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loosening needed for growth. Increased wall re-

modeling is expected to change elastic proper-

ties, which explains why fast-growing areas in the

peripheral region can stay in their linear range

of elasticity for larger deformations (20–22);

while at the same time, they are stiffer than slow-

growing regions for small strains. Our data

suggest that the functional distinction between

slow- and fast-growing regions in the shoot apex

is not only genetically defined (30, 31) but is en-

hanced by mechanical feedbacks. Such a mech-

anism would stabilize and protect the critically

important stem cell niche from the numerous

sources of noise inherent in the chemistry of

biological systems.
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Global Network Reorganization
During Dynamic Adaptations
of Bacillus subtilis Metabolism
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Adaptation of cells to environmental changes requires dynamic interactions between metabolic
and regulatory networks, but studies typically address only one or a few layers of regulation.
For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined
statistical and model-based data analyses of dynamic transcript, protein, and metabolite
abundances and promoter activities. Adaptation to malate was rapid and primarily controlled
posttranscriptionally compared with the slow, mainly transcriptionally controlled adaptation to
glucose that entailed nearly half of the known transcription regulation network. Interactions
across multiple levels of regulation were involved in adaptive changes that could also be achieved
by controlling single genes. Our analysis suggests that global trade-offs and evolutionary
constraints provide incentives to favor complex control programs.

A
major challenge in biology is to under-

stand the organization and interactions

of the various functional and regulatory

networks in cells. The underlying complexity

arises from the intertwined nonlinear and dy-

namic interactions among a large number of

cellular components. To better understand these

interacting molecular networks, the acquisition

of appropriate, preferably time-resolved quanti-

tative data is a prerequisite (1–3). Because the

acquisition of such data is technically demand-

ing, few studies have reported transcript, protein,

and metabolite abundances, and most studies

have been restricted to steady-state conditions

(4–8). Consequently, only subsets of components

have been monitored dynamically for very short-

(9, 10) or long-term responses (11, 12) to envi-

ronmental perturbations. These studies typically

revealed coordinated abundance changes (11, 12),

major transcriptional reconfigurations in response

to environmental change (9, 11), and an unantic-

ipated complexity of unicellular organisms (7).

Data interpretation, however, has generally been

restricted to multivariate statistical analysis meth-

ods that indicate general but not mechanistic

relationships between different molecular entities.

Focusing on single data types with sophisticated

computational analysis has been informative (3)

but increases the risk of missing the functionally

relevant multilevel control mechanisms (2), lim-

iting the description of the underlying molecular

mechanisms and, hence, the depth of biological

insight.
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To elucidate the dynamic interplay between

metabolic and regulatory networks systematically,

we investigated dynamic shifts in availability of

the preferred carbon sources, glucose and malate,

of the bacterium Bacillus subtilis (13). Because

these nutrients repress the use of other substrates

but are themselves used together, they represent a

tractable model for analyzing dynamic decision-

making by cells when faced with compounds of

similar nutritional value. We induced dynamic

shifts by adding glucose or malate to cultures of

B. subtilis growing exponentially on the other

substrate. To elucidate the cellular adaptation mech-

anisms, we determined transcript, protein, and

absolute metabolite abundances, as well as pro-

moter activities (Fig. 1 and table S1) (14), provid-

ing dynamic data with up to 24 time points for

two shift experiments that cover short-term meta-

bolic to longer-term protein-level adaptation (15).

To enable data integration, we developed

problem-driven, yet generic solutions in three areas

(table S1). To generate consistent data, we min-

imized biological variability (Fig. 1) by withdrawing

samples from the same bioreactor culture in trip-

licate experiments (fig. S1) and, in a few cases,

from standardized small-scale cultivations (fig. S2).

We used naming and formatting conventions with

unique identifiers for all considered constituents to

permit the efficient exchange of data and knowl-

edge. Furthermore, to maximize reliability and cov-

erage for subsequent data analysis and modeling,

we combined overlapping dynamic data acquired

from different analytical platforms and on differ-

ent time scales (Fig. 1). Data from the different

transcript-array platforms did not require further

consolidation (figs. S3 and S4), but we gen-

erated consensus proteomics data by calculating

confidence-weighted averages of protein abun-

dances obtained from two-dimensional gels and

liquid chromatography–mass spectrometry (SOM

1). Replicate time series of transcript and protein

data were then smoothed and interpolated by

Bayesian multicurve regression analysis (SOM 1).

Because metabolite data showed changes on var-

ious time scales, we developed a special algorithm

that aligns time courses on the basis of Kalman

smoothing (Fig. 2A and SOM 1) (16).

We exploited the profusion of data (table S1)

to extend the genome annotation of B. subtilis

by statistical data analysis and integration with

prior knowledge (table S2). Analysis of mRNA

Dynamic

experiments

Measured

data

Modeling &

data analyses

Inferred

data

Fig. 1. Overview of our experimental design, computational analysis, and
information flow. The dynamic shift experiments yielded measured data from
which nonmeasurable quantities were inferred by statistical and model-based
analysis. Arrows show the flow of information, including the use of inferred

data as parameters for subsequent modeling steps. ChIP, chromatin immuno-
precipitation; LC-MS, liquid chromatography–mass spectrometry; GFP, green
fluorescent protein; HPLC, high-performance liquid chromatography; OD,
optical density.
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abundances identified 4393 transcriptionally active

genomic regions, 109 of which were not previ-

ously described, including 21 putative protein-

coding sequences and 23 antisense RNAs (table

S3). Additionally, 2422 genomic regions were

differentially transcribed after the nutrient shifts

(table S1). Clustering of mRNA profiles and func-

tional classification of differentially transcribed

genes enabled detailed functional annotation

of 46 genes (table S4) and probable function

assignment of 853 previously not annotated genes

(table S1). For the metabolically important tran-

scription factors CcpA, CcpC, CcpN, and CggR

(17–19), we identified DNA binding sites by chro-

matin immunoprecipitation–on-chip analysis

in malate plus glucose (table S1). We found

184 CcpA binding sites, most of which were lo-

cated near to promoters of genes differentially

expressed immediately after glucose addition (fig.

S5). By filtering this group for high-scoring, pre-

viously undetected CcpA sites, we generated an

improved regulatory network topology (SOM 2)

for subsequent analysis of regulatory events.

Metabolomics data revealed instantaneous

malate uptake into cells grown on glucose but

substantially delayed uptake of glucose into cells

grown on malate (Fig. 2, B and C). Sensitivity

analysis of steady-state fluxes in the stoichiometric

network model in combination with proteomic

data predicted transcriptional regulation to be

more important for the dynamics induced by

glucose than by malate (Fig. 2D). Network com-

ponent analysis (20) quantified the strengths of

all 2900 transcription factor interactions with target

genes, and 1488 of the interactions were impli-

cated in at least one shift (689 for malate addition;

1244 for glucose addition) (SOM 2). Furthermore,

we identified 110 posttranscriptional regulation

events in protein synthesis (77 and 23 were spe-

cific to malate and glucose addition, respectively)

through a dynamic model that correlates time pro-

files of promoter activity, mRNA abundance, and

protein abundance for 300 genes for which all

three data types were available (tables S5 to S7).

Overall, our integrated analysis suggests that ap-

parently similar adaptation processes are mediated

by fundamentally different control mechanisms,

namely a predominantly posttranscriptional regula-

tion after malate addition and a greater reliance on

transcriptional regulation after glucose addition.

Next, we inferred the dynamic activity profiles

of 154 transcription factors by network-component

analysis (20) from the transcript abundances of

ρ

Fig. 2. (A) Processing of time-series data from
parallel experiments. The example shown here is
fructose 1,6-bisphosphate during the malate–to–
glucose-plus-malate shift. Measurements from
three independent cultures (black data points)
yield an averaged and smooth time course (blue
line). (B and C) Initial dynamic uptake rates of
malate (green) and glucose (red) after addition to
wild-type B. subtilis growing on the respective other
substrate were obtained by fitting of splines. Black
lines and shadings represent the specific growth rate
and 95% confidence intervals, respectively (SOM 3).
(D) The global importance of transcriptional regulation
after glucose addition is confirmed by an increasing
correlation (red) between flux sensitivity (measuring
the impact of a change in environmental conditions
on a metabolic flux) and protein abundance over time.
This increase does not occur after malate addition
(blue). White areas denote statistically significant
correlation values with respect to an approximate
95% confidence interval; gray shaded areas denote
the absence of statistically significant correlation.

Fig. 3. (A) Activities of the main transcriptional regulators controlling central metabolism during the shifts
of glucose (GM) or malate (MG) to glucose plus malate. Blue curves represent log2 expression profiles of
target genes; purple curves denote the inferred transcription factor activities. Straight lines in the middle
sections indicate the relative contribution (proportional to color intensity) of different transcription factors
to target gene expression changes (blue, activation; red, repression). (B and C) Averaged time profiles of
transcripts (light blue), proteins (dark blue), metabolic fluxes (green), and metabolites (red) during the
dynamic shift experiments of glucose (B) or malate (C) to malate plus glucose.
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their 1754 known target genes (Fig. 3A and SOM

2). One hundred twenty-seven transcription fac-

tors changed their activity profile significantly in

at least one shift (61 for malate addition and 91

for glucose addition). A rapid change of activity

(<5 min), most prominent for the transporter

regulators MalR (malate) and GlcT (glucose), and

the deviations between the inferred transcription

factor activities and the measured transcription

factor mRNA abundance provided evidence for

posttranslational regulation (SOM 2). Network

component analysis predicted that the activity of

51 transcription factors was modulated post-

transcriptionally, and 39 of these (for example,

NadR, KipR, CcpN, FruR) are regulated by yet

unknown effectors. Overall, both nutrient shifts

induced substantial, global network reconfigu-

ration at all levels of regulation.

To identify the relevant primary changes in

central metabolism, where essentially all genes

were differentially expressed during one or both

shifts, we correlated time courses of metabolic

fluxes with those of the abundances of the corre-

sponding enzymes. We estimated dynamic ex-

tracellular rates by interpolation (SOM 3) and

network-wide pseudodynamic metabolic fluxes

with a stoichiometric network model and the

intracellular metabolite concentrations (Fig. 3, B

and C, and SOM 4). Positive correlations between

fluxes and enzyme abundances indicated genetic

rather than metabolic regulation of the reaction

rates (21). Upon the addition of malate, the abun-

dances of only the nicotinamide adenine dinucle-

otide phosphate–dependent malic enzyme (YtsJ)

and two acetate production enzymes (Pta and

AckA) correlated with their respective reaction

rates (R > 0.8) and thus putatively control flux

(Fig. 4A). After the addition of glucose, enzymes

for 11 central reactions putatively controlled flux,

and in six cases increasing enzyme abundance

potentially overcame the bottleneck in glucose up-

take. The corresponding genes are organized in

two operons: ptsGHI for glucose transport and

phosphorylation and cggR-gapA-pgk-tpiA-pgm-

eno for lower glycolysis. This focused analysis of

multiple “omics” data sets suggested the pts and

cggR operons as primary control targets for adap-

tation, where the half-maximal responses of the

pts and cggR operon-encoded proteins within 30

to 60 min of glucose addition could account for

the ~60-min delay in glucose uptake (Fig. 2, B

and C). We evaluated the relative contributions

of both operons to the delay with a cggR dele-

tion mutant and a mutant with constitutive ptsG

expression (Fig. 4B and SOM 5). When grown

on malate, both mutants used glucose immedi-

ately without the delay of the wild-type strain.

As the cggR or ptsG expression alone is suffi-

cient to facilitate immediate glucose uptake, it is

not obvious why B. subtilis does not express these

genes constitutively.

B. subtilis needs to optimize its use of two

qualitatively distinct substrates: Glucose results

in high growth yields at low metabolic rates,

whereas malate results in low growth yields at

high metabolic rates (13). Similar trade-offs exist

between respiratory and fermentative strategies

in adenosine triphosphate generation, both of

which can confer condition-specific evolution-

ary advantages (22). To investigate optimal con-

trol strategies for substrate usage in Bacillus, we

developed a simplified dynamic model that de-

scribes the substrate and biomass dynamics of

the shift experiments quantitatively (SOM 6).

The maintenance cost for enzyme expression (r)

is a key parameter in the model; the estimated

value of r0 ≈ 0.06 implies that full expression

of a metabolic (substrate) system would reduce

the maximal specific growth rate by ≈5%. In silico

Fig. 4. (A) Regulatory mechanisms relevant for control of metabolic fluxes during the two shifts. Key
controlling enzymes are indicated by a positive correlation between reaction rate and enzyme abundance
after addition of malate (left) or glucose (right). Reactions were considered only if both enzyme abundance
and flux changed by more than one standard deviation and if the correlation coefficient was positive. The
size of the purple circles is proportional to the correlation coefficient (see inset). Transcription factors
(middle) were identified by network component analysis to be responsible for changes in enzyme expression,
as indicated by color coding (gray denotes unknown factors). (B) Dynamics of glucose uptake rate upon
addition of glucose to a culture growing exponentially on malate in mutants with constitutive ptsG expres-
sion (green), cggR deletion (blue), and the respective parent strains (solid red, vertical shading and dashed
red, horizontal shading). Shaded areas denote 95% pointwise confidence intervals. gDCW, grams of dry cell
weight. (C) Predicted growth effects of different control strategies using a simplified dynamic model. In silico
competition experiments were carried out between two strains that differ in how they control malate and
glucose uptake; both systems can be expressed constitutively or only upon substrate availability (SOM 6).
Cocultures in a chemostat setting were pulsed every 3 hours with substrate (similar results were obtained with
pulse frequencies of 1 and 9 hours), where the probability of selecting malate versus glucose as substrate was
varied. The cost of metabolic system maintenance (r) normalized by the estimated cost for B. subtilis (r0; the
solid line indicates the estimated value of r; the dashed line to the right is the upper bound of the 95%
confidence interval) constituted a free simulation parameter. Control strategies with higher growth rates were
considered advantageous, and the best control strategies are identified by color coding.
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competition of strains that either constitutively ex-

press the metabolic systems or induce their ex-

pression only upon substrate availability allowed

us to quantify the dynamic control effects. In sim-

ulations of a dynamically changing environment,

we varied the substrate probabilities and the main-

tenance cost r because of the uncertainties in the

estimated r0 (Fig. 4C). Surprisingly, there almost

always existed a unique, evolutionarily dominating

control strategy. The winning strategy depended

on quantitative parameters. Hence, active regula-

tion or constitutive subsystem expression are not

advantageous per se. Even with the uncertainties in

r0, the experimentally observed strategy of consti-

tutive malate usage capacity (Fig. 2B) but in-

duced (and delayed) glucose-specific metabolism

confers an evolutionary advantage if B. subtilis

predominantly encounters malate (Fig. 4C). This

is biologically plausible given the organism’s hab-

itat in the vicinity of plant root systems that often

secrete carboxylic acids such as malate (13, 23).

Our systems approach helps reveal how pre-

viously known regulatory mechanisms are com-

bined to effect nutritional transitions. Despite

more than half of the B. subtilis gene comple-

ment being involved in the adaptive response

to glucose, our methodology could discern the

key regulatory events. The overall control strat-

egy of B. subtilis can be rationalized in terms of

its evolutionary advantages; however, these ad-

vantages, and therefore the overall control design,

depend on quantitative system characteristics—

regulation is not beneficial per se. The dynamic

data presented here may be used for further com-

putational analyses such as multivariate statistics

and large-scale structural or kinetic network mod-

els (24). We hope that our publicly available

tools for mathematical analyses and modeling will

facilitate future large-scale and dynamic systems

biology studies in B. subtilis and other species.
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the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional
conditions that the organism might encounter in nature. We comprehensively mapped transcription
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B
acterial transcriptomes are surprisingly

complex (1–5) and include diverse and

abundant small RNAs and antisense RNAs

(asRNAs). Because only a small number of en-

vironmental conditions have been investigated,

the full extent of transcriptome complexity remains

to be established for a single bacterial species.

This prompted us to undertake a systematic and

quantitative exploration of transcriptome changes

in Bacillus subtilis, whose natural habitat, the

soil, is subject to severe environmental fluctua-

tions (6). B. subtilis is also a laboratory model for

Gram-positive bacteria and is grown in industrial-

scale fermentors for the production of enzymes

and vitamins. We selected 104 conditions covering
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