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Graphical abstract 
 

 
Direct and indirect relationships among plant genetics, root exudates, root microbiome and plant 
phenotype. Multi-omics data integration can help to unravel the mechanisms that drive microbiome 
recruitment. 
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Introduction 
The current challenge in agriculture is to be able to increase crop yield under 
sustainable conditions to feed the growing world population without harming the 
environment. The plant microbiome could play an essential role in achieving this 
challenge, as it is becoming increasingly clear that it plays an essential role in 
supporting plant growth and health. Advances in data analysis - such as multivariate 
analyses, differential abundance testing methods and machine learning methods - 
now enable us to link candidate microbes to a phenotype of interest (e.g. plant growth, 
yield, nutrient uptake efficiency, tolerance to disease) [1–3]. However, to be able to 
select plants that recruit these beneficial microbes, it is essential that the molecular 
mechanisms underlying microbiome recruitment are unravelled. With the advent of the 
omics technologies, we can characterise plants in great detail using (epi-)genomics, 
transcriptomics, proteomics and metabolomics. Through the development of new data 
analysis paradigms, in principle, these omics data could be related to the associated 
microbiome (Figure 1). In this review we will discuss the different advanced statistical 
approaches that have been developed to analyse and integrate plant -omics with 
microbiome data to propose new mechanistic hypotheses for root microbiome 
recruitment and its effect on plant phenotype. 
 

 
Figure 1: Use of omics data to unravel plant microbiome recruitment 
Integration of multiple omics data sets, such as genomics, epigenetics, transcriptomics, proteomics, 
metabolomics (defined here as the metabolite profile in any given organism), exometabolomics (defined 
here as the metabolite profile secreted by an organism), metagenomics, metatranscriptomics, 
metaproteomics and metabonomics (defined here as the metabolite profile from complex systems, such 
as microbial communities) to unravel the plant-microbiome interaction. 

 
Plant genetics underlying plant microbiome recruitment 
Traditional Genome Wide Association Studies (GWAS) 
Development of the next-generation sequencing technologies and their decreasing 
costs have allowed high-throughput plant genotyping using large numbers of single 
nucleotide polymorphisms (SNPs). This has enabled the use of mapping approaches 
to identify genes underlying plant traits of interest, through QTL mapping and GWAS 
[4–6]. Since a number of years, also the plant microbiome is being used as a 
quantitative plant trait in GWAS to find plant genes underlying microbiome recruitment 
using mixed linear models [1,7–10]. This confirmed the notion that the plant genotype 
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drives its associated microbial communities, and linked plant genes involved in stress 
response, kinase activity, cell wall integrity, root development and carbohydrate 
metabolism to the occurrence of specific taxa [7–10]. Interestingly, in maize, the 
predicted bacterial metabolic functions displayed a higher and more significant 
heritability than the diversity and relative abundance of individual taxa [1]. In future 
studies, the use of shotgun metagenomics data will further improve the mapping of 
microbial functions, as was recently demonstrated for the rice phyllosphere 
microbiome [10]. 
Nevertheless, identifying the underlying plant loci involved in the microbiome 
recruitment remains challenging. First, only a small percentage of the variation in the 
microbiome is generally explained by the plant genotype and just few microbiome traits 
are usually heritable. Moreover, microbiome recruitment seems to mostly be a 
polygenic trait. So, the current GWAS models, even with enough power, often fail to 
detect the microbiome recruitment loci, as discussed elsewhere in this issue [11]. If 
candidate genes are identified, reproducibility and validation of these candidates using 
plant mutants and synthetic communities are challenging. In human-microbiome 
GWAS, results are often difficult to compare between studies [12,13]. For plants, 
Beilsmith and collaborators proposed a workflow, including thorough quantification 
and standardized protocols [14]. Also, as environmental conditions are a major 
component of the variability, GWAS will need to be done across different 
environmental conditions to test the effect of the environment on candidate genes. 
Recently, Brachi and collaborators were able to identify heritable microbial hubs that 
are affected by plant genomics traits across different environmental conditions [15]. 
  
Perspectives 
There are several recent methodological advances in association studies. First, the 
use of k-mers instead of the commonly used SNPs confirmed associations previously 
found, but also pinpointed new associations with gene variants missing from reference 
genomes [16]. Second, to increase the mapping power, Beilsmith and collaborators 
proposed using multi-traits GWAS modelling SNP associations with many traits rather 
than with each trait individually, although these models are computationally 
challenging [14]. Third, to overcome the difficulties of experimental validation, causal 
inference methods [17], such as genetic structural equation model (GSEM), were 
proposed, which have been applied as covariance models in multi-traits GWAS to 
improve power [18].  
Finally, a recent promising method development in plant-microbe interaction 
association studies is the addition of the plant phenotype. Since the microbiome can 
be considered as a host phenotype but also contribute to the host phenotype, 
Oyserman and collaborators recently proposed an extended model that includes the 
microbiome into the traditional GE model, i.e. GEM [19]. While the traditional GE 
model considers the effect of the genotype (G), the environment (E) and their 
interaction (G:E) on the phenotype (Y or here M for the microbiome), i.e. 
M=G+E+G:E+e, the new GEM model considers the effect of the genotype, the 
microbiome, the environment and their interaction to determine the plant phenotype 
(Y), i.e. Y=G+E+M+G:E+G:M+E:M+G:E:M+e. A future challenge will be to apply this 
model to complex natural communities, consisting of hundreds to thousands of 
species, and taking into consideration also covariance between host genotype, 
environment and microbiome. Finally, a method called SICOMORE (Selection of 
Interaction effects in COmpressed Multiple Omics REpresentations) was recently 
developed and applied in a plant-microbiome study. The authors detected interactions 
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between plant genomic markers (SNPs) in Medicago trunctula and rhizosphere 
bacterial genera that are linked to a plant phenotype (e.g. specific nitrogen uptake) 
[20].  
 
Root exudates shape the root and rhizosphere microbiome 
In a number of studies, it was shown that metabolites in the root exudate play a role 
in shaping the composition of the root and rhizosphere microbiome [21–28]. We 
postulate that the discovered relationships between root exudates and the microbiome 
represent just the tip of the iceberg and propose that data integration methods can be 
used to unravel new signalling relationships. Pang et al. reviewed the integration of 
plant specialized metabolites and microbiome data [29]. Many methods have been 
suggested, but most do not take into account the zero-inflated count distribution nor 
the compositional aspect of these microbiome data. Solutions for these problems 
include using transformation, imputation and normalization of the data, or using 
distance-based models. M2IA (automated microbiome and metabolome integrative 
analysis pipeline), a web-based application combines such pre-processing with 
standard data integration methods [30]. 
 

 
Figure 2: Metabolomics and metagenomics data integration approaches 
A graphical summary of the main approaches for metabolomics and metagenomics data integration, 
including: A) variable-by-variable analyses, such as Pearson, Spearman correlations, sparCC, or neural 
network approaches, where the outputs can be represented as heatmap and/or networks; B) supervised 
and unsupervised ordination methods, for which an ordination plot can be rendered and/or features 
explaining variance extracted. 
Abbreviations: n, number of samples; p, number of microbiome variables; q, number of root exudate 
variables; l, number of latent variables for the microbiome data; m, number of latent variables for the 
root exudates data; Mic: microbe; Met: root exudate metabolite. 

 
Figure 2 illustrates two different integration approaches of which one uses a variable-
by-variable analysis, in which correlations between variables of both data sets are 
compared for their linear (Pearson), rank (Spearman), or other types of correlations or 
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co-occurrence. As an example, calculating Pearson correlations, Huang and 
collaborators [31] identified and linked rhizosphere bacterial OTUs and flavonoids that 
could explain bitterness in sugarcane. Using Pearson correlation on log transformed 
data sets, Chaparro et al. found that root exudates phenolics and amino acids 
correlated to bacterial communities composition and transcriptional changes in 
Arabidopsis thaliana [32]. Korenblum et al. [33] used self-organizing maps to cluster 
metabolites and OTUs that highly correlate in 16 clusters and revealed that abundance 
of specific taxa are related to systemic root metabolome and root exudate changes.  
However, Morton et al. [34] showed that these standard correlation approaches 
provide a huge number of false high correlations. An alternative approach is to 
consider co-occurrence probabilities instead of correlations. A new neural network 
approach method was recently developed, mmvec (microbe–metabolite vectors), 
which is able to identify microbe-metabolome pairs based on co-occurrence while 
considering compositionality of the data. While mmvec was shown to be superior to 
other correlation approaches, the statistical significance of the interactions remains 
unclear. For datasets with compositional restrictions, Fang et al. [35] introduced 
CCLasso (Correlation inference for Compositional data through Lasso) that uses the 
concept of sparsity to find relevant interactions between variables.  
A second approach uses restricted ordination methods (Figure 2B) in which only the 
variation in the microbiome data is explored that is due to variations in the metabolite 
levels. Examples are Redundancy Analysis (RDA), Canonical Correspondence 
Analysis (CCA), and, especially for count data, Constrained Analysis of Principal 
coordinates analysis (CAP) [36]. The ordination is visualized in a biplot or triplot, where 
the samples (as scores), and the response variables of both datasets as loadings have 
their respective position on the ordination axes. Potential relationships between 
metabolites in the rhizosphere and the associated microbial community were thus 
highlighted using CCA in lettuce under different fertilization regimes, using log10 
transformed relative abundance of bacterial/archaeal and fungal communities [37]. 
Likewise, in Phragmites australis relationships between rhizosphere metabolites and 
associated fungal communities in polluted soils were determined using CCA [38]. 
Moreover, CAP was applied to centered log-ratio transformed OTU counts with an 
Euclidean distance measure using plant specialized metabolites as constraining 
variables and showed that the microbial community was influenced by salicylic acid or 
its derivatives [39]. For these ordination methods, model significance is commonly 
tested using permutation of the metabolite’s levels over the different samples to break 
the sample to sample relationship between the microbiome and the metabolome. 
Furthermore, a more advanced set of data fusion methods uses canonical variables 
of both data sets that optimally correlate (Canonical Correlation Analysis CCorA) or 
have maximum covariance (Diablo). New methods, such as O2PLS (two-way 
orthogonal partial least squares), JIVE (joint and individual variation explained), 
DISCO (distinct and common simultaneous component analysis) not only focus on 
what is in common between the datasets, but also what is systematic within each set. 
Such methods are often used in medical metabolome-microbiome integration studies 
[40], but not yet in plants. Most of these methods can handle additional phenotypic 
data, as nicely discussed by Chu et al. [41], and so root exudates, microbiome and 
plant phenotype could be linked. 
Finally, generalized linear models, which can model the data taking into account their 
specific error distribution, have been used for data fusion using generalized 
simultaneous component analysis methods. These methods are available for many 
distribution functions such as Poisson and (zero-inflated) negative binomial. R 
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packages make use of such models, such as edgeR, Deseq2 and pscl [42–44]. 
Recently, Song [45,46] introduced generalized simultaneous component analysis to 
fuse binary copy number aberration data with normally distributed gene expression 
data to look for their common variation. A similar generalization to include (zero-
inflated) negative binomial models in data fusion would be very useful for the 
integration of metabolomics and microbiome data sets.  
 
Plant genetics, root exudates and microbiome data integration to predict plant 
phenotype 
To model the relationship between multiple actors - such as Plant Genetics (PG), Root 
Exudates (RE), Microbiome (M) and Phenotype (Phe) - Structural Equation Models 
(SEMs), introduced in the 1930s by Sewell Wright [47], can be used.  
 
 

 
Figure 3: Multi- omics data integration to unravel plant microbiome recruitment 
A graphical summary showing potential direct and indirect relationships among plant genetics, root 
exudates, microbiome and plant phenotype. 

 
These methods originated in the social sciences, but find increasingly use in the 
natural science as well [48]. The basic idea is to summarize blocks of manifest 
variables (e.g. one block of microbiome data and one block of metabolomics data) into 
latent variables. These latent variables are now connected through an assumed 
pathway defining their connectivity. This part of the model is called the inner model, 
and the part describing the manifest variables in terms of their latent variables is called 
the outer model. The elegance of SEMs is that they can distinguish direct from indirect 
effects. Figure 3 shows that there is a direct effect from PG to Phe, but also an indirect 
effect through the path PG, RE, M and Phe. SEMs are capable of disentangling these 
effects. Such SEMs can also be extended to deal with genetic effects [18]. Special 
versions of SEMs (called Structural Causal Models) are used in causal analysis 
[49]. SEMs are starting to be used in microbiome research, e.g., in ecological 
applications [50–53]. In some cases, summaries of the microbiome (e.g. alpha-
diversity measures) can be used as the outer model, i.e., they are used as latent 
variables in the SEM model. These examples show that SEMs are indeed powerful 
models to study complex systems.  
The real challenge of the use of SEMs in microbiome research is in keeping the notion 
of latent variables since that allows for modelling simultaneously multiple blocks of 
multivariate (manifest) variables. This may encompass, e.g., many SNPs for the PG, 
many OTUs/ASVs (amplicon sequence variants) for the microbiome, and many 
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metabolites for the RE. There are (at least) three challenges to overcome. The first is 
to extend the traditional SEMs to handle more than one latent variable per block. This 
is not trivial, but some ideas on how to do this are available, e.g. using sequential and 
orthogonalized partial least square regression for path analysis (SO-PLS-Path) 
models [54,55]. Another challenge is to extend the SEMs to handle data of different 
measurement types. In the example above, SNPs and OTUs/ASVs consist of (limited) 
count data, while RE consists of quantitative data. One avenue to explore may be the 
use of nonlinear generalized structured component analysis, which can handle both 
quantitative and qualitative data [56] or extensions of generalized simultaneous 
component analysis [45]. Although both extensions can handle high-dimensional 
blocks in the SEM models, in each block there may still be variables/features that are 
not important but may obscure the relations. Hence, the final challenge is to select 
variables to overcome this problem. This may be done in each block before any SEM 
modelling using techniques from machine learning [57]. Alternatively, this can be done 
by carefully studying the outcome of a SEM model and interrogating the model for 
variable importance, e.g., by studying the loadings of the variables in the outer 
relationships. If these challenges are tackled then the rewards are high: a full 
description of the system on the level of the measured variables relevant to the 
biological system. 
 
Conclusions and outlook 
By now there is substantial evidence that plant genetics affects the root microbiome 
although it often explains just a small part of the total variation. It is becoming clear 
that, to really expand our knowledge on the plant microbiome interaction, the 
microbiome should not only be considered as a phenotype but should also be part of 
the explanatory variables that predict the plant phenotype. Moreover, there are many 
indications that specific metabolites in the root exudate drive microbiome selection 
and/or assembly. Multi-omics data integration could help to identify the molecular 
mechanisms underlying microbiome recruitment also considering metabolite-
metabolite, microbe-microbe, and metabolite-microbe interactions. Furthermore, 
modelling, using SEM, could help us to go beyond finding more associations and 
causation, integrating all the drivers, including plant genetics, root exudates and the 
microbiome to predict the plant phenotype, and identify direct and indirect effects 
among the drivers. This knowledge will allow us to shape the microbiome through 
breeding, possibly through changes in the root exudate, and optimise plant/crop 
growth under the desired conditions. 
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