
HAL Id: hal-03966270
https://hal.inrae.fr/hal-03966270v1

Preprint submitted on 2 Feb 2023 (v1), last revised 17 Mar 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal synthesis for a class of L ∞ optimal control
problems in the plane with L 1 constraint on the input

Emilio Molina, Alain Rapaport

To cite this version:
Emilio Molina, Alain Rapaport. Optimal synthesis for a class of L ∞ optimal control problems in the
plane with L 1 constraint on the input. 2023. �hal-03966270v1�

https://hal.inrae.fr/hal-03966270v1
https://hal.archives-ouvertes.fr


Optimal synthesis for a class of L∞ optimal

control problems in the plane with L1 constraint

on the input

Emilio Molina1 and Alain Rapaport2

1GIPSA-lab, Univ. Grenoble Alpes, CNRS, Grenoble INP,
Grenoble, France

emilio.molina-olivares@gipsa-lab.fr
2UMR MISTEA, Univ. Montpellier, INRAE, Institut Agro,

Montpellier, France
alain.rapaport@inrae.fr

February 2, 2023

Abstract

For a particular class of planar dynamics that are linear with respect
to the control variable, we show that the feedback strategy ”null-singular-
null” is minimizing the maximum of a coordinate over infinite horizon,
under a L1 budget constraint on the control. Moreover, we characterize
the optimal cost as a function of the budget. The proof is based on an
unusual use of the clock form. This result generalizes the one obtained
formerly for the SIR epidemiological model to more general Kolmogorov
dynamics, that we illustrate on other biological models.
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1 Introduction

The synthesis of optimal solutions of control problems with maximum cost has
received relatively few attention in the literature, apart characterizations of the
value function in terms of Hamilton-Jacobi-Bellman variational inequality [1, 4].
For concrete problems, it is often very difficult or merely impossible to find an-
alytical solutions, but these characterizations has led to dedicated numerical
schemes [2, 3]. On the other hand, necessary optimality conditions cannot be
provided by a direct application of the Pontryagin’s Maximum Principle, be-
cause the maximum cost is not a criterion in Mayer or Bolza form. However,
equivalent formulations in Mayer form can be obtained by augmenting the state
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dynamics and adding a state constraint [10]. In practice, dealing with the state
constraint remains an issue to derive analytical optimal strategies. Recently,
the optimal control problem of minimizing the peak of an epidemic has been in-
vestigated for the well-known epidemiological SIR model [7]. The authors have
provided the optimal solution when controlling the transmission rate under a
budget or L1 constraint on the control [9]. This problem, whose trajectories lie
in the plane, presents a singular arc and has been solved analytically by applying
a clock form. The clock form technique is well-known for planar optimal control
problem with integral or minimal time criterion [8, 6], as a tool to compare a
candidate optimal solution with any other admissible solutions. Therefore, it
cannot be applied in this way for comparing maximum costs. However, for this
particular epidemiological problem, the authors have used the clock form in rea-
soning by the absurd, showing that a possible better solution would require a
larger budget. While the proof has been derived for the particular dynamics of
the SIR model, the aim of the present work is to extend this technique to more
generic problems of minimizing the peak of one coordinate of planar dynamics
under a L1 constraint on the control. We characterize a class of problems for
which the optimal solution presents the same structure of the control strategy,
which consists in three phases: 1. go as fast as possible to the optimal peak
value 2. apply a control to maintain the peak value constant until the budget is
exhausted (singular arc), and 3. release the control when entering a domain of
the state space for which the peak cannot increasing applying the null control.
Moreover, we give conditions on particular Kolmogorov dynamics in plane, for
which this result generalizes the one obtained previously for the SIR epidemi-
ological model, which can be then obtained as a simple application of our result.

More precisely, we consider planar controlled dynamics defined on an posi-
tively invariant domain D of R2{

ẋ = f1(x, y) + g1(x, y)u
ẏ = f2(x, y) + g2(x, y)u

(1)

where the maps f1, f2, g1, g2 are assumed to be smooth (at least C1). Given
a positive number K and an initial condition (x0, y0) ∈ D, we consider the
optimal control problem over infinite horizon

inf
u(·)∈U

sup
t≥0

y(t), (2)

where U denotes the set of measurable functions u(·) that takes values in U :=
[0, 1] subject to the L1 constraint∫ +∞

0

u(t)dt ≤ K, (3)

The problem consists then in minimizing the ”peak” of the variable y under a
”budget” constraint on the control u(·). We shall say that a solution of (1) is
admissible if the control u(·) satisfies the constraint (3).

The paper is structured as follows. In the next section, we give assumptions
and some preliminary results, which ensure the well-posedness of problem (2)
under infinite horizon and the control strategy that we consider later. Section
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3 defines the control strategy that what we propose to name ”NSN”, and gives
a characterization of it. Section 4 proves our main result about the optimality
of the NSN strategy, under a flux-like condition. Finally, we consider in Section
5 a class of controlled Kolmogorov dynamics for which the former assumptions
are satisfied. As examples, we show how our result applies straightforwardly to
the SIR model and to more sophisticated biological models.

2 Assumptions and preliminaries

We first make the following assumptions that will be used to deal with infinite
horizon, where projy denotes the second projection in the (x, y) coordinates,

Assumptions 1. One has

i. For any initial condition in D, the solutions of the uncontrolled dynamics
(that is with u = 0) is bounded, and any other admissible solution with a
lower cost supt y(t) are also bounded.

ii. The strict sub and super level sets of the function f2

D− := {(x, y) ∈ D ; f2(x, y) < 0}, D+ := {(x, y) ∈ D ; f2(x, y) > 0}

are non empty.

iii. For any y ∈ projy(D+), there exists a unique x such that f2(x, y) = 0 with
(x, y) in D.

Note that the optimal control problem (2) over infinite horizon is well posed
(i.e. is finite) under Assumption 1.i. Under these assumptions, we define the
level set

D0 := {(x, y) ∈ D ; f2(x, y) = 0}

and the function

xh(y) := {x ; (x, y) ∈ D0} , y ∈ projy(D+) (4)

We shall also require a certain behavior of the vector fields f and g on the sets
D+ and D0.

Assumptions 2. In D+, one has the properties

i. f1 is negative and decreasing w.r.t. x and y

ii. g1 is increasing w.r.t. x and y and f1 + g1 is non positive

iii. f2 is increasing w.r.t. x

iv. g2 is decreasing w.r.t. x and y and f2 + g2 is negative

and moreover at D0

v. f1 is negative

vi. f2 is increasing w.r.t. x and non increasing w.r.t. y
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Then, the following Lemma gives properties of the trajectories in D+ and
its complementary in D, related to the infinite horizon.

Lemma 2.1. Under Assumptions 1 and 2,

1. With the control u = 0, the domain D \ D+ is positively invariant, and
from any initial condition (x0, y0) in D+, the solution of (1) reaches D0

in finite time.

2. For any initial condition (x0, y0) in D+ and optimal control u(·) which
satisfies the constraint (3), the solution of (1) reaches (possibly in infinite
time) the domain D0.

Proof. 1. At (x, y) ∈ D0, one has for u = 0

d

dt
f2(x, y) =

∂f2(x, y)

∂x
f1(x, y)

where ∂f2

∂x f1 is a negative function on D+ from Assumptions 2.i and 2.iii. By

continuity, one has ∂f2

∂x f1 ≤ 0 on D0 and we deduce the that the sub level set
{(x, y) ∈ D ; f2(x, y) ≤ 0} = D \ D+ is positively invariant.

With the control u, as long as the solution (x(t), y(t)) remains in D+, one
has ẏ = f2(x, y) > 0. Therefore, one has y(t) ≥ y0. Moreover, as f2 is increasing
w.r.t. x on D+ ∪ D0 (Assumptions 2.iii and 2.vi), one has

f2(x(t), y(t)) > 0 = f2(xh(t), y(t))⇒ x(t) > xh(y(t))

Then, f1 being decreasing w.r.t. x and y on D+ (Assumption 2.i), one has also

ẋ(t) = f1(x(t), y(t)) ≤ f1(xh(y(t)), y0)

On the other hand, one has on D0

f2(xh(y), y) = 0⇒ x′h(y) = −∂yf2(x, y)

∂xf2(x, y)
≥ 0

from Assumption 2.vi. The map xh is thus not decreasing and one has then
xh(y(t)) ≥ xh(y0), from which one gets

ẋ1(t) ≤ f1(xh(y0), y0)

as long as (x(t), y(t)) remains in D+. From Assumption 2.v, one has also
f1(xh(y0), y0) < 0. If (x(t), y(t)) belongs to D+ for any t ≥ 0, the solution x(·)
is unbounded, which contradicts Assumption 1.1. We deduce that (x(t), y(t))
has to escape D+ in finite time, and consequently y(·) reaches its maximum
y0
max at finite time.

2. Let (x(·), y(·)) be an optimal solution, and ȳ := supt y(t) ≤ y0
max < +∞.

Note that x(·) is not increasing in the domain D+, with Assumption 2.ii. Then,
with Assumption 2.iv, one has

ẏ(t) ≥ f2(x(t), y(t)) + g2(x0, ȳ)u(t)

as long as the solution (x(t), y(t)) remains in D+. Therefore, one has

ȳ ≥ y(t) ≥ y0 +

∫ t

0

f2(x(t), y(t))dt+ g2(x0, ȳ)

∫ t

0

u(t)dt
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and as g2 < −f2 < 0 is negative, one obtains∫ t

0

f2(x(t), y(t))dt < ȳ − y0 − g2(x0, ȳ)K < +∞

If the solution (x(t), y(t)) remains in D+ for any t ≥ 0, then f2(x(t), y(t)) tends
to 0 when t tends to +∞, the function f2 being positive in D+. We conclude
that any solution reaches the domain D0 possibly in infinite time.

3 The NSN strategy

Let us fix an initial condition (x0, y0) in D+ and consider the uncontrolled
dynamics, i.e. with u = 0. As long as its solution, denoted (x0(·), y0(·)), belongs
to D+, y0(·) is increasing. From Lemma 2.1, we know that y0(·) reaches in
finite time the domain D−, where it is decreasing, and finally remains in D−.
Therefore y0(·) reaches its maximum y0

max < +∞ in finite time, and for any
ȳ ∈ [y0, y

0
max], we can define

x̄(ȳ) := x0(t̄ȳ) where t̄ȳ := inf{t ≥ 0; y0(t) = ȳ} < +∞ (5)

Note that x0(·) is decreasing by Assumption 2.i, and therefore the map ȳ 7→ x̄(ȳ)
is smooth with x̄′ < 0.

We define the NSN (for ”Null-Singular-Null”) strategy as follows:

Definition 1. For ȳ ∈ [y0, y
0
max], consider the feedback control

ψȳ(x, y) :=

k(x) := −f2(x, ȳ)

g2(x, ȳ)
, if y = ȳ and (x, ȳ) ∈ D+,

0, otherwise.
(6)

We denote the L1 norm associated to the NSN control

L(ȳ) :=

∫ +∞

0

uψȳ (t)dt, ȳ ∈ [y0, y
0
max],

where uψȳ (·) is the open-loop control generated by the feedback (6).

Note that the function k is well defined and takes values in [0, 1] by Assump-
tion 2.iv.

Let us now define the function

∆(x, y) := f2(x, y)g1(x, y)− f1(x, y)g2(x, y), (x, y) ∈ D

Note that ∆ is negative on D+ thanks to Assumption 2. We consider the
following assumption

Assumption 3. Under Assumption 2, the function f2

∆ is increasing w.r.t. y in
D+

Then, the function L can be characterized as follows.
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Proposition 3.1. Under Assumptions 1, 2 and 3, one has

L(ȳ) =

∫ x̄(ȳ)

xh(ȳ)

−f2(x, ȳ)

∆(x, ȳ)
dx, ȳ ∈ [y0, y

0
max] (7)

(where xh(ȳ) and x̄(ȳ) are defined in (4) and (5) respectively). Moreover, the
map ȳ 7→ L(ȳ) is decreasing.

Proof. Along the solution (x(·), y(·)) generated by the feedback control (6), let
us consider the time function

γ2(t) := f2(x(t), ȳ), t ≥ t̄ȳ

where t̄ȳ = inf{t ≥ 0; y(t) = ȳ} < +∞. As long as (x(t), ȳ) ∈ D+, one has

ẋ = h(x) := f1(x, ȳ) + g1(x, ȳ)k(x) = −∆(x, ȳ)

g2(x, ȳ)

which is negative by Assumption 2, and then

γ̇2 =
∂f2(x(t), ȳ)

∂x
h(x) < 0

(the function f2 being increasing w.r.t. x in D+ from Assumption 2.iii). The
function γ2 is thus decreasing and therefore D0 is reached at a time T ≥ t̄ȳ
(possibly equal to +∞). One has then

x(T ) = max{x ≤ x̄(ȳ); f2(x, ȳ) = 0} = xh(ȳ)

If T < +∞, then u(t) = 0 for any t > T because the state cannot reaches again
D+ by Lemma 2.1. Therefore, one has

L(ȳ) =

∫ T

t̄ȳ

k(x(t))dt

Note that the maps [t̄ȳ, T ] 7→ [xh(ȳ), x̄(ȳ)] is onto, and one can then write

L(ȳ) = −
∫ x̄(ȳ)

xh(ȳ)

k(x)

h(x)
dx =

∫ x̄(ȳ)

xh(ȳ)

−f2(x, ȳ)

∆(x, ȳ)
dx

The map ȳ 7→ xh(ȳ) is not necessarily differentiable. However, the integrand in
the above expression of L is null at xh(ȳ) for any ȳ. Therefore, L is differentiable
with

L′(ȳ) =

(
−f2(x̄, ȳ)

∆(x̄, ȳ)

)
x̄′ −

∫ x̄

xh

∂

∂y

(
f2(x, ȳ)

∆(x, ȳ)

)
dx

By Assumptions 2 and 3, one has − f2

∆ < 0 and ∂
∂y ( f2

∆ ) > 0 on D+, and as x̄′ is

negative, we deduce that one has L′(ȳ) < 0.

Remark 3.1. When applying the feedback (6), it generates only one disconti-
nuity point of the open loop control uψȳ (·), when the solution y(·) reaches ȳ in
D+, but not when y(·) leaves the singular arc y = ȳ as the control is null when
reaching D0. Consequently, the trajectory tangentially leaves the singular arc.
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4 An optimal synthesis

In this section, we give our main result about the optimality of the NSN strategy,
which is expressed in terms of positivity of a certain flux on the domain D+.
The proof is using the clock form but in an unusual way (compared for instance
to [8, 6]), which requires some assumption about the dynamics on the boundary
of the domain D+, given below.

Assumption 4. In D0, g2 is negative and one has ∇f2.(f + g) ≥ 0.

Proposition 4.1. Under Assumptions 1, 2, 3 and 4, let (x0, y0) be an initial
condition in D+ such that L(y0) ≥ K. If one has

∂

∂y

(
f2(x, y)

∆(x, y)

)
+

∂

∂x

(
f1(x, y)

∆(x, y)

)
> 0, (x, y) ∈ D+, y ≤ y0

max (8)

then the feedback ψȳ∗ , with ȳ∗ ∈ [y0, y
0
max] such that L(ȳ∗) = K, is optimal.

Proof. Note first that one has L(y0
max) = 0 as the NSN control is identically null

for ȳ = y0
max. As the map L is decreasing by Proposition 3.1, we deduce that

there exists an unique ȳ? ∈ [y0, ymax] such that L(ȳ?) = K when L(y0) ≥ K.

For a fixed initial condition (x0, y0) in D+, we denote by (x?(·), y?(·)) the
solution generated by the NSN strategy with ȳ = ȳ?, and u?(·) its open loop
control. Consider the curve C? in the plane

C? := {(x?(t), y?(t)) ; t ∈ [0, t?h]}

where t?h > 0 is such that x?(t?h) = xh(ȳ?). C? is the part of the orbit for which
y?(·) is non decreasing, and its extremity belongs to D0.

Let t̄? ∈ [0, t?h] be such that x?(t̄?) = x̄(ȳ?) ≤ x0. For any t ∈ [0, t̄?], the
control u?(t) is null. Then, at any (x, y) ∈ C? with x > x̄(ȳ?), the curve C?
admits an upward normal in the (x, y) plane given by

~n(x, y) =

[
f2(x, y)
−f1(x, y)

]
Let (x, y) 7→ ~v(x, y, u) be the vector field in the plane for the control u. For any
(x, y) ∈ C? with x > x̄(ȳ?), one has

~n(x, y).~v(x, y, u) = ∆(x, y)u ≤ 0.

Therefore, the forward orbit with any other control u(·) lies below the curve C?
in the (x, y) plane for x ∈ [x̄(ȳ?), x0].

Assume that there exists another solution (x(·), y(·)) with (x(0), y(0)) =
(x0, y0), generated by an optimal control u(·) such that supt y(t) < ȳ?. From
Lemma 2.1, we know that (x(·), y(·)) reaches the level set D0 at a time t0

(possibly infinite). The trajectory being bounded, by Assumption 1.i, the point
(x(t0), y(t0)) ∈ D0 is finite, with y(t0) < ȳ?. Let

C := {(x(t), y(t)), ; t ∈ [0, t0]}

that has to be below C?, according to the above.
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From the point (x?(t?h), y?(t?h)) ∈ D0, there exists an admissible trajectory
that stays in the level set D0 if for any (x, y) ∈ D0 there is a control u in [0, 1]
such that

∇f2(x, y).(f(x, y) + g(x, y)u) = 0

On the set D0, one has ∇f2.f = ∂xf2f1 which is negative by Assumptions 2.v-vi.
Then the function

ψ†(x, y) := −∇f2(x, y).f(x, y)

∇f2(x, y).g(x, y)
> 0, (x, y) ∈ D0

is well defined and belongs to [0, 1] by Assumption 4. Let (x†(·), y†(·)) be the
solution of (1) with (x†(t?h), y†(t?h)) = (x?(t?h), y?(t?h)) ∈ D0 and the feedback
control ψ†. We denote u†(·) the corresponding open loop control. The trajectory
remains in D0, and as g2 is negative on D0 (Assumption 4) and u† is positive,
one has ẏ† < 0. Therefore, there exists t† < +∞ such that y†(t†) = y(t0), with
x†(t†) = xh(y(t0)) = x(t0). Let

C† := {(x†(t), y†(t)) ; t ∈ [t?h, t
†]}

We consider now the concatenation of the three curves C?, C† and C (see
Figure 1), which defines a simple closed curve Γ = {(x̃(τ), ỹ(τ)) ; τ ∈ [0, t†+t0)}
with

(x̃(τ), ỹ(τ)) =


(x?(τ), y?(τ)), τ ∈ [0, t?h)

(x†(τ), y†(τ)), τ ∈ [t?h, t
†)

(x(t0 − t† − τ), y(t0 − t† − τ)), τ ∈ [t†, t† + t0)

that is anti-clockwise oriented in the (x, y) plane by τ ∈ [0, t† + t0) (see Figure
1). Let E be the region bounded by Γ, which belongs to D+. By Assumption 2,
∆ is non null on D+ and one can then write from equations (1) the 1-form in E

u(t)dt =
f2(x, y)

∆(x, y)
dx− f1(x, y)

∆(x, y)
dy

Applying Green’s Theorem, one obtains∮
Γ

u(t)dt =

∫∫
E

∂

∂x

(
−f1(x, y)

∆(x, y)

)
− ∂

∂y

(
f2(x, y)

∆(x, y)

)
dxdy

which is negative by condition (8). Consequently, one has∮
Γ

u(t)dt =

∫ t?h

0

u?(t)dt+

∫ t†

t?h

u†(t)dt−
∫ t0

0

u(t)dt < 0

that is∫ t0

0

u(t)dt > K +

∫ t†

t?h

u†(t)dt > K

which contradicts the optimality of the control u(·) under the constraint (3).
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x (y)h

Figure 1: Application of the Green’s Theorem on the closed domain (in gray)
delimited by the curves C? (in blue), C† (in red) and C (in green). The curve (in
black) represents the level-set D0 which delimits the domain D− on the right.

Remark 4.1. When K > L(y0), the budget K is large enough to ensure y(t) ≤
y0 for any t ≥ 0. One can apply for instance the feedback strategy ψy0 , which is
optimal with a L1 norm of the control less than K, equal to L(y0).

Let us illustrate our results on an example for which the optimal control can
be determined analytically.

Example 1.{
ẋ = −(x+ 1)2y + (x+ 1)2yu
ẏ = xy − (x+ 1)yu

u ∈ [0, 1]

Whatever is the control u, one has ẋ = 0 at x = −1 and ẏ = 0 at y = 0.
Therefore the domain

D = {(x, y) ∈ R2; x > −1, y > 0}

is invariant. Let V (x, y) = x+ 2y. With u = 0, one has d
dtV = −x2y − y2 < 0.

The function V is thus decreasing along the solutions in D, from which one
deduces the inequalities −1 ≤ x(t) ≤ x(0) + 2y(0) and 0 ≤ y(t) ≤ (x(0) + y(0)−
1)/2. The solutions in D with u = 0 are thus bounded.

The sub and super sets of the function f2 are D− = {(x, y) ∈ D; x < 0},
D+ = {(x, y) ∈ D; x > 0} = {(x, y) ∈ R2; x > 0, y > 0} and the function xh is
simply the null function. Assumption 1 is satisfied.

In D+, the function f1(x, y) = −(x + 1)2y is negative and decreasing with
respect to x and y, while the function g1(x, y) = −f1(x, y) is increasing with
respect to x and y with f1 +g1 = 0 ≤ 0. The function f2(x, y) = xy is increasing
with respect to x, while the function g2(x, y) = −(x + 1)y is decreasing with
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respect to x and y with f2 + g2 = −y < 0. In D0, one has f1 = −y < 0 and
∂xf2 = y > 0, ∂yf2 = 0 ≤ 0. Assumption 2 is thus fulfilled.

One has

f2

∆
= − x

(x+ 1)2y

which is increasing with respect to y on D+. Assumption 3 is satisfied.

In D0, g2 = −y is negative and ∇f2.(f + g) = 0 ≥ 0. Assumption 4 is
satisfied.

Finally, one has

∂y

(
f2

∆

)
+ ∂x

(
f1

∆

)
=

x

(x+ 1)2y

that is positive on D+.
Now, from Proposition 3.1, one can determine the function L as follows.

Firstly, the solution of the system with u = 0 for an initial condition (x0, y0) in
D+ can be parameterized by x as the map t 7→ x(t) is decreasing, that is

y(t) = y0 −
∫ x(t)

x0

x

(x+ 1)2
dx

which gives∫ x̄(ȳ)

x0

x

(x+ 1)2
dx = y0 − ȳ (9)

and

y0
max = y0 −

∫ 0

x0

x

(x+ 1)2
dx = y0 −

[
1

x+ 1
+ log(x+ 1)

]x0

0

=
1

x0 + 1
+ log(x0 + 1)− 1 + y0

(10)

Secondly, one has

L(ȳ) =

∫ x̄(ȳ)

0

−f2(x, ȳ)

∆(x, ȳ)
dx =

1

ȳ

∫ x̄(ȳ)

0

x

(x+ 1)2
dx

=
1

ȳ

(∫ x0

0

x

(x+ 1)2
dx+

∫ x̄(ȳ)

x0

x

(x+ 1)2
dx

)
which gives with (9) and (10) the expression

L(ȳ) =
y0
max − y0 + y0 − ȳ

ȳ
=
y0
max

ȳ
− 1

that is defined for ȳ ∈ [y0, y
0
max]. Finally, from Proposition 4.1, we obtain that

for a budget K ≤ y0
max

y0
− 1, the NSN strategy (6) with

ȳ = ȳ? :=
y0
max

K + 1

10



is optimal. Therefore, the feedback

ψ?(x, y) :=

{
x
x+1 , if y = ȳ? and x > 0

0, otherwise.

is optimal. An example of optimal solution is drawn on Figure 2, where one
can see that the optimal trajectory leaves tangentially the singular arc and the
optimal control is continuous at that point, as underlined in Remark 3.1.

Figure 2: Optimal solution of Example 1 for initial condition (x0, y0) = (2, 2)
and budget K = 0.1 (singular arc is depicted in red).

5 The case of Kolmogorov dynamics

In this Section we particularize the results of Proposition 4.1 to a class of Kol-
mogorov dynamics in R2

+, for which it is easier to verify the required assump-
tions.{

ẋ = −
(
φ1(x, y)− φ2(x, y)u

)
x

ẏ =
(
φ3(x, y)− φ4(x, y)u

)
y

u ∈ [0, 1] (11)

where φi are smooth maps. The positive orthant D = {(x, y) ∈ R2; x > 0, y >
0} is clearly invariant by (11).

Hypotheses 5. On D, one has

i. φ1 and φ2 are positive, with φ2 − φ1 ≤M < +∞.

ii. φ3 is increasing with respect to x and non increasing with respect to y,
with φ3(0, y) < 0 < limx→+∞ φ3(x, y) for any y > 0.

11



iii. φ1 ≥ φ2 with ∂yφ1 ≥ ∂yφ2 > 0 when φ3 ≥ 0, and φ1 = φ2 when φ3 = 0.
The maps x 7→ φ1(x, y)x, x 7→ φ2(x, y)x are increasing for any y.

iv. When φ3 > 0, φ4 is increasing with respect to x with φ4 > φ3 and
[φ3, φ4]y := φ3∂yφ4 − φ4∂yφ3 ≥ 0. The map y 7→ φ4(x, y)y is increas-
ing for any x.

Lemma 5.1. Under Hypotheses 5, Assumptions 1, 2, 3, 4 are fulfilled.

Proof. From hypothesis 5.ii, there exists a unique map y 7→ xh(y) > 0 such that
φ3(xh(y), y) = 0 for any y > 0, which is moreover non decreasing with respect
to y. The sub and super level sets D−, D+, are thus non empty and defined as

D− = {(x, y) ∈ D; x < xh(y)}, D+ = {(x, y) ∈ D; x > xh(y)}

and the level set D0 is {(x, y) ∈ D; x = xh(y)}.
From Hypothesis 5.i, one has ẋ ≤

(
φ1(x, y)(u− 1) +Mu

)
x from which one

can write for any admissible solution

x(t) ≤ x0e
MK exp

(∫ t

0

φ1(x(τ), y(τ))(u(τ)− 1) dτ

)
≤ x0e

MK < +∞

For the uncontrolled dynamics, one has ẋ = −φ1(x, y)x < 0 i.e. x(·) is decreas-
ing. Let us show that D \ D+ = D0 ∪ D− is reached in finite time. If not,
one has x(t) ≥ xh(y(t)) for any t ≥ 0 and y(·) is increasing. Then, one should
have ẋ(t) ≤ −κx(t)) for any t ≥ 0, where κ = minξ∈[xh(y0),x(0)] φ1(ξ, y(0)) > 0.
Therefore, x(·) converges to 0, while xh(y(t)) ≥ xh(y(0)) > 0 for any t ≥ 0, and
thus a contradiction. At D0, one has

d

dt
φ3(x, y) = −∂xφ3(x, y)φ1(x, y)x < 0

with Hypotheses 5i. and ii. The domain D \ D+ is thus (positively) invariant.
Moreover one has ẏ ≤ in D \ D+. We conclude that the solutions for the
uncontrolled dynamics are either non decreasing, or increasing up to a finite time
and then non decreasing (and thus bounded). Moreover, any other controlled
solution with a lower peak of y is also bounded, as x(·) is always bounded.
Assumption 1 is verified.

Clearly, the map f1 = −φ1x is negative in D+ ∪ D0 and decreasing with
respect to x and y from Hypotheses 5.i. and iii. The map g1 = φ2x is increasing
with respect to x and y also from Hypothesis 5.iii, and f1+g1 = (φ2−φ1)x ≤ 0 in
D+. The map f2 = φ3y is increasing with respect to x from Hypothesis 5.ii,
and ∂yf2 = φ3 +∂yφ3y is non positive on D0. The map g2 = −φ4y is decreasing
with respect to x and y from Hypothesis 5.iv, and f2 + g2 = (φ3 − φ4)y < 0 in
D+. Assumption 2 is verified.

One has ∆ = (φ3φ2 − φ1φ4)xy and with inequality φ1 ≥ φ2, one obtains
∆ ≤ (φ3 − φ4)φ1xy on D+, which is negative by Hypothesis 5.iv. One gets

f2

∆
=

φ3

(φ3φ2 − φ1φ4)x
⇒ ∂

∂y

(
f2

∆

)
=
φ3(φ4∂yφ1 − φ3∂yφ2) + φ1[φ3, φ4]y

(φ3φ2 − φ1φ4)2x

With Hypotheses 5.iii. and iv., one has [φ3, φ4]y ≥ 0 and φ4∂yφ1 − φ3∂yφ2 > 0
on D+, which implies that ∂yf2/∆ is positive on D+. Assumption 3 is thus
verified.
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From Hypothesis 5.iv, one has φ4 > 0 on D0. Then, the map g2 = −φ4y is
negative on D0. Moreover, one has

∇f2 =

[
∂xφ3

∂yφ3

]
y, (x, y) ∈ D0

which gives

∇f2.(f + g) = ∂xφ3(φ2 − φ1)xy + ∂yφ3(φ3 − φ4)y2

that is non negative on D0 with Hypotheses 5.ii, iii and iv. Assumption 4 is
fulfilled.

Let us posit

δ(x, y) = φ3(x, y)φ2(x, y)− φ1(x, y)φ4(x, y), (x, y) ∈ D

The application of Propositions 3.1 and 4.1 gives the following result.

Proposition 5.1. Under Hypotheses 5, one has

L(ȳ) =

∫ x̄(ȳ)

xh(ȳ)

−φ3(x, ȳ)

δ(x, ȳ)x
dx

For initial conditions (x0, y0) in D+ such that L(y0) ≥ K and

(φ3(φ4∂yφ1 − φ3∂yφ2) + φ1[φ3, φ4]y)y +
(φ3[φ1, φ2]x + φ1[φ2∂xφ3 − φ1∂xφ4])x > 0, (x, y) ∈ D+, y ≤ y0

max

(12)

(where [φ1, φ2]x := φ1∂xφ2−φ2∂xφ1), then there exists y∗ ∈ [y0, y
0
max] such that

L(y∗) = K and the feedback

ψy?(x) =


φ3(x, y?)

φ4(x, y?)
, if y = y? and x > xh(y?)

0, otherwise.
(13)

is optimal.

Proof. One has

f1

∆
=

−φ1

(φ3φ2 − φ1φ4)y
⇒ ∂

∂x

(
f1(x, y)

∆(x, y)

)
=
φ3[φ1, φ2]x + φ1[φ2∂xφ3 − φ1∂xφ4]

(φ3φ2 − φ1φ4)2y

and then condition (8) amounts exactly to have (12).

Let us underline that the first term in (12) is necessarily positive, under
Hypotheses 5.i, iii and iv. A simple way to guarantee condition (12) to be
fulfilled is to have the second term non-negative, which can be obtained for
instance as follows.

Corollary 5.1. Under Hypotheses 5 with φ1 = φ2 and φ4 = φ3 + α (α > 0) in
D, the feedback (6) is optimal for any initial condition in D+ with L(y0) ≥ K.
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We present below some concrete examples within the biological field, which
satisfy the conditions of Corollary 5.1 and allow to conclude directly about the
optimality of the NSN strategy.

Example 2. We consider the SIR model [7] which is very popular in epidemi-
ology. With non-pharmaceutic interventions which consist in reducing the con-
tact between susceptible and infected populations (by means of reducing social
distance for human disease for instance), the model writes:{

ẋ = −β(1− u)xy
ẏ = β(1− u)xy − αy u ∈ [0, 1]

where x and y stand for the density of susceptible and infected populations, re-
spectively, and u is the control variable (naturally subject to a budget constraint).
Parameter β is the infection rate (without intervention), and α is the recovery
rate. Without control (i.e. u = 0), it is well known that the condition for an
epidemics outbreak is given by the reproduction number

R0 :=
α

β

that has to be larger than one. Then, the size of the infected population y(·)
increases up to a peak value that could be very high. The objective of the control
is to reduce this peak value. Here the domain D is

D = {(x, y) ∈ R2
+; x+ y ≤ 1}

and one has the following expressions of the functions φi (i = 1 · · · 4).

φ1(x, y) = φ2(x, y) = βy, φ3(x, y) = βx− α, φ4(x, y) = βx

The separatrix D0 between D− and D+ is a vertical segment

D0 =

{
(x, y) ∈ D ; x =

1

R0

}
One can straightforwardly check that Hypotheses 5 and conditions of Corollary
5.1 are fulfilled when R0 > 1. We can then conclude that the NSN strategy is
optimal under a L1 budget control on the control u(·), as in [9]. Let us underline
that when the initial density y0 of the infected population is very low (which is
often the case in face to a new epidemics), the time to reach the minimum peak
can be very large, justifying the consideration of an unbounded time horizon. In
[9], it is shown that the optimal control can be determined analytically for the
limiting case of of an arbitrary small y0 with an initial density of the susceptible
population equal to 1− y0.

Example 3. We consider the classical resource-consumer (or ”batch” bio-process)
model, which is very popular in microbiology (see e.g. [5]) ẋ = − 1

Y
µ(x)y(1− u)

ẏ = µ(x)y(1− u)−my
u ∈ [0, 1]
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where x and y are the concentrations of the resource and the consumer, respec-
tively. The function µ is the specific growth rate, that is assumed to follow the
well-known Monod’s expression

µ(x) :=
x

K + x

The parameter Y is the yield coefficient of the transformation of the resource
into consumer growth, while the parameter m > 0 is the mortality rate of the
consumer (supposed to be relatively low compared to the growth term). Here the
control u is an isolation factor (by biological or physical means) which limits the
access to the resource for the consumer. When the consumer is a living species
that proliferates on the resource in an undesirable way (e.g. bacteria presenting
some health risks), an objective is to reduce its peak value for a given budget on
the control. For this model, the domain D is

D = {(x, y) ∈ R2
+; x > 0, y > 0}

with the functions

φ1(x, y) = φ2(x, y) =
1

Y

y

1 + x
, φ3(x, y) =

x

1 + x
−m, φ4(x, y) =

x

1 + x

for which can easily check that Hypotheses 5 and conditions of Corollary 5.1 are
fulfilled for a mortality rate m < 1. Here also, the level set D0 which splits the
domain D into between D− and D+ is a vertical line

D0 =

{
(x, y) ∈ D ; x =

m

1−m

}
Then, we can conclude that the NSN strategy is also optimal for this problem.

Example 4. We consider here the same resource-consumer model as in Exam-
ple 3 but with a ratio-dependent growth rate (see e.g. [5]) ẋ = − 1

Y
µ(x, y)y(1− u)

ẏ = µ(x, y)y(1− u)−my
u ∈ [0, 1]

where µ is the Contois function

µ(x, y) =
x

x+ y

This model aims to take into consideration a crowding effect when the popula-
tion of consumers is high, or equivalently that the growth is driven by the ratio
”resource by consumer” x/y rather than simply the level of the resource x. Here
also, one can easily check that the corresponding functions

φ1(x, y) = φ2(x, y) =
1

Y

y

x+ y
, φ3(x, y) =

x

x+ y
−m, φ4(x, y) =

x

x+ y

satisfy Hypotheses 5 and conditions of Corollary 5.1 for m < 1. Let us underline
that the function φ3 depends on both variables, differently to Examples 2 and
3, and consequently the function xh(·) is not constant here. The NSN strategy
is again optimal for m < 1 and the level set D0, which gives to the end of the
singular arc, is no longer a vertical line:

D0 =

{
(x, y) ∈ D ; x =

m

1−m
y

}
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