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Urinary nitrogen (N) excretion (UN) as a proportion of N intake (NI; UN/NI) is a major
determinant of N excretion from ruminants and could be predicted from the N isotopic
discrimination occurring between dietary and animal proteins (D15N). This study
investigated the usefulness of D15N and other plasma biomarkers to reflect changes in
UN/NI from sheep offered different levels of dietary urea. Eighteen Merino rams (age, 1–2
years; live weight, 41 ± 3 kg) were allocated to three dietary N treatments for a N balance
study. Treatments were control (C), control + 0.5% urea (C+0.5%), and control + 1.2%
urea (C+1.2%) and designed to provide maintenance, maintenance plus an additional
15%, and maintenance plus an additional 33% NI, respectively. The urea effect term was
used for one-way ANOVA and regression analysis. As NI increased, the UN and retained N
(RN) increased linearly (p < 0.001), but UN/NI only increased in treatment C+1.2%
compared with C (p < 0.05). Plasma D15N was positively and significantly correlated
with UN and UN/NI (r = 0.52, p = 0.028; and r = 0.68, p = 0.002, respectively) and
increased linearly (p < 0.001) with the highest values observed in C+1.2%. Urine d15N
changed linearly between C and C+1.2%, but plasma d15N increased quadratically (p <
0.05). Plasma urea N increased in a linear way across dietary urea levels (p < 0.001). The N
isotopic difference between plasma and urine (plasma d15N–urine d15N) of C did not vary
from either of the other treatments; however, it differed between C+0.5% and C+1.2% (p
< 0.05). The study confirmed the potential usefulness of plasma D15N to estimate UN/NI
from sheep. Moreover, plasma d15N–urine d15N can be proposed as a new biomarker of N
excretion from small ruminants. These approaches, however, need to be tested in various
study conditions.
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INTRODUCTION

Ruminants are biologically inefficient utilizers of feed nitrogen (N).
In general, dietary N loss from ruminants is 70%–80% (Calsamiglia
et al., 2010), which is mainly attributed to urinary N (UN; Dijkstra
et al., 2013). While this contributes to inefficient N utilization, it also
exacerbates environmental pollution (Galloway and Cowling, 2002;
Hristov et al., 2011). Therefore, it is important to reduce UN loss
and the proportion of feed N intake (NI), which is partitioned into
UN (UN/NI), both of which are used as a proxy to reflect potential
N excretion from animal production systems to the environment.
Feeding ruminants with high dietary N levels increase UN loss and
the ratio of UN/NI (Niu et al., 2016). In contrast, reducing dietary N
would reduce UN loss and UN/NI, but this may be economically
undesirable for producers because it does not maximize
animal performance.

The classical method for evaluating animal N partitioning (i.e.,
UN loss and UN/NI) is the N balance (NB; MacRae et al., 1993)
technique. However, it is difficult for researchers to measure NB
precisely, especially for larger numbers of grazing animals (MacRae
et al., 1993), as the collection of total urinary and fecal output is
required from each animal for several days. Moreover, estimating
UN loss and UN/NI in ruminants is difficult due to the complex
nature of N metabolism and its interaction with environmental
conditions. Earlier studies (Herremans et al., 2019; Mendowski
et al., 2020) showed that plasma N isotopic fractionation or
discrimination between the animal and its diet (plasma D15N;
plasma d15N − feed d15N), which occurs during animal digestion
and metabolism (Cheng et al., 2011; Cantalapiedra-Hijar et al.,
2015), was positively related to N excretion (i.e., UN loss and UN/
NI) from large ruminants. Previous studies showed that digestion,
rumen function, andmetabolismmay differ between large and small
ruminants (Lapierre and Lobley, 2001; Doreau et al., 2003;
Kawashima et al., 2007). Since most cited studies are with large
ruminants, more research is still required (Lavery and Ferris, 2021;
Khanaki et al., 2021) to explore this relationship, particularly as only
three studies can be found (Cheng et al., 2013a; Bernard et al., 2020;
Khanaki et al., 2021). The NI measurement is hard to measure in
grazing systems, though it is needed to quantify N use efficiency
(NUE) and UN/NI. The exploration of using plasma D15N to
indicate these parameters needs only the collection of
representative feed samples without measuring NI.

This study was conducted to determine if UN and UN/NI can
be predicted by plasma D15N in sheep fed pure ryegrass hay with
various levels of urea supplementation. We proposed that
different urea supplementation could increase NI and
microbial crude protein (MCP) synthesis and lead to increased
UN and UN/NI, without altering other nutrients involved in
sheep N partitioning (Table 1).
MATERIAL AND METHODS

Experimental Design
The current study was performed during April and May 2021 at
the Dookie campus, the Univers i ty of Melbourne.
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All experimental procedures involving sheep were approved by
the University of Melbourne Animal Ethics Committee,
application number 2015190.1. Eighteen Merino rams (41 ± 3
kg of live weight and age between 1 and 2 years) were used. The
live weight and age were equal among treatments. Nine rams
were allocated randomly in each period of the 21-day NB study
(3 rams/treatment/period). Three dietary treatments were
designed to provide increasing NI allowances, as follows:
control (C) with maintenance NI allowance; C + 0.5% urea (C
+0.5%) with maintenance plus an additional 15% NI allowance;
and C + 1.2% urea (C+1.2%) with maintenance plus an
additional 33% NI allowance delivered by adding extra N in
the feed (Table 1).

Urea supplementation was achieved by spraying urea on
the ryegrass to increase hay CP level without altering the
concentration of other nutrients; one unit of urea was mixed
with five units of water before being sprayed on ryegrass hay, and
the urea-treated feed was kept and tied in nylon bags, 6 days
prior to feeding the sheep. Each treatment was fed for 13 days in
individual animal pens followed by 8 days in individual
metabolic cages, including 2 days for acclimatization and 6
days as measurement days for an NB study.

Before the study commenced, all animals were grazed on
fresh pasture. Pure ryegrass hay was fed to the animal prior to the
adaptation days. Ryegrass hay was fed to the animals prior to the
adaptation period, and during measurement periods, all offered
feed was consumed. Sheep were fed twice per day at 8 a.m. and 4
p.m. (with an identical and restricted dry matter (DM) intake
(DMI) of 0.97 kg/day), and drinking water was freely available.
Throughout the study, sheep were healthy with no clinical
symptoms of any disease.

Animal Measurements
Feed refusals were measured once a day to determine the total
DMI for each sheep throughout the study. Feed samples were
collected twice per day (at 8 a.m. and 4 p.m.) from each sheep for
6 days at feeding time. Daily urine and feces output were
measured at 8.30 a.m. during the measurement days, and
subsamples were collected and stored at −20°C. The urine
from each sheep was collected into a container that included
225 ml of 10% sulfuric acid (H2SO4) prior to collection to keep
the urine pH below 3. A bucket with a layer of plastic mesh was
placed under the drainage funnel under each metabolism cage
(1.2 m × 0.55 m), to allow urine to drain through the mesh, and
feces was left on top of the mesh for collection. Blood samples
were collected from the jugular vein into 10-ml Li-heparinized
evacuated tubes on the last measurement day at 1.30 p.m.
Subsequently, plasma was obtained after centrifugation (15
min, 1,200 × g at 4°C). Plasma samples were stored at −20°C
for further biochemical analysis.

Sample Analytical Methods
Plasma, feed (freeze-dried), and feces (oven-dried) samples were
analyzed for d15N according to the procedure described by
Cheng et al. (2011), using isotope-ratio mass spectrometry
(PDZ Europa Ltd, Crewe, UK), that is, the 15N/14N ratio in the
test sample relative to the 15N/14N ratio in the standard (air). The
July 2022 | Volume 3 | Article 911673
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equation [MJME/kg of DM = 0.203 × digestibility of organic DM
(DOMD; %) − 3.001] was used to predict the dietary ME content
(Ministry of Agriculture, Fisheries and Food, 1990). The average
daily live weight (g/day) for each animal was determined as the
coefficient of the linear regression of live weight (g) over time
(days). Feed subsamples were dried (103°C for 24 h) for
determination of DM, while another subsample was oven-dried
(at 60°C for 72 h) and ground through a 1-mm sieve for
subsequent chemical analyses. Feed samples were analyzed for
organic matter (OM; 550°C for 6 h) and neutral detergent fiber
(NDF) (Van Soest et al., 1991) using a Fibersac analyzer (Ankom
Technology Corporation, Fairport, NY, USA). The Kjeldahl
method was used to analyze the N concentration in feed
(freeze-dried) and feces (oven-dried), and the N concentration
of urine (room temperature thawed urine) was analyzed by the
Variomax CN analyzer (Elementar Analyzer Systeme GmbH,
Hanau, Germany). The sum of allantoin and uric acid was
considered as urinary excretion of purine derivatives (PD).
Allantoin and uric acid were measured using colorimetric and
uricase (kit No. 685-50; Sigma Chemical Co., St. Louis, MO,
USA) methods, respectively, as described by Chen and Gomes
(1992). To analyze plasma urea N (PUN) and plasma glucose,
enzymatic kinetic methods were used on a Daytona RX Clinical
Analyzer (Randox, Nishinomiya, Japan). Two liver enzyme
activities, alanine aminotransferase (ALT) and aspartate
aminotransferase (AST), were measured using methods
according to the International Federation of Clinical Chemistry
(IFCC). The retained N (RN) (g/day), NUE (%), and apparent N
digestibility (ND; %) were calculated by the following equations,
respectively:
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d
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d
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Statistical Analysis
The statistical package of GenStat (version 16; VSN International
Ltd., Hemel Hempstead, UK) was used for linear and quadratic
regressions and one-way ANOVAs. As sheep were the
replication unit in this study, the average value for each
measured parameter per treatment was used for statistical
analysis. The significant linear and quadratic effects were
Frontiers in Animal Science | www.frontiersin.org 3
performed using one-way ANOVA with urea as a treatment
factor and period as a block. The significant thresholds were set
at p-value < 0.05; trends were reported at 0.05 < p-value < 0.10.
RESULTS

Nitrogen Partitioning and Isotopic
Discrimination
As shown in Table 2, there was no significant quadratic effect; all
significant responses were linear in nature. The NI for treatments C,
C+0.5%, and C+1.2% were 22.1, 23.5, and 27.6 g/day, respectively,
increasing with higher urea supplementation (p < 0.001). As NI
increased, the UN (p < 0.001), manure N (p < 0.001), and RN (p <
0.05) increased linearly. Treatment C+1.2% excreted the most UN
(9.6 g/day), whereas treatment C excreted the least (6.7 g/day; p <
0.001). The UN/NI and UN/FN only increased between treatment
C to treatment C+1.2% (from 0.30 to 0.35 and 0.8 to 1.1 g/g,
respectively; p < 0.05). The PUN increased linearly (p < 0.001), as
dietary non-protein N increased, and it was higher in C+1.2% (5.8
mmol/L). The digestibility of N (i.e., ND% and DMD%), urinary
PD, plasma glucose, and NUE were not affected by dietary urea
supplementation and did not change across treatments
(Tables 2, 3).

Urine d15N only changed linearly between C and C+1.2%, but
plasma d15N altered quadratically (p < 0.05) and tended to be
significant linearly (p = 0.097) between C and C+0.5% (Table 3).
The plasma d15N minus urine d15N was significantly different
between C+0.5% and C+1.2% (p < 0.05). The D15N between
urine and diet (urine D15N) increased linearly and quadratically
(p < 0.01), across the increase in the urea levels. Plasma D15N
increased linearly (p < 0.001), and it was the highest in C+1.2%
(8.01‰ compared to 6.84‰ and 7.72‰ in C and C
+0.05%, respectively).

Nitrogen Isotopic Discrimination and
Plasma Urea Nitrogen Relationships With
Nitrogen Partitioning
As shown in Table 4, plasma D15N was positively and
significantly correlated with UN (r = 0.52; p = 0.028) and
manure N (r = 0.56; p = 0.016) as well as UN/NI (r = 0.68; p =
0.002). Despite a lack of correlation with RN (p > 0.05), plasma
D15N was significantly negatively correlated with NUE (r =
−0.65; p = 0.003). Urine D15N was positively correlated with
manure N (r = 0.47) and UN/NI (r = 0.53) at the same significant
level (p < 0.05). Plasma d15N–urine d15N was positively
correlated with UN/NI (r = 0.50; p = 0.036) and negatively
with NUE (r = −0.59; p = 0.010). The PUN was also positively
correlated with NI (r = 0.78; p < 0.001), UN (r = 0.72; p < 0.001),
manure N (r = 0.71; p < 0.001), UN/NI (r = 0.50; p = 0.033), UN/
FN (r = 0.55; p = 0.019), and RN (r = 0.53; p = 0.025). Among all
abovementioned biomarkers, only urine D15N was correlated
with ALT (r = −0.50; p = 0.034) as a reflection of liver function.
Moreover, a positive significant relationship between plasma
D15N and urine D15N (r = 0.79; p < 0.001) as well as urine
D15N with PUN (r = 0.48; p = 0.044) was found.
TABLE 1 | Chemical composition of diets.

Treatment

Item C C+0.5% C+1.2%

DM, g/kg 897 883 855
OM, g/kg DM 90 90 90
CP, g/kg DM 120 138 160
NDF, g/kg DM 501 495 480
DM, dry matter; OM, organic matter; CP, crude protein; NDF, neutral detergent fiber.
July 2022 | Volume 3 | Article 911673
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DISCUSSION

Nitrogen Metabolism and Nitrogen
Partitioning
When diets were supplemented with urea to increase NI, which
ranged from 22.1 and 23.5 to 27.6 g/day, the UN increased (C, C
+0.5%, and C+1.2% excreted 6.7, 7.5, and 9.6 g/day, respectively;
Figure 1).Moreover, whenNI increased, manureN increased, which
agrees with studies conducted in lactating dairy cows (Colmenero
and Broderick, 2006; Kidane et al., 2018) and in mature rams
Khanaki et al., 2021). The UN/NI ranged between 0.3 and 0.4 g/g,
which was lower than reported by Brand et al. (1992) and within the
Frontiers in Animal Science | www.frontiersin.org 4
range observed in other studies (Bernard et al., 2020; Khanaki et al.,
2021), and both UN/NI and UN/FN increased significantly from
treatment C to treatment C+1.2%. The positive impact of N content
on RN was observed, and non-significant sheep average daily live
weight gain (158, 172, and 199 g for C, C+0.5%, and C+1.2%,
respectively) may explain in part why RN increased with increasing
NI (p < 0.001; Figure 2). In contrast, with increasing animal age, less
protein is retained, and metabolizable protein requirements decline
(Institut national de la rechere agronomique (INRA), 2018), which
may cause increased UN/NI if protein supply is not adjusted.
However, in this study, the increased UN/NI is due to increased
dietary non-protein N. The amount of FN did not change with
TABLE 3 | Plasma urea nitrogen (PUN), plasma glucose, and natural enrichment of N-15 in feed, urine, and plasma, and nitrogen isotopic discrimination (D15N) of
sheep offered three different levels of non-protein N.

Treatment p-Value

C C+0.5% C+1.2% SEM Linear Quadratic

PUN, mmol/L 4.3 5.0 5.8 0.37 0.001 0.939
Plasma glucose, mmol/L 3.9 3.9 3.9 0.18 1.000 0.917
ALT, U/L 12 6 8 3.0 0.204 0.131
AST, U/L 88 88 86 11.0 0.894 0.925
Feed d15N, ‰ 1.92 0.45 0.39 – – –

Urine d15N, ‰ 0.34 0.00 −0.40 0.31 0.028 0.917
Plasma d15N, ‰ 8.76a 8.17b 8.40ab 0.21 0.097 0.037
Plasma d15N–urine d15N, ‰ 8.42ab 8.17b 8.80a 0.22 0.108 0.039
Urine D15N, ‰ −1.58b −0.45a −0.79a 0.26 0.008 0.005
Plasma D15N, ‰ 6.84 7.72 8.01 0.19 <0.001 0.095
July 20
22 | Volume 3 | Art
C, control; C+0.5%, control + 0.5% urea; C+1.2%, control + 1.2% urea; PUN, plasma urea nitrogen; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
TABLE 2 | Nitrogen (N) partitioning in sheep offered three different levels of non-protein N.

Treatment p-Value

C C+0.5% C+1.2% SEM Linear Quadratic

Animal # 6 6 6 – – –

Starting live weight, kg/sheep
Ending live weight, kg/sheep
Average live weight gain, g/sheep

40.7
44.0
158

40.8
44.4
172

40.9
45.1
199

0.80
0.85
0.02

0.980
0.519
0.276

0.929
0.972
0.843

DMI, kg/sheep/day 0.97 0.97 0.97 0.02 0.936 0.917
ME, MJ/sheep/day 9.65 9.70 9.20 0.35 0.211 0.373
NI, g/sheep/day 22.1 23.5 27.6 0.93 <0.001 0.117
NI, % 2.3 2.4 2.9 0.11 <0.001 0.169
Urine output, kg/sheep/day 1.51 1.60 1.41 0.24 0.701 0.509
UN content, % 0.48 0.51 0.69 0.07 0.009 0.217
UN, g/sheep/day 6.7 7.5 9.6 0.54 <0.001 0.199
Faces output 1, kg/sheep/day 0.99 1.02 1.04 0.06 0.048 0.148
Feces DM, % 32.4 31.5 33.3 1.82 0.641 0.418
FN content, % 2.53 2.59 2.64 0.08 0.209 0.907
FN, g/sheep/day 8.1 8.3 9.1 0.52 0.074 0.532
Manure N, g/sheep/day 14.8 15.8 18.7 0.69 <0.001 0.144
RN, g/sheep/day 7.3 7.6 8.9 0.71 0.042 0.497
UN/NI, g/g 0.30 0.32 0.35 0.02 0.013 0.699
FN/NI, g/g 0.37 0.36 0.33 0.02 0.132 0.722
UN/FN, g/g 0.8 0.9 1.1 0.10 0.027 0.829
DMD, % 66.8 66.8 64.2 1.87 0.181 0.446
ND, % 63.2 64.4 66.9 2.30 0.133 0.722
NUE, % 32.9 32.3 32.0 2.21 0.677 0.930
Urinary PD, mmol/sheep/day 14.5 15.0 14.7 0.80 0.748 0.542
C, control; C+0.5%, control + 0.5% urea; C+1.2%, control + 1.2% urea; DM, dry matter; DMI, dry matter intake; ME, metabolizable energy [MJ ME/kg of DM = 0.203 × digestibility of
organic DM (%) − 3.001]; NI, nitrogen intake; UN, urinary nitrogen; FN, fecal nitrogen; Manure N, total N output (UN + FN); RN, retained nitrogen; DMD, dry matter digestibility; ND, nitrogen
digestibility; NUE, nitrogen use efficiency: 100 × (RN/NI); PD, purine derivatives.
1 As wet basis.
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increasing NI. This result is consistent with the other reports (Niu
et al., 2016; Kidane et al., 2018), which showed that as animals
consume more N, there is less of an increase in FN than UN. The
explanation for finding a non-significant dietary impact on NUE
might be due to the methodological limitation of NB studies.
Spanghero and Kowalski (1997) indicated that as NI increased, the
errors (overestimation) of NB increased. Inconsistent with study
results by Ferris et al. (1999) in dairy cows, by adding urea
supplementation into the diet in the current study, ND% was not
significantly different among treatments.
Frontiers in Animal Science | www.frontiersin.org 5
Nitrogen Isotopic Discrimination and
Plasma Urea Nitrogen in Relation to
Nitrogen Partitioning
Plasma D15N needs a representative feed sample, which can be
hard to achieve in grazing systems. Use of plasma d15N–urine
d15N requires no feed samples, as long as representative urine
samples can be obtained (e.g., multiple urine samples from cows
at milking). To the best of our knowledge, this is the first study to
introduce plasma d15N–urine d15N as a new biomarker to detect
N excretion from ruminants.
FIGURE 1 | Relationship between urinary nitrogen (UN) and N intake (NI) for
individual observations of the sheep offered three different levels of non-
protein N: C, control dietary treatment with maintenance NI allowance; C
+0.5%, control dietary treatment with maintenance plus an additional 15% NI
allowance; C+1.2%, control dietary treatment with maintenance plus an
additional 33% NI allowance. The error bars show SE.
FIGURE 2 | Relationship between retained nitrogen (RN) and N intake (NI) for
individual observations of the sheep offered three different levels of non-
protein N: C, control dietary treatment with maintenance NI allowance; C
+0.5%, control dietary treatment with maintenance plus an additional 15% NI
allowance; C+1.2%, control dietary treatment with maintenance plus an
additional 33% NI allowance. The error bars show SE.
TABLE 4 | Pearson’s correlation coefficients (r) between plasma nitrogen (N) isotopic discrimination (plasma D15N), urine D15N, and plasma urea N (PUN) with N
partitioning variables in sheep.

Plasma D15N, ‰ Urine D15N, ‰ Plasma d15N–urine d15N, ‰ PUN, mmol/L

DMI, kg/day 0.03 −0.14 0.20 −0.10
NI, g/day 0.24 0.28 0.10 0.78***
UN, g/day 0.52* 0.46 0.33 0.72***
FN, g/day 0.36 0.28 0.26 0.36
UN/NI, g/g 0.68** 0.53* 0.50* 0.50*
FN/NI, g/g 0.10 −0.03 0.17 0.45
UN/FN, g/g 0.33 0.35 0.17 0.55*
Manure N, g/day
NUE, %

0.56*
−0.65**

0.47*
−0.41

0.37
−0.59*

0.71***
0.02

RN, g/day −0.28 −0.10 −0.35 0.53*
ND, % −0.10 0.03 −0.17 0.45
DMD, % −0.20 −0.14 −0.20 −0.20
Urinary PD, mmol/day 0.12 0.04 0.14 0.03
ALT −0.22 −0.50* 0.17 −0.24
AST 0.01 −0.05 0.17 0.07
Plasma glucose, mmol/L 0.51 0.51 0.37 0.41
PUN, mmol/L 0.36 0.48* 0.05 –

Urine D15N, ‰ 0.79*** – 0.14 0.48*
July 2022 | Volume 3 |
PUN, plasma urea nitrogen; DMI, dry matter intake; NI, nitrogen intake; UN, urinary nitrogen; FN, fecal nitrogen; NUE, nitrogen use efficiency = 100 × (RN/NI); RN, retained nitrogen; ND,
nitrogen digestibility; DMD, dry matter digestibility; PD, purine derivatives; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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On average, plasma was enriched in 15N by 7.52‰, while
urine was depleted in 15N by 0.94‰ relative to the diet (Table 3).
Most of the N in plasma is true protein, which was previously
shown to be enriched in 15N (Cheng et al., 2010; Cheng et al.,
2016). In contrast, the main source of N in the urine is urea,
which is reported to be depleted in 15N (Steele and Daniel, 1978;
Cheng et al., 2016). The range of plasma D15N values in this study
is higher than the range stated in previous studies (Cheng et al.,
2013a; Cheng et al., 2016; Bernard et al., 2020; Khanaki et al.,
2021). We have no explanation for the differences between these
previous studies and our current study, as all sheep were healthy
and unstressed throughout the experiment. However, unclear
biological or physiological reasons may cause the different
plasma d15N values (Lee et al., 2012). Nonetheless, the higher
plasma d15N led to the higher plasma D15N. In this study, plasma
D15N reflected N partitioning including UN (r = 0.52; p < 0.05;
Figure 3), UN/NI (r = 0.68; p < 0.01; Figure 4), and manure N.
The results are consistent with the results of other studies (Cheng
et al., 2013a; Bernard et al., 2020), as they earlier confirmed the
usefulness of using plasma D15N for estimating N excretion (i.e.,
UN and UN/NI) from small ruminants.

The urine D15N value for treatment C was lower than the
range, and for treatments C+0.5% and C+1.2%, urine D15N
values were in the range reported by Cheng et al. (2016).
Plasma d15N–urine d15N was also positively correlated with
UN/NI, but this relationship was not reported in any other NB
studies. This result indicated the potential use of this proxy to
estimate N excretion, without the need to know the composition
of dietary intake. The positive correlations between plasma d15N
and urine d15N (Figure 5) are consistent with one of our
previous studies (unpublished data). Kohn et al. (2005) showed
the potential for using PUN as an appropriate biomarker to
evaluate N partitioning. In the present study, PUN
concentrations were also related to the difference in N
partitioning (i.e., NI, UN, UN/NI, UN/FN, manure N, and
RN) in C+1.2% compared to the other two treatments and
were within the range described by Kohn et al. (2005).

Previous studies (Sick et al., 1997; Cheng et al., 2011;
Cantalapiedra-Hijar et al., 2015) have shown that plasma D15N
originates from animal digestion (i.e., rumen site) and
metabolism (i.e., liver site). Moreover, Zuntz (1981) suggested
that rumen microflora have the capabilities to break down
cellulose (as an energy source) and convert non-protein N (i.e.,
urea) to microbial protein. However, in the current study,
offering different NI to the animals and similar urinary PD
results across treatments could be interpreted as a lower
efficiency of MCP synthesis. The explanations for this result
are as follows: 1) the sheep were fed marginally above their
requirement, possibly explaining the limited change in MCP and
2) the fact that productivity and efficiency do not always go
together. For instance, a greater supply of MCP leads to greater
milk protein yield or live weight gain but lower MCP efficiency
use (National Research Council (NRC), 2001; Institut national de
la recherche agronomique (INRA), 2018). In general, and when
talking about N whether in digestion or metabolism, increased
supply translates to higher productivity but lower efficiency.
Frontiers in Animal Science | www.frontiersin.org 6
Nitrogen Utilization in Relation to Nitrogen
Isotopic Discrimination
The less efficiently the animals use dietary N, the higher the plasma
D15N (Sick et al., 1997; Cheng et al., 2013a and Cheng et al., 2013b;
Cantalapiedra-Hijar et al., 2018). Some other studies (Cheng et al.,
2011; Bernard et al., 2020; Khanaki et al., 2021) showed that the
NUE decreased when NI increased. However, in the present study,
NUE did not change when NI increased from treatment C to
treatment C+1.2%. There are three possible reasons for this: 1) the
variation in NI among treatments was insufficient to differentiate
NUE; 2) the sheep were fed marginally above their requirement,
FIGURE 3 | Relationship between urinary nitrogen (N; UN) and plasma N
isotopic discrimination (plasma D15N) for individual observations of the sheep
offered three different levels of non-protein N: C, control dietary treatment with
maintenance N intake (NI) allowance; C+0.5%, control dietary treatment with
maintenance plus an additional 15% NI allowance; C+1.2%, control dietary
treatment with maintenance plus an additional 33% NI allowance. The error
bars show SE.
FIGURE 4 | Relationship between urinary nitrogen (N; UN) to N intake (NI)
ratio (UN/NI) and plasma N isotopic discrimination (plasma D15N) for individual
observations of the sheep offered three different levels of non-protein N: C,
control dietary treatment with maintenance N intake (NI) allowance; C+0.5%,
control dietary treatment with maintenance plus an additional 15% NI
allowance; C+1.2%, control dietary treatment with maintenance plus an
additional 33% NI allowance. The error bars show SE.
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possibly explaining the inability to differentiate NUE; and 3) the
errors of NB increased when NI increased. Spanghero and Kowalski
(1997) illustrated the difficulties of the NB technique and its
tendency to overestimate RN, even when well conducted. A
negative significant relationship between NUE and plasma D15N
(p < 0.01; Figure 6) is similar to the other studies’ reports (Cheng
et al., 2013a; Bernard et al., 2020; Khanaki et al., 2021) and the result
of a meta-analysis (Cantalapiedra-Hijar et al., 2018).

Nitrogen Excretion in Relation to Nitrogen
Isotopic Discrimination
PlasmaD15NcorrelationwithNIwas low,which suggested thatplasma
D15Nwas not highly impacted byNI in the current study. There was a
significant relationship betweenUNandplasmaD15N (r=0.52), as the
animals ate the same diet and differentiated only in NI through urea
supplementation. The result is consistent with previous studies by
Bernard et al. (2020) andKhanaki et al. (2021), suggesting that plasma
D15NismorerelatedtoUNrather thanNUE, likelybecausesomeof the
mechanisms underlying the latter (i.e., N mobilization) do not
fractionate N isotopes. A positive significant relationship between
UN/NI and plasma D15N (Figure 4) is consistent with the results of
otherstudies(Chengetal.,2011;Chengetal.,2013a;Bernardetal.,2020;
Khanakietal., 2021).Thisemphasized thepotential touseplasmaD15N
to estimate UN/NI, which is hard to measure in in-field conditions
(Spanghero andKowalski, 1997), especially under production systems
ofgrazingruminants (Chengetal., 2018).Moreover, theNDandDMD
relationships with plasma D15N (r = −0.10 and r = −0.20, respectively)
werelow,suggestingthattheeffectoftheoveralldigestionprocessonthe
relationship between UN/NI and D15N is limited.
CONCLUSIONS

As NI increased by adding more non-protein N to the diet, the
UN and UN/NI increased, but the NUE had a limited response to
Frontiers in Animal Science | www.frontiersin.org 7
NI in this study. The change in UN and UN/NI was reflected by
plasma D15N changes. The results support the view that the
efficiency of N use in the rumen was highly contrasted across
treatments and may have a role in the observed plasma D15N.
Positive and negative linear relationships between UN/NI and
NUE with plasma D15N, respectively, were observed. The study
showed the potential use of plasma d15N–urine d15N to quantify
N excretion and NUE from sheep. Moreover, the results
demonstrated that plasma D15N works better than the other
available biomarkers for reflecting changes in N partitioning,
including both N excretion and the efficiency of N use from the
ruminants. Further research is required to explore these
relationships in sheep of different physiological statuses and
offered diets differing widely in N.
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