. Finally, this section describes accumulation kinetic curves obtained
 327 for 94 compounds in the case of o-DGT and 107 compounds for POCIS. In the case of o-DGT,
 328 22 compounds followed non-linear accumulation and 72 compounds followed linear
 329 accumulation. For POCIS, a linear regression model was selected for 33 compounds while
 330 non-linear models provided a better fitting for 74 compounds. Accumulation kinetics
 331 determined with POCIS and o-DGT were compared for 94 compounds. For 46 compounds,
 332 the kinetic model used was the same between the two PS. However, the use of o-DGT
 333 allowed the linear accumulation of 48 compounds that follow a non-linear accumulation with
 334 POCIS. The presence of diffusive gel on the DGT delayed equilibrium from being reached
 335 during the accumulation of compounds.

336

337 *Table 1: Accumulation models, chosen using decision tree (Figure S1), for each compound*
 338 *depending on PS. * : compounds for which a non-linear phase was observed but with $t_{1/2}$*
 339 *greater than 21 days, thus classified in the group of linear models. The compounds in blue are*
 340 *neutral compounds, the compounds in green are anionic compounds and those in orange are*
 341 *cationic compounds. All kinetic constants are reported in Table S13 for o-DGT and Table S14*
 342 *for POCIS.*


POCIS (n=109)	o-DGT (n=106)
Linear regression (n=33) Hormones : DES - MEDROX	Linear regression (n=72) Hormones : aE2 - ANDRO - ANDROSTER* - bE2 - CORT - CORT.OH - DES - DEXA - DIES - DROSPI - E1 - E3 - EE2 - EPI-TESTO - LEVO - MEDROX - MEG.AC - NORE - PROG - TESTO
Pesticides : ATC - ATZ - AZS - CTL - CYPRO - DCPMU - DET - DIU - DMM - DTC - DTM - EPOX - FLM - FLZ - IPPMU - IPPU - IPU - IRG - LINU - MTC - MTX - MTZ - NFZ - PIRI* - TBZ - TYZ	Pesticides : ALC - ATC* - ATZ - CBF - CBZ - CTL - CYPRO - DEA - DIA - DIU - DMM - DMO - DPA - DTC - DTM - EPOX - FLM - FLZ - HEXA - IMI - IPPU - IPU - IRG - MCP - MTC - MTX - MTY - MTZ - NFZ - PIRI - TBZ - TYZ
Pharmaceuticals : AMS - CLARI - ERY - FENO - OFLO	Pharmaceuticals : ACE - ACFENO - BEZA - CARBA - CARBAEP* - CEL - CLINDA - CYCLOP - DICLO - FCD - FENO - FURO - GEM - KETO - LAM - MET - NAPROX - NIF - PROP - SOT
Non-linear regression (n=74) Time necessary to reach half of equilibrium < 14 d Hormones : aE2 - bE2 - CORT - CORT.OH - DEXA - DIES - DROSPI - E1 - E3 - EE2 - EPI-TESTO - LEVO - MEG.AC - NORE - PROG - TESTO	Non-linear regression (n=22) Time necessary to reach half of equilibrium < 14 d Pesticides : ATC.OA - BTZ - CBF - DCP - DEA - DIA - DMO - DPA - FNP - IMI - ISF - IXI - MCP - MCPA - MSF - MST - MTC.ESA - MTC.OA - MTY - NSF - SCT - SPIRO
Pharmaceuticals : ACE - ACFENO - ACSMX - APZ - ATE - BEZA - CARBA - CARBAEP - CEL - CLINDA - CYCLOP - DIAZ - DICLO - FCD - FURO - GEM - KETO - LAM - MET - METRO - NAPROX - NDZ - NIF - PARA - PROP - SALBU - SMX - SOT - THEO - TRIM	Pharmaceuticals : ACSMX - METRO - PARA - SMX - THEO
Time necessary to reach half of equilibrium > 14 d Hormones : ANDRO - ANDROSTER - DIES Pesticides : ALC - CBZ - DCF - HEXA	Time necessary to reach half of equilibrium > 14 d Pesticides : DCF - ISF - IXI - MTC.ESA

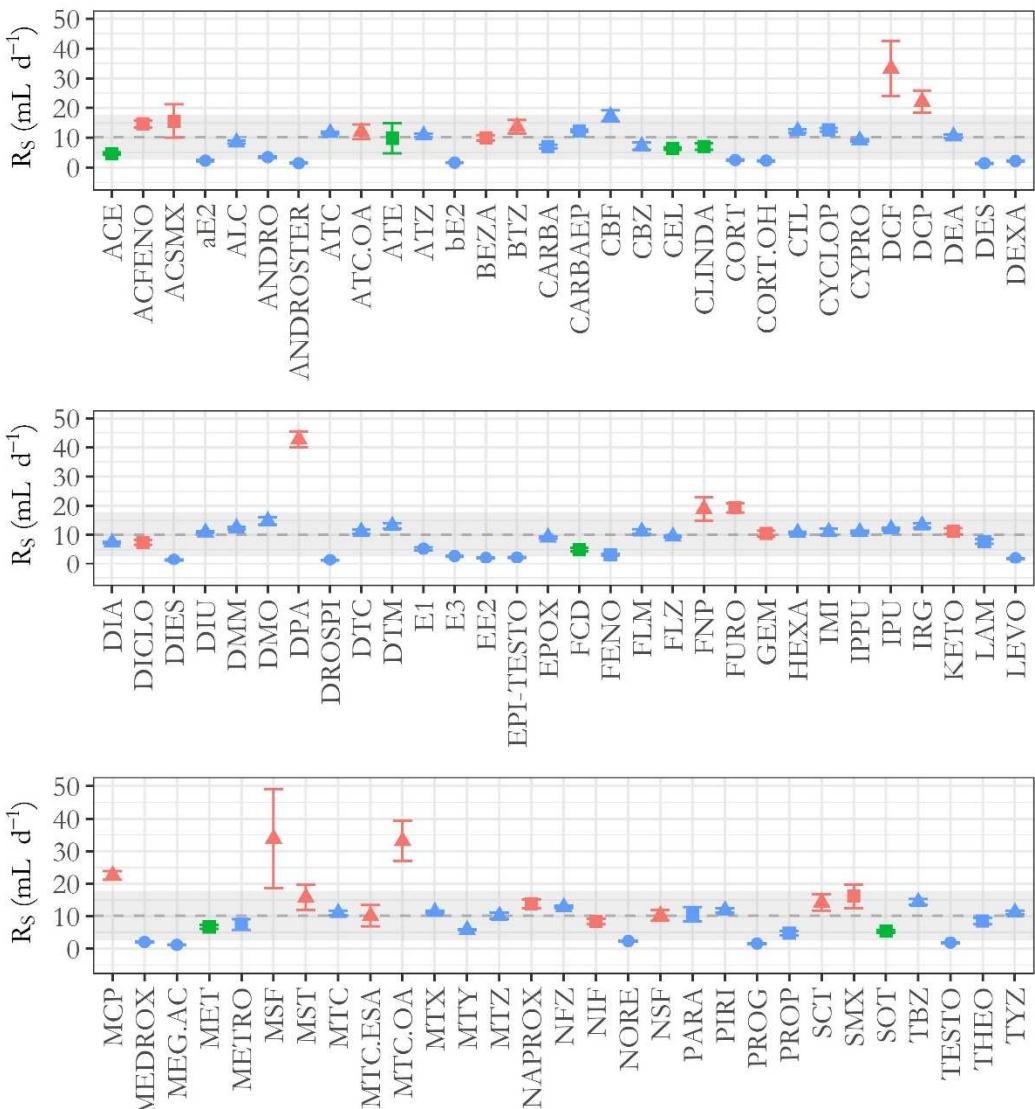
343

344 **2.4. Comparison of distribution and elimination kinetic constants**

345 All kinetic constants are reported in Table S13 for o-DGT and Table S14 for POCIS. In the
346 case of o-DGT, distribution coefficients (K_{SW}), determined by using model, ranged from 0.97
347 to $22.55 \times 10^3 \text{ L kg}^{-1}$ (median = $5.27 \times 10^3 \text{ L kg}^{-1}$, n = 22) while with POCIS, K_{SW} ranged
348 from 1 to $86 \times 10^3 \text{ L kg}^{-1}$. In literature, the K_{SW} for o-DGT were determined in one study on
349 alkylphenols. Values determined in this study were inferior to those determined for
350 alkylphenols (n = 23; $1.51 \times 10^3 \text{ L kg}^{-1}$ and $295 \times 10^3 \text{ L kg}^{-1}$; median = $35 \times 10^3 \text{ L kg}^{-1}$) (Urik
351 and Vrana, 2019). The receiving phase was the same between the three PSD and it has been
352 shown that the distribution coefficients were similar when the phase is free or mixed with gel
353 (Urik and Vrana, 2019). Consequently, K_{SW} values determined in this study should be similar
354 between the two passive samplers. K_{SW} determined using o-DGT and POCIS were compared
355 for 23 compounds. They were similar for the majority of compounds (n = 17). However, K_{SW}
356 were different for six compounds. In the case of ISF, IXI, TRIM and SPIRO, the K_{SW}
357 determined with o-DGT were lower than those obtained with POCIS. For ISF and IXI, the
358 concentrations measured with o-DGT after 28 days of exposure appeared to be
359 underestimated, resulting in a non-linear accumulation over the duration of exposure, whereas
360 it appears to be linear for the first 21 days of exposure. In the case of TRIM, the relative
361 standard deviation (RSD) of K_{SW} for o-DGT was greater than 50 %. The difference can then
362 be explained by a poor fit with the kinetic model. In the case of SPIRO, the low value of K_{SW}
363 obtained with o-DGT can be explained by the high uncertainty of samples exposed for more
364 than 14 days. On the contrary, the K_{SW} determined for MCPA with o-DGT was higher than
365 that determined with POCIS. For these compounds, there are still uncertainties regarding
366 kinetic model determination, and the resulting constants. They were removed from the dataset
367 for both the uptake rates k_u (or R_s) and $t_{1/2}$ estimates. The k_u values ranged from 0.03 to
368 $1.05 \text{ L d}^{-1} \text{ g}^{-1}$ (median = $0.25 \text{ L d}^{-1} \text{ g}^{-1}$, n = 89) for o-DGT and 0.06 to $4.3 \text{ L d}^{-1} \text{ g}^{-1}$ (median =
369 0.77, n = 101) for POCIS. The time necessary to reach half of equilibrium determined with
370 POCIS and o-DGT were compared for 17 compounds. The $t_{1/2}$ were greater with o-DGTs
371 than with POCIS for all compounds. The use of the o-DGT technique allows an increase in
372 the linear phase compared to POCIS, for the same K_{SW} value.

373

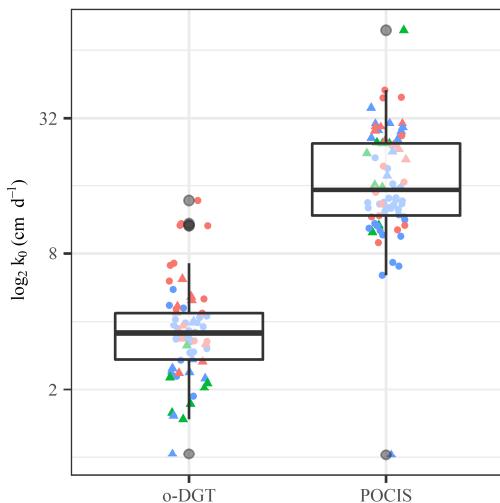
374
375
376
377


Figure 4: Comparison of distribution coefficients (K_{SW}) obtained with the two passive sampler: POCIS (in green) and o-DGT (in pink). All kinetic constants are reported in Table S13 for o-DGT and Table S14 for POCIS.

378 **2.5. Comparison of sampling rates and overall mass transfer coefficient**

379 Sampling rates (R_s) obtained with o-DGT were represented in Figure 4 and ranged from 1.2
380 to 42.8 mL d⁻¹ (median = 10.2 mL d⁻¹, n = 89) and those obtained with POCIS ranged from
381 11.3 to 858 mL d⁻¹ (median = 153 mL d⁻¹, n = 101). In addition, the mean for the whole R_s
382 data associated to the o-DGT and the POCIS were 10 ± 7 mL d⁻¹ and 190 ± 112 mL d⁻¹
383 respectively, and then used for the further estimates of the limits of quantifications (LOQ)
384 (see Table 2). RSD on the R_s were lower with o-DGT than with POCIS. This can be
385 explained by the fact that a linear model, less complex than a non-linear one, could be used
386 for a majority of compounds with o-DGT, contrary to POCIS.

387 In the case of o-DGT, R_s of anionic compounds (median = 15 mL d⁻¹, n = 23) were higher
388 than those of neutral compounds (median = 9 mL d⁻¹, n = 59) and cationic compounds
389 (median = 6 mL d⁻¹, n = 7). In the case of POCIS, R_s of neutral compounds
390 (median = 145 mL d⁻¹, n = 67) were lower than R_s of anionic (median = 221 mL d⁻¹, n = 24)
391 and cationic compounds (median = 211 mL d⁻¹, n = 10). With o-DGT, R_s of hormones were
392 lower than those of pharmaceuticals and pesticides. This may be partly explained by a slight
393 delay in accumulation ("lag phase") of one to three days, although the confidence interval of
394 the intercept at baseline contains zero. These low R_s values determined for hormones
395 compared to pharmaceuticals and pesticides have not been observed elsewhere in the
396 literature (Challis et al., 2016; Stroski et al., 2018). This delay in accumulation can be
397 explained either by a significant resistance to mass transfer between the gel and the receiving
398 phase or by a significant resistance to mass transfer between the membrane and the diffusive
399 gel. However, the diffusion coefficients of hormones determined in diffusion cells with and


400 without membrane are similar (D ratios between 0.7 and 1.3 except for estriol, data not
401 shown). Consequently, the lag phase of hormones would be due to a non-negligible resistance
402 to mass transfer between the gel and the receiving phase. Comparison between sampling rates
403 obtained with POCIS and o-DGT has not been done for hormones, due to the lag phase
404 associated with these ones. As a result, sampling rates obtained with POCIS and o-DGT were
405 compared for 68 compounds. R_s determined with o-DGT (median = 11 mL d^{-1}) were lower
406 than those observed with POCIS (median > 150 mL d^{-1}). These observations could be
407 explained by lower exposure surface and higher diffusive layer thickness, due to the presence
408 of a gel, in the case of o-DGT. In literature, some discrepancies in R_s remains according to
409 calibration systems and operating conditions (Morin et al., 2012). In this study, R_s of the two
410 passive samplers were obtained in the same calibration experiment, and then similar
411 temperatures and flow velocities, thus providing comparisons that are more consistent.

412

413 *Figure 5 : Sampling rates (R_s) obtained with o-DGT for each compound (anionic compounds
414 in red, cationic compounds in green and neutral compounds in blue). The grey area
415 corresponds to the 95 % confidence interval around the mean of R_s . All kinetic constants are
416 reported in Table S13 for o-DGT..*

417 In order to compare overall mass transfer coefficients k_0 , sampling rates have been
418 normalized by the area of exposure (see Equation 8). The k_0 values, represented in Figure 6,
419 were higher with POCIS (median at 167 cm d^{-1}) than with o-DGT (median at 11 cm d^{-1}).

420

421 *Figure 6: Overall resistance transfer mass coefficients obtained with the two passive*
 422 *samplers for hormones (square), pharmaceuticals (triangle) and pesticides (circle) (anionic*
 423 *compounds in red, cationic compounds in green and neutral compounds in blue). All kinetic*
 424 *constants are reported in Table S13 for o-DGT and Table S14 for POCIS.*

425 In literature, k_0 were comparable between the POCIS and o-DGT tested (using POCIS
 426 exposure surface area of 45.8 cm^2) (Chen et al., 2018; Guibal et al., 2017). For this calibration,
 427 the exposure surface area value used for calculation of k_0 was approximately 11 cm^2 ,
 428 corresponding to the actual exposure surface of the receiving phase for POCIS (membrane
 429 surface area of 45.8 cm^2 , 200 mg of phase) because of sedimentation of receiving phase
 430 between the membranes when the POCIS is placed vertically, which reduces the effective
 431 exchange surface (Fauvelle et al., 2014). Besides, the resistance transfer mass coefficient
 432 related to the receiving phase (i.e. K_{SW}) can be neglected for pesticides and pharmaceuticals.
 433 In our case, the difference between k_0 can more probably be explained by the resistance
 434 transfer mass coefficient related to gel occurring in the o-DGT only. For this purpose, the
 435 resistance transfer mass coefficient related to membrane could be described by Equation 9.
 436 Diffusion coefficient (D) were determined using Equation 10 for compounds which follow
 437 linear accumulation. K_{GM} ranged from 7.0 to 12.4 (n=71) except for fenofibrate (0.2).
 438 Consequently, resistance transfer mass coefficient related to gel is due to gel thickness.

$$1/k_g K_{GM} = \delta / K_{GM} \times D \quad \text{Equation 9}$$

$$D = (\delta \times R_s) / A \quad \text{Equation 10}$$

439 **2.6. Limits of quantification reached with POCIS and o-DGT versus environmental**
 440 **threshold required for regulatory water monitoring programs**

441 The European Water Framework Directive (WFD) was adopted in 2000 by the European
442 Union in order to reach good ecological and chemical status of aquatic environment by 2015,
443 extended to 2027. In this context, environmental quality standards (EQS) have been set as a
444 threshold not to be exceeded for a list of priority substances. In France, Environmental
445 Guideline values (EGV), fixed by INERIS (<https://substances.neris.fr/fr/>), are also used as
446 thresholds with regulatory value. The criterion for chemical monitoring is that limits of
447 quantification (LOQ) must be lower than one-third of the EQS (or EGV, when EQS are not
448 available). Values of EGV and EQS were found for 19 chemicals calibrated with both o-DGT
449 and POCIS in this paper, mainly corresponding to pesticides. These values of EGV and EQS
450 range from 13 to 2500 ng L⁻¹ (n=8) and from 19 to 1000 ng L⁻¹ (n=11), respectively (see
451 Table S15). Other threshold values defined by European commission (Commission
452 Implementing Decision (EU) 2018/840) were found for three hormones (ethinylestradiol,
453 estradiol, and estrone) and were inferior to 0.5 ng L⁻¹.

454 While spot water sampling is widely performed to determine water concentration, it remains
455 some limitations like a lack of temporal representativeness and the need to extract large
456 volume of water to reach the required LOQ. The use of passive samplers generally allows to
457 improve the LOQ compared to those obtained with spot water sampling. For both POCIS and
458 o-DGT, the LOQ were estimated from the average R_s (available in Tables S13 for o-DGT and
459 S14 for POCIS) and considering an exposure durations of 14 days in aqueous media. Besides,
460 the same instrumental limits of quantification (LOQ_i) were considered for the calculation of
461 LOQ after spot water sampling (LOQ_w) and after passive sampling with o-DGT or POCIS
462 (LOQ_{PSD}). Finally, LOQ_{PSD} were compared to LOQ_w, considering either medium (250 mL) or
463 large (1 L) water volumes (see Table 2). Because of lower values of R_s for o-DGT, the LOQ_{o-}
464 DGT are higher than LOQ_{POCIS}. Moreover, the LOQ_{o-DGT} are close to LOQ_w obtained with a
465 250-mL water sample. In this case, the advantage to use o-DGT is limited to the obtaining of
466 time-weighted average concentrations.

467 LOQ of pesticides and pharmaceuticals obtained in this study for both PSD and spot water
468 samples were satisfying, *i.e.* lower to EQS/3 or EGV/3. Consequently, performances of both
469 passive samplers and spot water sampling for these compounds were satisfying for chemical
470 water monitoring, in agreement with regulatory requirements, as it is already shown with
471 POCIS and spot water sampling (Mathon et al., 2022).

472 However, LOQ were not satisfying for the 3 hormones with o-DGT and also for spot water
473 sampling (250 mL extract); for 1 hormone (ethinylestradiol) with POCIS and also for spot

474 sampling (1 L extract). Such limitations of the actual o-DGT, regarding the hormones only,
475 could be further improved by increasing the surface areas, as recently proposed by Urik et al.
476 (2019) for PFAS or Martins de Barros et al. (2021) for some pesticides.

477 Actually, a 5-fold improvement of the LOQ can be expected with the use of the Chemcatcher
478 housing for o-DGT technique (15.9 cm² vs 3.14 cm² with o-DGT housing) (Martins de Barros
479 et al. 2022), for instance, allowing to reach LOQ up to 0.07 ng L⁻¹, and then compatible with
480 the challenging EQS to reach for both estradiol and estrone.

481 *Table 2: Limits of quantification determined for either POCIS or o-DGT (LOQ_{PSD}) compared
482 to that for spot water sampling (LOQ_w), with a same LOQ_i.*

	LOQ _i (ng mL ⁻¹)	Mean R _s (mL day ⁻¹)	LOQ _{PSD} (ng L ⁻¹)	LOQ _w (ng L ⁻¹)	
				For 1 L	For 250 mL
POCIS	Pesticides	0.5	190	0.2	-
	Hormones and pharmaceuticals	0.05	190	0.02	-
DGT	Pesticides	0.5	10.4	3.4	-
	Hormones and pharmaceuticals	0.05	10.4	0.34	-
Spot sample	Pesticides	0.5	-	-	0.5
	Hormones and pharmaceuticals	0.05	-	-	0.05

483

484 3. **CONCLUSION**

485 In this paper, it was shown that membranes with a pore size of 5 µm allow the protection of
486 the diffusive gel in the field while accumulating less compounds than membranes with a pore
487 size of 0.45 µm. In general, the diffusion coefficients were slightly impacted by the presence
488 of the membrane, as already shown in the case of metals. In the end, it was shown that the
489 PES membrane with a pore size of 5 µm is the most suitable for sampling the target
490 compounds.

491 The calibration experiment showed that o-DGT slows down the compounds accumulation and
492 thus extends the duration of the linear accumulation phase. Consequently, o-DGT can be used
493 for some compounds, for which it is not possible to use POCIS because of too short $t_{1/2}$ (<
494 4 d).

495 Contrary to POCIS, the influence of the environmental conditions on compounds
496 accumulation in o-DGT can be neglected or corrected. Actually, the effect of temperature on

497 compounds accumulation can be corrected using the Stokes-Einstein relation (Zhang and
498 Davison, 1999). Moreover, the presence of a diffusive gel in o-DGT allows decreasing the
499 effect of hydrodynamic condition. If the aquatic environment is sufficiently agitated (from 20
500 to 150 cm s⁻¹ (Belles et al., 2017), the effect of diffusive boundary layer can be neglected with
501 o-DGT. In the case of diffusive boundary layer cannot be neglected, its thickness can be
502 determined by exposing DGT with different thickness gel diffusion (Challis et al., 2016) and
503 taken into account in concentration determination.

504 With o-DGT, the sampling rates are significantly reduced because of the presence of the
505 diffusive gel. If needed to decrease and improve the LOQ (as for hormones), the solution
506 would be to increase the exposure area as done elsewhere in the literature (Belles et al., 2017;
507 Martins de Barros et al., 2022; Mechelke et al., 2019; Urík and Vrana, 2019).

508 However, pre-concentration using o-DGT is sufficient to detect them at concentration under
509 EQS or EGS for pesticides and pharmaceuticals (as well as POCIS and spot water sampling).
510 At this stage, the use of PS for hydrophilic to moderately hydrophobic substances in the
511 dissolved water column, is relevant for compliance checking with EQS in water.

512 Concerning sustainability and greenness, the difference between the 2 PSD is limited. Indeed,
513 volume and type of organic solvents for PSD extraction, the use of which pollutes the
514 environment, were similar. Considering the reusability, rings (inox) of POCIS can be sent
515 back to suppliers for reuse, contrary to DGT (plastic holders).

516 Lastly, the large dataset presented and discussed in this paper for such a wide range of
517 hydrophilic molecules should contribute to improve PS for regulatory water monitoring of
518 hydrophilic substances (extension to new substances, optimization of accumulation models
519 and of TWA concentrations calculation).

520

521 **Acknowledgments**

522 The authors gratefully acknowledge Sebastian Lee from Carleton College (Northfield, MN,
523 USA) for English revision.

524

525 Alvarez, D.A., Petty, J.D., Huckins, J.N., Jones-Lepp, T.L., Getting, D.T., Goddard, J.P.,
526 Manahan, S.E., 2004. Development of a passive, in situ, integrative sampler for
527 hydrophilic organic contaminants in aquatic environments. *Environ. Toxicol. Chem.*
528 23, 1640. <https://doi.org/10.1897/03-603>

529 Amato, E.D., Covaci, A., Town, R.M., Hereijgers, J., Bellekens, B., Giacometti, V.,
530 Breugelmans, T., Weyn, M., Dardenne, F., Bervoets, L., Blust, R., 2018. A novel
531 active-passive sampling approach for measuring time-averaged concentrations of
532 pollutants in water. *Chemosphere* 209, 363–372.
533 <https://doi.org/10.1016/j.chemosphere.2018.06.079>

534 Belles, A., Alary, C., Aminot, Y., Readman, J.W., Franke, C., 2017. Calibration and response
535 of an agarose gel based passive sampler to record short pulses of aquatic organic
536 pollutants. *Talanta* 165, 1–9. <https://doi.org/10.1016/j.talanta.2016.12.010>

537 Bonnaud, B., Miège, C., Daval, A., Fauville, V., Mazzella, N., 2021. Determination of
538 diffusion coefficients in agarose and polyacrylamide gels for 112 organic chemicals
539 for passive sampling by organic Diffusive Gradients in Thin films (o-DGT). *Environ.*
540 *Sci. Pollut. Res.* <https://doi.org/10.1007/s11356-021-17563-7>

541 Buzier, R., Guibal, R., Lissalde, S., Guibaud, G., 2019. Limitation of flow effect on passive
542 sampling accuracy using POCIS with the PRC approach or o-DGT: A pilot-scale
543 evaluation for pharmaceutical compounds. *Chemosphere* 222, 628–636.
544 <https://doi.org/10.1016/j.chemosphere.2019.01.181>

545 Challis, J.K., Hanson, M.L., Wong, C.S., 2016. Development and Calibration of an Organic-
546 Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of
547 Polar Organic Contaminants. *Anal. Chem.* 88, 10583–10591.
548 <https://doi.org/10.1021/acs.analchem.6b02749>

549 Chen, C.-E., Jones, K.C., Ying, G.-G., Zhang, H., 2014. Desorption Kinetics of Sulfonamide
550 and Trimethoprim Antibiotics in Soils Assessed with Diffusive Gradients in Thin-
551 Films. *Environ. Sci. Technol.* 48, 5530–5536. <https://doi.org/10.1021/es500194f>

552 Chen, C.-E., Zhang, H., Ying, G.-G., Jones, K.C., 2013. Evidence and Recommendations to
553 Support the Use of a Novel Passive Water Sampler to Quantify Antibiotics in
554 Wastewaters. *Environ. Sci. Technol.* 47, 13587–13593.
555 <https://doi.org/10.1021/es402662g>

556 Chen, C.-E., Zhang, H., Ying, G.-G., Zhou, L.-J., Jones, K.C., 2015. Passive sampling: A
557 cost-effective method for understanding antibiotic fate, behaviour and impact. *Environ.*
558 *Int.* 85, 284–291. <https://doi.org/10.1016/j.envint.2015.10.001>

559 Chen, W., Li, Y., Chen, C.-E., Sweetman, A.J., Zhang, H., Jones, K.C., 2017. DGT Passive
560 Sampling for Quantitative in Situ Measurements of Compounds from Household and
561 Personal Care Products in Waters. *Environ. Sci. Technol.* 51, 13274–13281.
562 <https://doi.org/10.1021/acs.est.7b03940>

563 Chen, W., Pan, S., Cheng, H., Sweetman, A.J., Zhang, H., Jones, K.C., 2018. Diffusive
564 gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting
565 chemicals (EDCs) in waters. *Water Res.* 137, 211–219.
566 <https://doi.org/10.1016/j.watres.2018.03.029>

567 Chen, Z.-F., Ying, G.-G., Lai, H.-J., Chen, F., Su, H.-C., Liu, Y.-S., Peng, F.-Q., Zhao, J.-L.,
568 2012. Determination of biocides in different environmental matrices by use of ultra-
569 high-performance liquid chromatography–tandem mass spectrometry. *Anal. Bioanal.*
570 *Chem.* 404, 3175–3188. <https://doi.org/10.1007/s00216-012-6444-2>

571 Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list
572 of substances for Union-wide monitoring in the field of water policy pursuant to
573 Directive 2008/105/EC of the European Parliament and of the Council and repealing

574 Commission Implementing Decision (EU) 2015/495 (notified under document
575 C(2018) 3362), 2018. , OJ L.

576 D'Angelo, E., Starnes, D., 2016. Desorption kinetics of ciprofloxacin in municipal biosolids
577 determined by diffusion gradient in thin films. *Chemosphere* 164, 215–224.
578 <https://doi.org/10.1016/j.chemosphere.2016.08.101>

579 Davison, W., Zhang, H., 1994. In situ speciation measurements of trace components in natural
580 waters using thin-film gels. *Nature* 367, 546–548. <https://doi.org/10.1038/367546a0>

581 Fauvelle, V., Mazzella, N., Belles, A., Moreira, A., Allan, I.J., Budzinski, H., 2014.
582 Optimization of the polar organic chemical integrative sampler for the sampling of
583 acidic and polar herbicides. *Anal. Bioanal. Chem.* 406, 3191–3199.
584 <https://doi.org/10.1007/s00216-014-7757-0>

585 Fauvelle, V., Nhu-Trang, T.-T., Feret, T., Madarassou, K., Randon, J., Mazzella, N., 2015.
586 Evaluation of Titanium Dioxide as a Binding Phase for the Passive Sampling of
587 Glyphosate and Aminomethyl Phosphonic Acid in an Aquatic Environment. *Anal.*
588 *Chem.* 87, 6004–6009. <https://doi.org/10.1021/acs.analchem.5b00194>

589 Guibal, R., Buzier, R., Charriaud, A., Lissalde, S., Guibaud, G., 2017. Passive sampling of
590 anionic pesticides using the Diffusive Gradients in Thin films technique (DGT). *Anal.*
591 *Chim. Acta* 966, 1–10. <https://doi.org/10.1016/j.aca.2017.02.007>

592 Guo, C., Zhang, T., Hou, S., Lv, J., Zhang, Y., Wu, F., Hua, Z., Meng, W., Zhang, H., Xu, J.,
593 2017. Investigation and Application of a New Passive Sampling Technique for in Situ
594 Monitoring of Illicit Drugs in Waste Waters and Rivers. *Environ. Sci. Technol.* 51,
595 9101–9108. <https://doi.org/10.1021/acs.est.7b00731>

596 Henry, L., Wickham, H., 2019. purrr: Functional Programming Tools.

597 Huckins, J.N., Petty, J.D., Booij, K., 2006. Monitors of organic chemicals in the environment:
598 semipermeable membrane devices. Springer, New York.

599 Martins de Barros, R., Rougerie, J., Ballion, T., Buzier, R., Simon, S., Guibal, R., Lissalde, S.,
600 Guibaud, G., 2022. Sensitivity improvement of o-DGT for organic micropollutants
601 monitoring in waters: Application to neutral pesticides. *Talanta Open* 6, 100123.
602 <https://doi.org/10.1016/j.talo.2022.100123>

603 Mathon, B., Ferreol, M., Togola, A., Lardy-Fontan, S., Dabrin, A., Allan, I.J., Staub, P.-F.,
604 Mazzella, N., Miège, C., 2022. Polar organic chemical integrative samplers as an
605 effective tool for chemical monitoring of surface waters – Results from one-year
606 monitoring in France. *Sci. Total Environ.* 824, 153549.
607 <https://doi.org/10.1016/j.scitotenv.2022.153549>

608 Mazzella, N., Dubernet, J.-F., Delmas, F., 2007. Determination of kinetic and equilibrium
609 regimes in the operation of polar organic chemical integrative samplers. *J. Chromatogr.*
610 A 1154, 42–51. <https://doi.org/10.1016/j.chroma.2007.03.087>

611 Mechelke, J., Vermeirssen, E.L.M., Hollender, J., 2019. Passive sampling of organic
612 contaminants across the water-sediment interface of an urban stream. *Water Res.* 165,
613 114966. <https://doi.org/10.1016/j.watres.2019.114966>

614 Miège, C., Mazzella, N., Allan, I., Dulio, V., Smedes, F., Tixier, C., Vermeirssen, E., Brant, J.,
615 O'Toole, S., Budzinski, H., Ghested, J.-P., Staub, P.-F., Lardy-Fontan, S., Gonzalez,
616 J.-L., Coquery, M., Vrana, B., 2015. Position paper on passive sampling techniques
617 for the monitoring of contaminants in the aquatic environment – Achievements to date
618 and perspectives. *Trends Environ. Anal. Chem.* 8, 20–26.
619 <https://doi.org/10.1016/j.teac.2015.07.001>

620 Morin, N., Camilleri, J., Cren-Olivé, C., Coquery, M., Miège, C., 2013. Determination of
621 uptake kinetics and sampling rates for 56 organic micropollutants using
622 “pharmaceutical” POCIS. *Talanta* 109, 61–73.
623 <https://doi.org/10.1016/j.talanta.2013.01.058>

624 Morin, N., Miège, C., Coquery, M., Randon, J., 2012. Chemical calibration, performance,
625 validation and applications of the polar organic chemical integrative sampler (POCIS)
626 in aquatic environments. *TrAC Trends Anal. Chem.* 36, 144–175.
627 <https://doi.org/10.1016/j.trac.2012.01.007>

628 R Core Team, 2018. R: A Language and Environment for Statistical Computing. R
629 Foundation for Statistical Computing.

630 Ren, S., Tao, J., Tan, F., Cui, Y., Li, X., Chen, J., He, X., Wang, Y., 2018. Diffusive gradients
631 in thin films based on MOF-derived porous carbon binding gel for in-situ
632 measurement of antibiotics in waters. *Sci. Total Environ.* 645, 482–490.
633 <https://doi.org/10.1016/j.scitotenv.2018.07.013>

634 Robinson, D., Hayes, A., 2019. broom: Convert Statistical Analysis Objects into Tidy Tibbles.
635 Stroski, K.M., Challis, J.K., Wong, C.S., 2018. The influence of pH on sampler uptake for an
636 improved configuration of the organic-diffusive gradients in thin films passive
637 sampler. *Anal. Chim. Acta* 1018, 45–53. <https://doi.org/10.1016/j.aca.2018.02.074>

638 Uher, E., Zhang, H., Santos, S., Tusseau-Vuillemin, M.-H., Gourlay-Francé, C., 2012. Impact
639 of Biofouling on Diffusive Gradient in Thin Film Measurements in Water. *Anal.*
640 *Chem.* 84, 3111–3118. <https://doi.org/10.1021/ac2028535>

641 Urík, J., Vrana, B., 2019. An improved design of a passive sampler for polar organic
642 compounds based on diffusion in agarose hydrogel. *Environ. Sci. Pollut. Res.* 26,
643 15273–15284. <https://doi.org/10.1007/s11356-019-04843-6>

644 Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson, J.,
645 Morrison, G., 2005. Passive sampling techniques for monitoring pollutants in water.
646 *TrAC Trends Anal. Chem.* 24, 845–868. <https://doi.org/10.1016/j.trac.2005.06.006>

647 Wickham, H., 2017. tidyverse: Easily Install and Load the “Tidyverse.”

648 Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

649 Wickham, H., François, R., Henry, L., Müller, K., 2019. dplyr: A Grammar of Data
650 Manipulation.

651 Wickham, H., Henry, L., 2019. tidyr: Easily Tidy Data with “spread()” and “gather()”
652 Functions.

653 Xie, H., Chen, J., Chen, Q., Chen, C.-E.L., Du, J., Tan, F., Zhou, C., 2018. Development and
654 evaluation of diffusive gradients in thin films technique for measuring antibiotics in
655 seawater. *Sci. Total Environ.* 618, 1605–1612.
656 <https://doi.org/10.1016/j.scitotenv.2017.09.330>

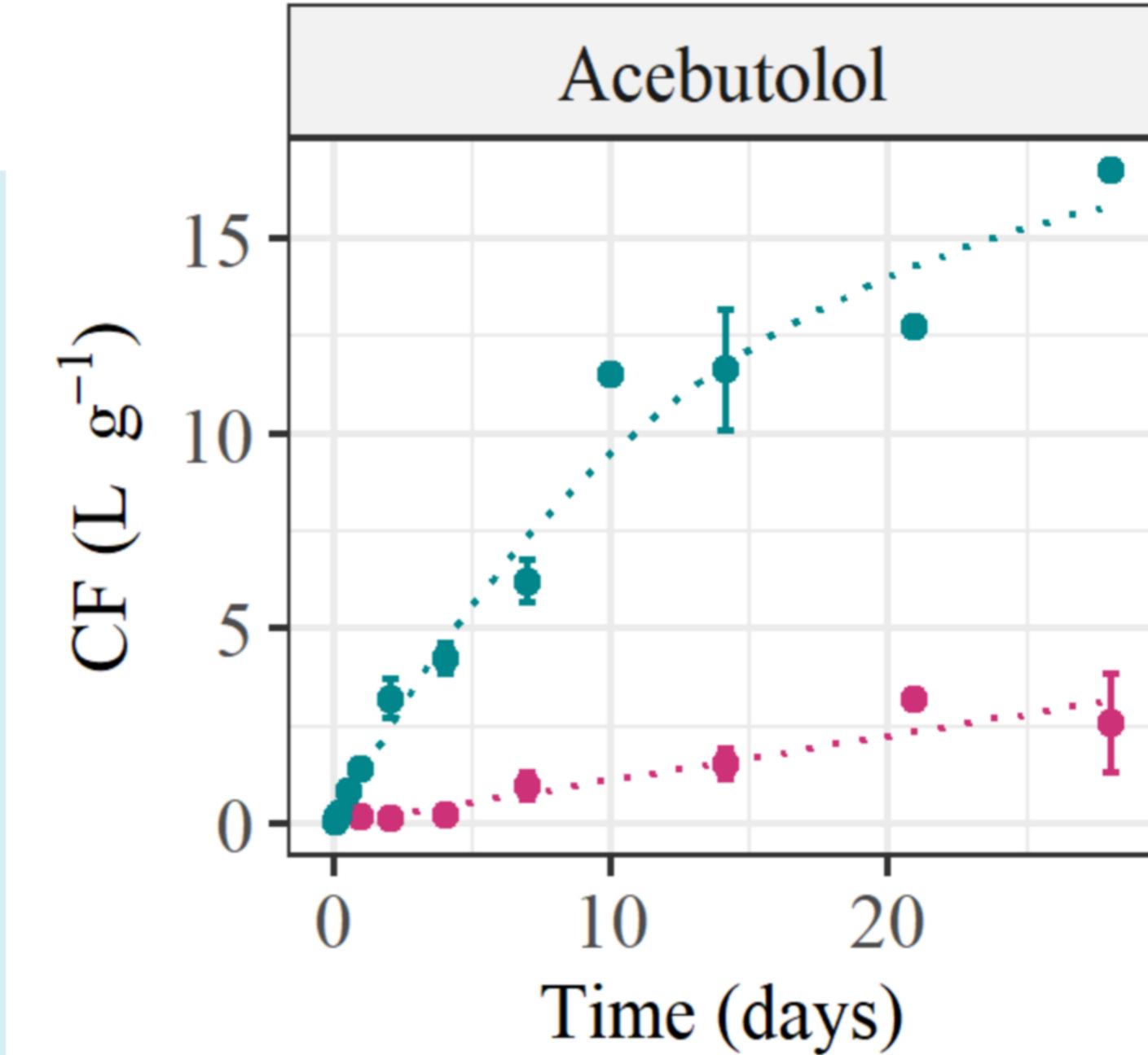
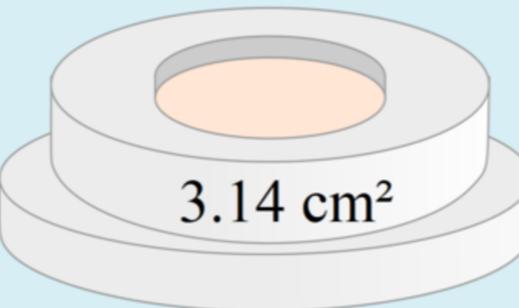
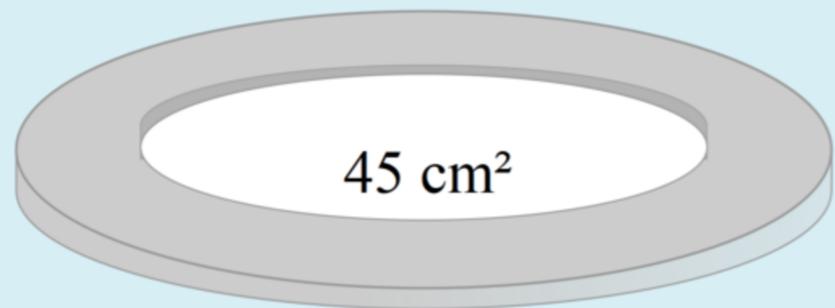
657 Zhang, D., Zhu, Y., Xie, X., Han, C., Zhang, H., Zhou, L., Li, M., Xu, G., Jiang, L., Li, A.,
658 2019. Application of diffusive gradients in thin-films for in-situ monitoring of
659 nitrochlorobenzene compounds in aquatic environments. *Water Res.* 157, 292–300.
660 <https://doi.org/10.1016/j.watres.2019.03.092>

661 Zhang, H., Davison, W., 1999. Diffusional characteristics of hydrogels used in DGT and DET
662 techniques. *Anal. Chim. Acta* 398, 329–340. [https://doi.org/10.1016/S0003-2670\(99\)00458-4](https://doi.org/10.1016/S0003-2670(99)00458-4)

664 Zhang, Yan, Zhang, T., Guo, C., Hou, S., Hua, Z., Lv, J., Zhang, Yuan, Xu, J., 2018.
665 Development and application of the diffusive gradients in thin films technique for
666 simultaneous measurement of methcathinone and ephedrine in surface river water. *Sci.*
667 *Total Environ.* 618, 284–290. <https://doi.org/10.1016/j.scitotenv.2017.11.068>

668 Zheng, J.-L., Guan, D.-X., Luo, J., Zhang, H., Davison, W., Cui, X.-Y., Wang, L.-H., Ma,
669 L.Q., 2015. Activated Charcoal Based Diffusive Gradients in Thin Films for in Situ
670 Monitoring of Bisphenols in Waters. *Anal. Chem.* 87, 801–807.
671 <https://doi.org/10.1021/ac503814j>

672 Zou, Y.-T., Fang, Z., Li, Y., Wang, R., Zhang, H., Jones, K.C., Cui, X.-Y., Shi, X.-Y., Yin, D.,
673 Li, C., Liu, Z.-D., Ma, L.Q., Luo, J., 2018. Novel Method for *in Situ* Monitoring of




674 Organophosphorus Flame Retardants in Waters. Anal. Chem. 90, 10016–10023.
675 <https://doi.org/10.1021/acs.analchem.8b02480>
676

Calibration of passive samplers

★ Hormones

★ Pesticides

★ Pharmaceuticals

