
HAL Id: hal-03969018
https://hal.inrae.fr/hal-03969018

Submitted on 2 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A repeatable change detection approach to map extreme
storm-related damages caused by intense surface runoff

based on optical and SAR remote sensing: Evidence
from three case studies in the South of France.

Arnaud Cerbelaud, Laure Roupioz, Gwendoline Blanchet, Pascal Breil, Xavier
Briottet

To cite this version:
Arnaud Cerbelaud, Laure Roupioz, Gwendoline Blanchet, Pascal Breil, Xavier Briottet. A repeat-
able change detection approach to map extreme storm-related damages caused by intense surface
runoff based on optical and SAR remote sensing: Evidence from three case studies in the South
of France.. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182, pp.153 - 175.
�10.1016/j.isprsjprs.2021.10.013�. �hal-03969018�

https://hal.inrae.fr/hal-03969018
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


ISPRS Journal of Photogrammetry and Remote Sensing 182 (2021) 153–175

Available online 31 October 2021
0924-2716/© 2021 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

A repeatable change detection approach to map extreme storm-related 
damages caused by intense surface runoff based on optical and SAR remote 
sensing: Evidence from three case studies in the South of France 

Arnaud Cerbelaud a,b,c,*, Laure Roupioz a, Gwendoline Blanchet b, Pascal Breil c, Xavier Briottet a 
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A B S T R A C T   

Most flood hazards are induced either by river overflowing or intense overland flow following heavy rainfall, 
causing land surface damages under many forms. Until now, fine-scale detection of damages caused by intense 
rainwater runoff beyond the direct vicinity of major waterways has been scarcely explored using satellite remote 
sensing. In this work, three extreme storms in the Aude and Alpes-Maritimes departments in the South of France 
were investigated based on ground truths and very high resolution optical imagery (Pléiades satellite, IGN 
orthophotos). Plot delineation and land use information were combined to high revisit frequency and high res
olution optical (Sentinel-2) and SAR (Sentinel-1) open-source data to test a simple automatic and replicable 
change detection method to locate damaged plots using supervised classification. Based on a unique training 
sample from the Aude floods of October 2018, combinations of plot-based spectral indicators allowed reaching 
overall detection accuracies greater than 85% on independent validation samples for all three events. A simple 
land use inter-class demeaning pre-processing used to account for land-specific seasonal variations improved 
event and site repeatability by lowering false detection rates down to a maximum of 13%. The benefits of 
introducing SWIR channel in addition to visible and near-infrared indices were limited to a few percentage 
points. SAR-derived proxies of soil moisture and roughness in weakly vegetated areas were consistent with the 
presence of degradations, with VV being the most sensitive polarization. However, classification accuracy was 
not significantly increased with Sentinel-1 data as compared to the exclusive use of Sentinel-2. Additional tests 
revealed that should the closest available optical images be rather distant in time because of persistent cloud 
cover, the method is reasonably robust as long as stable ground conditions were observed before the event. The 
need for images close in time was however emphasized through cross-site training. Indeed, efficient replicability 
from one site to another relied on using unaffected learning plots with slightly more inherent variability in time 
variations of spectral indices compared to the test site. Beyond the investigation of three case studies, this work 
demonstrates the performance and repeatability potential of a new probabilistic change detection method to 
expose various kinds of extreme rainfall-related disturbances, in particular those occurring far from the main 
hydrographic network. Should spatially accurate rainfall products be available, comprehensive mapping of 
intense stormwater runoff hazards using this original plot-based approach will then allow improving the un
derstanding of overland flow generation mechanisms in hydrological models.   

1. Introduction 

Flooding events are mostly triggered by overland rainwater flow 
following extreme storms. Depending on rainfall magnitude, rate or 
duration but also on watershed configuration, land cover, pedological 

and lithological characteristics, hydrological consequences may vary 
and persist over different time scales from hours to weeks (Bell and Kar, 
1969). During such events, surface runoff can materialize in various 
places, with water running from highlands to lowlands and floodplains 
through networks of streams, active channels or dry gullies (also called 
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ephemeral rivers; Cerdà et al., 2021). Rain transport can be set off either 
when maximum soil moisture content is exceeded or because rainfall 
rate overcomes infiltration capacity (known as Horton overland flow; 
Horton, 1933). It can occur both in gentle bare slopes or steep vegetated 
areas. In regions where vegetation cover is relatively poor with unstable, 
barren surfaces or where terrain is rather steep, water flow can quickly 
reach great velocities and extensively erode soils and bedrocks (Horton, 
1945). Rainwater-related damages can thus appear under many forms 
and on multiple surfaces. 

With the growing availability of high revisit frequency and high 
spatial resolution satellite data at global scale in recent years, flood- 
related deteriorations can now be quickly and closely assessed. As 
most human communities worldwide are settled in direct proximity to 
large rivers, the most substantial damages with dramatic socio-economic 
consequences are usually observed around major waterways. Therefore, 
the greater part of operational and research endeavors has focused on 
detecting, assessing and monitoring the spatial and temporal extents of 
stream overflows (Sheng et al., 2001; Amarnath et al., 2012). To this 
end, change detection methods based on satellite remote sensing ac
quired at different dates, from optical and radar sensors, have been 
thoroughly explored for decades (Rahman and Di, 2017). With climate 
change likely leading to an increasing number of flood-related disasters 
around the world (Kharin et al., 2007; Wang et al., 2017), countless 
methods have been described to efficiently discriminate flooded and 
flood-prone areas from spaceborne imagery, most of them through 
direct identification of water bodies. Some have been based on optical 
instruments like MODIS (Brakenridge and Anderson, 2006; Amarnath 
et al., 2012), Landsat (Yamagata and Akiyama, 1988; Swain et al., 2020) 
Kompsat-2 (Byun et al., 2015) or more recently Sentinel-2 (Pulvirenti 
et al., 2020; Goffi et al., 2020). But the vast majority of them have relied 
on Synthetic Aperture Radar (SAR) products from C-band instruments 
like ERS-1/2 (Nico et al., 2000), ENVISAT (Matgen et al., 2011), 
RADARSAT 1 and 2 (Hostache et al., 2007; Matgen et al., 2011), and 
lately Sentinel-1 (Twele et al., 2016; Uddin et al., 2019; Rambour et al., 
2020; Liang and Liu, 2020; Singha et al., 2020), as well as X-band in
struments like TerraSAR-X and TanDEM-X (Martinis et al., 2015; Li 
et al., 2019). Tavus et al. (2021), Kocaman et al. (2020) and DeVries 
et al. (2020) used both radar (Sentinel-1) and optical (Sentinel-2, 
Landsat for the latter study) data to identify inundated areas and rapidly 
monitor flood events. However, most of these approaches were designed 
to reveal the presence of ponded water and thus required on-time post 
event acquisition of flooded areas, even though some of them proposed 
to partly circumvent this timing issue by using SAR interferometric 
coherence to detect actual post flood damages (Nico et al., 2000; Plank, 
2014, also dealing with earthquakes and other natural disasters). 

A significant amount of storm-related disturbances, especially those 
caused far from active streams by intense rainwater runoff, appear 
during short, hardly observable time periods, potentially anywhere, and 
cannot be pinpointed using water-based identification methods. All in 
all, comprehensive detection of such degradations has yet been some
what disregarded by the scientific community. Some authors have 
developed change detection techniques to fully detect areas affected by 
flood and erosion from a heavy rainfall. Nonetheless, most of them used 
very distant images (one year apart or more) and with coarse spatial 
resolution (30 m of Landsat TM; Dhakal et al., 2002), or with higher 
resolution but once again strictly limited to overflowing (4 m with 
Kompsat-2; Byun et al., 2015). In addition, these methods were not 
designed to be easily replicable to other regions and at any time of the 
year. Mainly relying on multitemporal analysis, multiple associated 
topics in geosciences have also been investigated for years in the remote 
sensing community such as the formation of gullies due to rainwater 
transport (Fadul et al., 1999), the mapping of soil erosion (Dubucq, 
1986; Dwivedi et al., 1997; Begueria, 2006; Sepuru and Dube, 2018), the 
assessment of landslide extents (Danneels et al., 2007; Mwaniki et al., 
2015; Heleno et al., 2016) or agricultural losses and crop yields (Pan
taleoni et al., 2007; Jiao et al., 2014). In recent years, Plekhov and 

Levine (2018) used high spatial (3 m) and temporal (daily on a planetary 
scale) resolution products from the PlanetScope constellation to detect 
damages to archaeological sites induced by surface runoff after extreme 
weather events. Simply from visual inspection of NDVI (Normalized 
Difference Vegetation Index) change images, they concluded that high 
temporal resolution satellite systems could contribute to better cali
brated soil erosion models and help mitigate damages to cultural sites. 
Beyond the well-established pixel-oriented methods, object-oriented 
change detection (OOCD) approaches have recently become quite pop
ular in land cover change mapping (Robertson and King, 2011), for 
example for landslides classification (Huang et al., 2018), in some cases 
paving the way for better performances. 

Very high resolution optical products (VHR, characterized by a sub 
metric spatial resolution), mostly available from commercial missions 
such as IKONOS, Quickbird, WorldView, and more recently the French 
Pléiades satellites, have progressively emerged for scientific use. Natu
rally, they now constitute key elements to detect, assess and monitor 
natural disasters such as floods, cyclones and earthquakes (see Pléiades 
Days 2014 journal, RFPT n◦209). With 0.5 m spatial resolution and 
advanced agility due to its large roll capacity, French dual satellites 
Pléiades allow precise and fast (within a day or two) detection of 
damaged areas following natural disasters. For floods, the presence of 
water surfaces was easily revealed using simple thresholding schemes 
based on the four radiometric bands (visible and near infrared), while 
identification of residual marks such as mudslides was also performed 
(Yésou et al., 2015a, 2015b). However, in most studies, post flood 
footprints were mostly tracked down manually on a case-by-case basis, 
and once again within the direct proximity of overflowing streams. 
Huber et al. (2013) revealed the complementarity of shortwave infrared 
(SWIR, with SPOT 5) and VHR data (with Pléiades) for flood assessment. 
They found SWIR bands to be useful for flood detection even during 
recession in post storm days while VHR images allowed for fine photo- 
interpretation capacity to detect mud traces and assess global impacts. 
Even though they mentioned that SWIR was useless to detect mudslides 
(minerals bear similar signatures), they took advantage of NDVI tem
poral variations to underline changes in texture, potentially pointing to 
muddy areas. In other research, Chen et al. (2015) produced high res
olution digital elevation models (DEMs) obtained from stereo pairs of 
Pléiades images to simulate the fine structure of river networks and 
landscape morphology, which could also be helpful in assessing flood 
damages. However, because VHR satellites do not provide open-source 
continuous imagery of the entire globe (due to acquisition costs and 
data volumes), production of change images and simple automation of 
such processes appears hardly achievable. In addition, optical space
borne products require on-time clear sky conditions and thus bear 
inherent limitations. 

Aside from direct water identification for flood assessment, a wide 
range of researchers have investigated the potential of SAR products to 
retrieve soil moisture contents in weakly vegetated soils (Baghdadi and 
Zribi, 2016). Zribi et al. (2007) laid out implications of such method
ologies to study hydro-meteorological feedbacks between the land sur
face and lower atmosphere while Baghdadi et al. (2008) underlined 
their utility for hydrological and erosion modelling. Methods based on 
both Sentinel-1 (S1) to retrieve soil moisture estimates and Sentinel-2 
(S2) to account for vegetation effects have already been investigated 
(Gao et al., 2017). Bousbih et al. (2017) confirmed that S1 C-band VV 
and VH polarization signals were sensitive to variations in soil moisture, 
using NDVI filters from Landsat images and drawing results from in situ 
measurements. Other works have performed physical and empirical 
backscattering model inversions to retrieve bare soil surface parameters 
from ERS data (Wagner et al., 1999) and more recently using machine 
learning techniques from S1 (Mirsoleimani et al., 2019) or RADARSAT-2 
(Santi et al., 2019) data. Application to the detection of storm-related 
damages here deserves to be evaluated. Indeed, should intense rain
water runoff be induced by saturation of soil water content, higher in
crease in soil moisture could be expected in affected areas compared to 
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undamaged ones. This should in turn be quantifiable on relatively bare 
grounds by measuring temporal changes in SAR backscattered signals. 

Every year in France, around 3/4 of natural disaster claims are flood- 
related. However, river overflowing is suspected to be responsible for 
only half of them (Breil et al., 2016). Due to its ephemeral nature and 
potential to materialize anywhere in a given region, intense overland 
rainwater flow is very difficult to witness and monitor per se. Never
theless, its numerous consequences in the form of erosion, mudslides, 
landslides, uprooting and other kinds of soil degradation are generally 
characteristic and durable, although damaged infrastructures such as 
roads are often rapidly restored. This study entirely relies on the 
assumption that these footprints (deterioration of plant cover, eroded 
bedrock, mud deposit) can be traced back to specific signatures through 
spectral variations in time inside homogeneously reacting land areas. 
Cerbelaud et al. (2020, 2021) outlined the potential of a combined use of 
VHR optical imagery from Pléiades, high revisit frequency multispectral 
images from S2 and adequate territorial subdivision (plot-based 
approach using the official land cadastre) to automatically detect 
different types of damages resulting from extreme hydro-meteorological 
episodes over large regions, including at any distance from waterways. 
With a change image produced from two S2 acquisitions made 10 days 
before and after a storm, they reached up to 90% overall accuracy in 
discriminating damaged plots using intra-plot statistics such as pixels 
mean and variance of the relative difference of adequate spectral 
indices. 

Still, detecting the different spatial patterns in optical and radar 
change images induced by floods requires controlling for seasonal 
transformations and anthropogenic activities as well as for the poten
tially unique and distinctive reactions of each land cover to intense 
precipitations between the studied images. Ensuing the works of Cer
belaud et al. (2020, 2021), this issue was addressed here by developing a 
change detection method based on the association of multiple products 
and tools, essentially:  

i. the use of both optical and SAR multitemporal open-source data 
from Sentinel-1 and Sentinel-2 satellites with 10 m spatial reso
lution (20 m for SWIR); 

ii. a contextual plot-based approach so as to highlight heteroge
neous changes within piecewise constant land cover areas; 

iii. the development of an automatic detection scheme based on su
pervised classification relying on the combined search for sta
tistical patterns in spectral, spatial and temporal variations 
among damaged plots;  

iv. a simple land use inter-class demeaning pre-processing designed 
to minimize false positives by clearing off part of the various 
impacts of seasonal transformations and local anthropogenic 
activities in the change images as well as to improve event and 
site replicability; 

Three independent extreme hydro-meteorological events were 
examined in this paper. It allowed to showcase this work’s strength, i.e. 
repeatability, by using a uniquely trained classifier from the first event 
to map damages over the two other events which occurred at different 
seasons or over contrasted terrain. Furthermore, a multitemporal anal
ysis was carried out for robustness checks in order to test the stability of 
the method in hypothetical conditions of persistent cloud cover. 
Contribution of SAR signal to maintain good classification capability in 
combination with more distant optical images was also tested. Reli
ability of the methodology stemmed from deriving classification capa
bility from large samples of certified ground truths along with validation 
data based on photo-interpretation of VHR post event images from 
Pléiades satellites and IGN (French National Institute of Geographic and 
Forest Information) orthophotos with sub metric resolution. This study 
goes beyond the traditional investigation of case studies and demon
strates not only the performance but the repeatability potential of a 
change detection method to expose numerous types of extreme rainfall- 

related hazards. It aims in particular at exhaustively identifying de
teriorations occurring far from the main hydrographic network, which 
has been scarcely studied until now. Should spatially accurate rainfall 
products be available, this original plot-based approach will contribute 
to improving the understanding of overland flow generation mecha
nisms in hydrological models. 

After presenting the study regions, the materials and detailing the 
approach in Section 2, results are interpreted and analysed on three 
distinct events in Section 3. Section 4 further discusses these results and 
conclusive statements are eventually provided in the last section. 

2. Materials and methods 

2.1. Study area, territorial subdivision and land use categories 

This study focuses on three extreme Mediterranean events that led to 
flash-flooding characterized by river overflowing and intense rainwater 
runoff in contrasted manners in the years 2018 and 2020. These events 
all occurred in the South of France with high intensity precipitations and 
will be hereafter referenced as:  

i. Aude 1: a significant storm in the Aude department on October 
15, 2018, with close to 300 mm of rainfall measured around the 
city of Carcassonne within a 24 h-period, and up to 250 mm 
locally in only 6 h (Lebouc et al., 2019);  

ii. Aude 2: a weaker event in the Aude department on May 11, 2020, 
with 175 mm of rainfall measured in 48 h around the towns of 
Martys and Montolieu (Source: Météo-France);  

iii. Alpes-Mar.: the “Alex” storm in the Alpes-Maritimes department 
on October 2 and 3, 2020, with around 500 mm of rainfall esti
mated at Saint-Martin-Vésubie in 24 h (corresponding to return 
periods between 500 and 5000 years), and up to 90 mm in only 
one hour at Coursegoules rain station, which caused the forma
tion of countless landslides and gullies (see Carrega and Michelot, 
2021). 

For this work, the first two regions of interest were selected over 
roughly 1 150 km2 for Aude 1 and 546 km2 for Aude 2 in the Fresquel, 
Orbiel and Aude watersheds. The study area for Alpes-Mar covered the 
Tinée, Vésubie and Roya valleys, representing 1 120 km2 of steep 
mountainous woodlands. Regions were chosen based on the lists of cities 
declared in a “natural disaster” state by inter-ministerial order as well as 
on the availability of VHR images. A map describing the precise location 
of all three study sites is provided in Fig. 1. 

The Aude 1 and Alpes-Mar events were covered by activation of the 
Copernicus Emergency Management Service (EMS) under the activation 
numbers EMSR324 and EMSR467. Grading maps delivered within a 
week after the events clearly showed delimitations of overflowing 
streams and mud traces nearby, especially around Trèbes and Villalier 
for Aude 1, but very scarcely inspected larger and more distant areas for 
traces of overland flow. 

In order to operate at a plot scale, the Aude and Alpes-Maritimes 
official department land cadastre datasets were retrieved under QGIS 
3.18 to obtain the most natural territorial subdivision with piecewise 
constant land use (grey box in Fig. 2). The areas of interest comprised 
around 200 000 plots under the 2018 version of the land cadastre for 
Aude 1, 100 000 plots for Aude 2 and 140 000 plots for Alpes-Mar. Plots 
average areas were respectively of 0.5, 0.5 and 0.7 ha with high standard 
deviations of 1.7, 1.4 and 5.3 ha due to the disparities between urban, 
rural and remote territories. The OSO French land cover product 
(Inglada, 2018) available at a 10 m spatial resolution was used to 
determine the main land use (LU) category within each plot (dark green 
box in Fig. 2). According to the OSO 2018 raster, most of the study zones 
were covered up with grasslands (30% of pixels for Aude 1, 30% of pixels 
for Aude 2 and 31% of pixels for Alpes-Mar.), vineyards (24%, 13% and 
0%), forests (20%, 21% and 65%), built-up (14%, 18% and 1%) and 
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other types of crops (cereals, protein crops, sunflower etc.; 12%, 18% 
and 0%). 

2.2. Satellite multispectral optical imagery and synthetic aperture radar 
products 

Three complementary types of satellite products were acquired for 
this work (Table 1). First, the earliest post event very high resolution 

Fig. 1. Study areas in Aude and Alpes-Maritimes departments, France (IGN airborne orthophotos, 2017).  

Fig. 2. Methodological workflow of the study.  
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(VHR) Pléiades images (orthorectified reflectance products corrected for 
atmospheric effects) were used to confirm and/or to visually identify 
traces of overflowing and rainwater runoff on agricultural lands, 
grasslands, roads and other diverse works (orange box in Fig. 2). With 
6.5 m location accuracy, four spectral bands in the visible and near- 
infrared (NIR) and a 0.5 m multispectral resampled spatial resolution, 
this product was a very valuable tool to differentiate damaged from non- 
affected areas by manual photo-interpretation. Different types of dam
ages were thus identifiable: landslides and mudslides, gullies, erosion, 
sediment deposit and vegetation uprooting. For the Alpes-Mar event, 
airborne orthophotos were acquired by IGN with a 0.15 m spatial reso
lution and a geometric accuracy lower than 1 m (orange box in Fig. 2). 
These images taken shortly after the “Alex” storm were even more 
profitable for precise photo-interpretation purposes, although lacking a 
NIR channel. Pléiades and IGN orthophotos were not co-registered as they 
were georeferenced sufficiently well to be used for manual photo- 
interpretation. 

Secondly, multiple images from two S2 tiles were acquired at 
different dates and co-registered to allow for accurate generation of 
change images: T31TDH for Aude 1 and Aude 2 and T32TLP for Alpes- 
Mar. These ready-to-use products consisted in Flat Reflectance (FRE) 
data with level-2A treatment, corrected for atmospheric effects and with 
cloud and shadow masks, either from Sentinel-2A or 2B satellites (blue 
box in Fig. 2). Co-registration was performed using ENVI with post event 
images as reference images. Each resulting pair of S2 acquisitions pre
sented values of average sum-of-squared intensity differences (SSD) 
lower than 0.002 on all three study events. Along with a 12 m location 
accuracy and a medium spatial resolution of 10 m for visible and NIR 
bands, S2 optical data was the key asset to this work through its great 
revisit frequency (around 5 days) allowing to closely monitor spectral 
variations before and after each event (Table 1). Following a 10 m 
resampling using GDAL library, the B11 SWIR band was also used in this 
work as a promising candidate for detection of post-flood traces (Yésou 
et al., 2003). Several pre event images were obtained in order to test the 
stability of the method in hypothetical conditions of persistent cloud 
cover. 

Eventually, in order to evaluate SAR potential to detect potentially 
impacted areas, the closest Interferometric Wide Swath (IW) level-1 
Ground Range Detected (GRD) S1 products were also retrieved for all 
three events (light green box in Fig. 2). They consisted in 10 × 10 m2 

spatial resolution, dual VV and VH polarization measurements. Contrary 
to S2, these products were not ready-to-use. Following the workflow of 

Filipponi (2019) and using SNAP software and its Sentinel-1 toolbox 
(SNAP v7.0, 2018), several pre-processing operations were performed 
on the S1 raw data so that change images could be generated and 
stacked to S2 change images for adequate computations:  

• Subset of the region of interest (ROI);  
• Orbit correction (ascending or descending);  
• Thermal noise and GRD border noise removal;  
• Radiometric calibration (sigma for Aude 1 and Aude 2 and beta for 

Alpes-Mar) to convert the digital values of the raw images into 
backscattering coefficients;  

• Speckle filtering with a Lee Sigma filter (Lee and Pottier, 2009);  
• Range-Doppler Terrain Correction with the RGE ALTI ® DEM from 

IGN at 5 m spatial resolution. 

A beta radiometric calibration was used for the Alpes-Mar event 
compared to Aude study sites as it is advised on high relief terrains. 
Finally, a logarithmic transformation was applied to backscattering co
efficients to convert them into dB values. All products were used (and 
projected to if necessary) in the native reference coordinate system of 
Sentinel images, World Geodetic System (WGS) 84, either Universal 
Transverse Mercator (UTM) zone 31 N for Aude 1 and Aude 2 or UTM 
zone 32 N for Alpes-Mar. 

2.3. Selection of ground truths and photo-interpreted plots 

Following the preliminary work of Cerbelaud et al. (2021) on the 
Aude 1 event, two additional validation samples were put together 
(white box outlined in red in Fig. 2) so as to evaluate replicability po
tential of the change detection method at different seasons (Aude 2) and 
on areas with contrasted land use and topography (Alpes-Mar). Table 2 
describes (i) the ground truths sources and sample selection methods; 
(ii) the image products and dates used for photo-interpretation and (iii) 
the classes contents. Tagged observations from all three events can be 
seen in Fig. 3. 

For the Aude 1 catastrophe of October 15, 2018, the same dataset of 
geo-referenced plots that was assembled by Cerbelaud et al. (2021) on 
the department land cadastre was used. Based on around 900 claims for 
agricultural disaster that were registered and certified by the local au
thorities (Aude’s Direction Départementale des Territoires et de la Mer, 
DDTM 11) following the event, 310 damaged plots were singled out 
after visual inspection of the closest post event Pléiades image from 

Table 1 
Acquisition dates and imaging capabilities of Pléiades, IGN airborne, Sentinel-2 (non-exhaustive) optical instruments and Sentinel-1 radar instrument.  

Satellite product Acquisition dates 
Event X : Date t 

Wavelength range (nm) Spatial resolution 

Aude 1: Oct. 15, 2018 Aude 2: May 11, 2020 Alpes-Mar: Oct. 3, 2020 

Pléiades - Optical Post event: 
2018/11/03 
2019/02/22 

Post event: 
2020/05/22 

Post event: 
2020/10/05 
2020/10/13 

Panchromatic 480–820 
Blue (B0) 450–530 
Green (B1) 510–590 
Red (B2) 620–700 
NIR (B3) 775–915 

0.7 m (panchromatic) 
2.8 m (multispectral) 
Resampled to 0.5 m (all bands) 

IGN orthophotos - 
Optical   

Post event: 
Multiple tiles starting 
2020/10/05 

Visible 
(blue, green and red) 

~ 0.15 m 

Sentinel-2 (S2) - Optical Pre event: 
2018/08/16 
2018/09/25 
2018/10/05 
Post event: 
2018/10/25 

Pre event: 
2020/03/18 
2020/04/10 
2020/05/07 
Post event: 
2020/05/20 

Pre event: 
2020/08/22 
2020/09/13 
2020/09/28 
Post event: 
2020/10/08 

Blue (B2) 460–525 
Green (B3) 542–578 
Red (B4) 650–680 
NIR (B8) 780–886 
SWIR (B11) 1565–1660 

10 m for bands B2, B3, B4 and B8 
20 m for band B11 

Sentinel-1 (S1) - SAR 
(IW-GRD) 

Pre event: 
2018/10/11 
Post event: 
2018/10/17 

Pre event: 
2020/05/09 
Post event: 
2020/05/14 

Pre event: 
2020/09/26 
Post event: 
2020/10/08 

C-band 5.55 cm 
(5.405 GHz central frequency) 

10 × 10 m2 for GRD product  
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November 3, 2018, to form the Damaged Ground Truths training sample, 
named hereafter DGT(1). The approval strategy of these plots out of all 
agricultural disaster claims was specified in Cerbelaud et al. (2021). 362 
additional damaged but yet unclaimed plots (Damaged Photo-Interpreted 
- DPI(1) - sample) were also hand-picked independently using the same 
VHR image in the surrounding areas for validation purposes. Finally, 
480 unaffected lands (Undamaged Photo-Interpreted - UDPI(1) - sample) 
were selected with a similar methodology close-by as well as further 
away from the damaged areas for the control group. 

For Aude 2, the DPI(2) damaged validation sample was constituted 
using information regarding the different road segments that were 
closed-off during the event (source DDTM 11). However, because the 
precise location of flooded and/or damaged road sections were not 
detailed in the available files, the Pléiades image from May 22, 2020, was 
closely inspected to identify 184 damaged plots in the direct vicinity of 
the closed roads. An undamaged UDPI(2) sample of 497 plots, as repre
sentative as possible of the distribution of land use types in the area, was 
then compiled from different locations to make sure that a limited 
number of false positives were flagged by the classification algorithm. 

In the context of the French national Hymex program that seeks to 
improve understanding and modelling of hydro-meteorological hazards 
in the Mediterranean region, a field campaign was carried out in 
February 2021 from Sospel to the Roya and Vésubie valleys. There, 
terrain specificities were assessed and affected areas were located. GPS 
coordinates for mountain roads that had been covered in mud or that 
had collapsed as well as deteriorations (landslides, gullies, rockslides) 
for which intense rainwater runoff was undeniably accountable were 
recorded. Because the observation campaign took place around five 
months after the events, small disturbances, especially near urban areas, 
had been mostly cleaned up. However, due to the difficulty in accessing 
remote areas, a significant amount of deteriorations was still visible on 
the mountain slopes down to valleys, with road works still underway in 
numerous places. Following this campaign, 435 damaged lands DPI(3) 

were finally tagged on the Alpes-Maritimes land cadastre using the VHR 
(0.15 m) IGN orthophotos around the visited areas as well as in the Tinée 
valley. Lastly, a UDPI(3) unaffected validation sample of 571 plots was 
assembled to complete the overall Alpes-Mar dataset with the same 
methodology. 

Sample images for all classes and study areas can be seen in Fig. 4. In 
order to make sure that the resulting datasets were representative of 
each study area and that DPI (DGT(1) for Aude 1) and UDPI classes were 
somewhat comparable, the main characteristics of each class were 
estimated (Table 3). In addition, the distribution of plots’ major land use 
(OSO), overall and by class, excluding the built-up category, is shown in 
Fig. 5. Logically, vineyards were over-represented in the Aude 1 and 
Aude 2 study regions, along with sunflowers and cereal crops. For these 
events, damaged plots tended to be much more located in agricultural 
lands, since they were more easily recognizable, than in woodlands and 
grasslands. UDPI and DPI classes showed slightly dissimilar land cover 
distributions that could induce small statistical biases in spectral sig
natures. This concern is partially addressed in Section 2.5. For the Alpes- 
Mar event, only two land use types dominated (grasslands and forests), 
with a similar distribution overall and between the two classes. 

Mean slope was derived for all study regions from the RGE ALTI ® 
DEM (5 m spatial resolution) from IGN. Overall, the complete tagged 
area added up to around 26 km2 (i.e. 2.3% of the total region) for the 
Aude 1 study site, 12.3 km2 (2.3%) for Aude 2 and 7.3 km2 (0.7%) for 
Alpes-Mar. 

2.4. Supervised classification change detection method based on plot- 
specific spectral indicators 

Ensuing the works of Cerbelaud et al. (2020, 2021), this study relied 
on information derived from soil and vegetation-specific spectral indices 
based on the visible and NIR 10 m bands of S2 images. Building on from 
the conclusions of these two previous studies, three suitable indices were 
kept here: NDVI, NDWI for Normalized Difference Water Index 
(McFeeters, 1996) and SAVI for Soil Adjusted Vegetation Index (Qiu 
et al., 2017; see Table 2 from Cerbelaud et al. (2020) for details). The 
B11 SWIR band and the NDMI for Normalized Difference Moisture Index 
(Gao, 1996) were also used as indicators of vegetation water content. 
Physics-wise, this study’s core assumption remained that intense over
land water flow can be traced back to erosion marks, mudslides, various 
deposits and uprooting through measurable spectral variations in time 
and space. This study also aimed at bringing new insights through the 
investigation of SAR data (VV and VH polarizations) contribution to 
detect recently impacted areas as a proxy in low NDVI areas. 

Therefore, new images, called change images, were produced for all 
spectral indices k from S1 and S2 products (yellow box in Fig. 2) by 
computing the pixel-by-pixel relative difference (RD) between the pre 
(t1) and post (t2) event images (cloud-free for optical data), called 
change pixels and written RDk. Particular attention was thus paid to the 
accuracy in the co-registration of Sentinel tiles. 

∀ k ∈ [NDVI,NDWI, SAVI,B11,NDMI,VV,VH] :

∀ (i, j) ∈ S, RDk
ij =

BVk
ij(t1) − BVk

ij(t2)

BVk
ij(t1) + BVk

ij(t2)

(1)  

where S designates the overall image extent and BVk
ij(t1(2)) the brightness 

value of pixel (i,j) for index k at pre (post) event date t1 (t2). 
In order to highlight the presence of spatial heterogeneities as well as 

singular spectral variations within damaged plots, plot-based pixel sta
tistics θ were estimated for all three events on each change image to 
produce plot-specific vectors of characteristics (RDk)θ (yellow box in 
Fig. 2, see examples on Fig. 6). The most relevant statistics found in 
Cerbelaud et al. (2020, 2021) were computed: mean, maximum (max) 
and standard deviation (std). The mean and maximum metrics were 
selected to relay positive values of RDk so as to indicate decreases in the 
NDVI and SAVI indices (they are mostly positive) and increases in the 
NDWI as well as in the SAR indices (they are rather negative) following 
the events. For all three optical indices, such RDk values implied a 
deterioration in vegetation cover following intense rainwater overland 
flow. For VV and VH radar signals, they suggested an increase in soil 

Table 2 
Description of training and validation samples used for all study sites.   

Aude 1: Oct. 15, 
2018 

Aude 2: May 11, 
2020 

Alpes-Mar: Oct. 3, 
2020 

Ground truths 
source 

Around 900 
agricultural 
disaster claims 
obtained from 
local authorities 
(DDTM 11) with 
around 1 000 
locations geo- 
referenced on the 
land cadastre 

Closed-off road 
segments 
obtained from 
local authorities 
(DDTM 11). 
Damages were 
searched for in the 
surrounding areas 
and tagged on the 
land cadastre 

Field campaign in 
February 2021 for 
the Hymex 
National Program: 
observations from 
Sospel to the Roya 
and Vésubie 
valleys. 
Road collapses and 
covered in mud, 
landslides and 
rockslides were 
GPS-located on the 
land cadastre 

Post event VHR 
image for 
photo- 
interpretation 

Pléiades Nov. 3, 
2018 (0.5 m) 

Pléiades May 22, 
2020 (0.5 m) 

IGN orthophotos 
Oct. 5, 2020 (0.15 
m) -  
Pléiades Oct. 5, 
2020 (0.5 m) 

Number of plots 
in resulting 
data samples 

Training: 310 
DGT(1)  

Validation: 362 
DPI(1) 

Training & 
validation: 480 
UDPI(1) 

Validation: 184 
DPI(2) 

497 UDPI(2) 

Validation: 435 
DPI(3) 

571 UDPI(3)  
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moisture and/or roughness (Gao et al., 2017) that could be associated 
with damage likeliness. Because sensitivity of SAR backscattered co
efficients to ground properties has been reported to decrease with 
increasing vegetation cover growth (Bousbih et al., 2017), a NDVI filter 
computed on the pre and post event S2 data was applied to S1 change 
images. Therefore, only changes for pixels with NDVI values lower than 
0.25 or 0.5 were considered. Values of RDk for B11 SWIR band and 
NDMI index on affected areas were also expected to stand out, yet with 
less a priori assumption on a unique positive or negative pattern 
depending on the source of identified hazards (Yésou et al., 2003). Due 
to the distinctive reactions of some land covers to intense precipitations, 
having the most natural territorial subdivision with piecewise constant 
land use was crucial in this approach. 

With a focus on developing an automatic damage detection method, 
a unique training sample was put together from the Aude 1 event, since 
previous results from Cerbelaud et al. (2021) had confirmed the rele
vance of the approach on this site. The UDPI(1) undamaged class of 480 
plots was thus split in half (yielding two UDPI(1,a) and UDPI(1,b) classes) 
with a random seed under Python 3 both for training and validation 
purposes. The learning sample was then assembled from both the 
ground truths DGT(1) damaged class and the UDPI(1,a) class, adding up to 
a total of 550 plots on a 11.3 km2 area. The damaged photo-interpreted 
DPI(1) class formed the Aude 1 validation sample along with the other 
UDPI(1,b) class (602 plots, 14.6 km2). Validation samples for the two 
other events were finally directly compiled from their respective DPI 
and UDPI classes (681 plots, 12.3 km2 for Aude 2 and 1 006 plots, 7.3 

km2 for Alpes-Mar; see Table 3). 
Lastly, plot-based supervised classifications were achieved using a 

Gaussian process classifier (GPC, red box in Fig. 2) with squared- 
exponential kernel based on two of the most performing combinations 
of (RDk)θ indicators found in Cerbelaud et al. (2021) (see their Table 4), 
complemented or not with SWIR or SAR indicators: [(RDNDVI)std; 
(RDNDWI)max] and [(RDNDVI)std; (RDSAVI)mean]. Gaussian processes for 
classification are a generalization of the Gaussian probability distribu
tion and a type of non-parametric kernel-based machine learning algo
rithm. They combine consistent formulations with computational 
tractability and were chosen in this work mainly because they can give a 
reliable estimate of their own uncertainty (Rasmussen and Williams, 
2006). Performance was measured through overall accuracies and pro
ducer accuracies by class, which correspond to the ratio of plots 
correctly classified within each described class. False alarm rates were 
also closely monitored to give a representation of the proportion of plots 
incorrectly identified as affected (DPI) by the GPC (i) among all plots 
classified as affected (false discoveries) or (ii) among all plots described 
as undamaged (false positives). GPC results ultimately allowed pro
ducing hazard assessment maps with an associated class probability 
indicating classifier confidence for damage identification. 

2.5. Land use inter-class demeaning pre-processing 

The damage detection scheme developed in this study relied on 
discriminatory capacity of plot-based statistics such as mean, maximum 

Fig. 3. Identifiable damages and un
damaged plots on all study sites. 
Roads that were closed-off following 
flood damages for the May 11, 2020, 
event in Aude 2 study site were 
marked with orange lines. Background 
images are from Pléiades images for 
Aude 1 and Aude 2. Some thin cloud 
cover can be observed on Aude 1. For 
Alpes-Mar, the airborne tracks of the 
IGN orthophotos along with two 
Pléiades tiles were overlaid to the 
Sentinel-2 closest post event image 
(Table 1). (For interpretation of the 
references to color in this figure 
legend, the reader is referred to the 
web version of this article.)   
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and variance of change pixels. However, spatially homogeneous changes 
and irregularities can occur naturally within plots depending on their 
location, the distribution of their land cover and the ongoing season. 
Because this classification approach was also designed to be replicable 
from one event to another, plot statistics of observed changes in spectral 
signatures for each class (UDPI versus DPI) needed to coincide in terms 
of both magnitude and distribution for all events. Therefore, the average 
impact of seasonal transformations and human practices (e.g. bloom in 
spring, soil moisture states during rainy seasons, fallow and harvest 
periods) that are usually area, time and land cover-specific needed to be 
cleared off as much as possible from the change images. 

Thus, a land use inter-class demeaning pre-processing consisting in 
two steps was carried out on all changes images (yellow box in Fig. 2). 

Two approaches were considered for the second step. The procedure 
could be described under the following terms:  

1. for a given spectral index k from a given change image S with grid 
points (m,n), the mean values of all the RDk

mn pixels featuring the 
same land use type LUmn = oso were computed over the whole study 
area: 

∀ oso, RDk
oso =

1
∑

(LUmn∈S=oso)

∑

(LUmn∈S=oso)

RDk
mn (2)    

2. then 

Fig. 4. Sample images from intense runoff hazards and unaffected lands for each class and study area.  

Table 3 
Characteristics of sample classes in the three study zones.  

Sample class Aude 1: Oct. 15, 2018 Aude 2: May 11, 2020 Alpes-Mar: Oct. 3, 2020 

Number 
of plots 

Total 
surface 
(km2) 

Median 
plot area 
(ha) 

Mean 
slope 
(◦) 

Number 
of plots 

Total 
surface 
(km2) 

Median 
plot area 
(ha) 

Mean 
slope 
(◦) 

Number 
of plots 

Total 
surface 
(km2) 

Median 
plot area 
(ha) 

Mean 
slope 
(◦) 

UDPI 
(Undamaged 
photo- 
interpreted) 

480  11.6  1.27  3.2 497  6.8  0.72  5.6 571  2.6  0.15  24.4 

DGT (Damaged 
ground 
truths) 

310  5.5  0.98  3.1         

DPI (Damaged 
photo- 
interpreted) 

362  8.8  1.34  2.1 184  5.5  1.10  2.7 435  4.7  0.27  26.5  

A. Cerbelaud et al.                                                                                                                                                                                                                              



ISPRS Journal of Photogrammetry and Remote Sensing 182 (2021) 153–175

161

3. either these mean values RDk
oso were subtracted to all the change 

pixels RDk
ij of S featuring the corresponding land cover type LUij =

oso, regardless of plot subdivision: 

∀(i, j)∈ S|LUij = oso,RDk
ij→RDk

ij − RDk
oso (3)    

4. either for a given plot P of S with median land use category LUP =

oso, these values RDk
oso were subtracted to all the change pixels RDk

ij 

of P, regardless of their exact land cover type LUij: 

∀P⊂S|LUP = oso, ∀(i, j) ∈ P,RDk
ij→RDk

ij − RDk
oso (4) 

With images close enough in time (a dozen days or so), a large 
number of plots presented few to no spectral changes at all. Because the 
OSO land cover product distribution did not systematically perfectly 
match the land cadastre subdivision, a significant number of plots pre
sented at least a few pixels representative of an additional land use type. 
Therefore, the 2.a procedure based on demeaning change pixels by their 
exact land use type, regardless of plot subdivision, occasionally resulted 
in artificial modification of plots’ inner variability. On the contrary, with 
plot-specific demeaning relying on median land use type, approach 2.b 
did not introduce any biases nor it altered plots’ variance and was thus 
preferred. 

Expected outcome of this procedure was an increase in the likeliness 
that change pixels standing out in the resulting pre-processed images 
originated from singular events. The number of false positives was thus 
expected to decrease with spectral signatures being less land use- 
specific. By removing average spectral changes in time that can either 
be negative or positive depending on the ongoing season (e.g. global 
NDVI values decrease in autumn and increase in spring), better corre
spondence between spectral responses of the three studied events was 
assumed as a consequence. 

Since damaged lands’ change pixels were also included in the 
calculation of the demeaning terms (for replicability purposes, they 
can’t be excluded because they aren’t supposed to be known ex ante), a 
decrease in the detection accuracy for damaged plots was also antici
pated. Finally, in step 1, the demeaning terms could have been calcu
lated in a more sophisticated way using multiyear data. Direct 
computation on the change images only was preferred here in order to 
improve easiness and repeatability of the method. 

This type of dataset demeaning methodology is mainly derived from 
time series analysis and country panel data econometrics, where they 
are commonly used to control for time and country fixed effects, 
allowing better regression power (Petrova and Westerlund, 2020). 

3. Results 

3.1. Detection accuracy using Sentinel-2 optical indicators only 

The results from classification using the unique training sample from 
Aude 1 study site onto the closest S2 change images are displayed in 
Table 4 for all three events: Oct. 5 to 25 (20 days) for Aude 1, May 7 to 20 
(13 days) for Aude 2 and Sept. 28 to Oct. 8 (10 days) for Alpes-Mar. 

First of all, overall accuracy of at least 88% was reached for one or 
both combinations of indicators on all study areas. No less than 4 out of 5 
damaged plots (DPI) were successfully identified by the classifier. As 
already disclosed in Cerbelaud et al. (2021), the use as a classification 
variable of the maximum statistics among plots’ change pixels (here 
NDWI) led to a systematic overestimation of damages with higher rates 
of false discoveries (1 – DPI user accuracy %) and false positives (1 – 
UDPI producer accuracy %). Larger false discovery rates were found on 
the weaker Aude 2 event, mostly owing to the imbalance between the 
size of DPI(2) and UDPI(2) classes. The opposite mechanism was at stake 
for the Aude 1 event with less UDPI(1,b) plots than DPI(1)s. Weaker DPI 
producer accuracy was obtained on the Alpes-Mar event. Multiple 
rationale can be invoked to justify difficulties in identifying these 
damages from Aude 1 spectral signatures. First, intensity and total 
amount of rainfall was substantially higher during the “Alex” storm. 
Along with contrasted land cover and topography, the episode’s bru
tality (see Carrega and Michelot, 2021) likely induced different spectral 
responses in terms of magnitude and extent. Finally, compared to Aude, 
territorial subdivision derived from the Alpes-Maritimes department 
land cadastre might have been less adequate (lower median and greater 
disparity in plot size; see Fig. 6 for instance) to allow for a correct 
detection capacity. 

Supervised classification was then applied to all plots within the 
study areas to produce maps displaying probability of damage classifi
cation given by the Gaussian process classifier on hundreds of thousands 
of registered lands from the cadastre. A close-up example of the output 
map based on [(RDNDVI)std; (RDNDWI)max] combination over Alpes-Mar 
study site is shown in Fig. 7. The roads covered in mud and the plots 
directly impacted by the overflowing of the river can be observed in the 
city of Tende. An important mudslide reaching over to the North of the 
city was well captured by the change detection method. 

3.2. SAR signal segregation potential with Sentinel-1 data 

No attempt at implementing backscattering model inversion to 
retrieve soil moisture estimates was made in this work. Instead, in order 
to evaluate whether SAR data was a promising tool to significantly 
discriminate damaged plots, summary statistics were first simply per
formed similarly to what was carried out in Cerbelaud et al. (2021) for 
optical indicators. 

S1 change images were consistent with the likeliness that damaged 
areas should present, on average, higher increase in proxies of soil 
moisture and/or roughness (Fig. 8). Indeed, a weak differentiation was 
observed with higher values of signal increase for damaged areas (DGT 
and DPI), implying higher increase in soil moisture and/or roughness as 
well. In agreement with SAR literature on soil moisture (Bousbih et al., 
2017), this relation was found generally stronger for weakly vegetated 
areas (NDVI < 0.25 compared to NDVI < 0.5) and for the VV 
polarization. 

The maximum statistics (similar results were obtained with the 90th 
and 95th percentile, not shown) was found the most relevant for inter- 
class discrimination (compared to mean or standard deviation, not 
shown). Average magnitude of maximum SAR change pixels turned out 
to be larger for the Aude 2 event, likely due to rainfall being further 
spread over time compared to the other two episodes, leading to higher 
water infiltration in soils. Consequently, transferability of Aude 1 radar 
signatures to Aude 2 for cross-classification purposes appeared initially 
challenging. This issue was dealt with using the pre-processing 

Fig. 5. Land use distribution of plots by class (OSO) in the three study zones.  
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procedure described in 2.5, which is discussed in the next section. 

3.3. Cross-site replicability using a land use inter-class demeaning pre- 
processing 

Summary statistics of the different classes among study sites based on 
the closest raw change images compared to the demeaned ones are 
displayed in Fig. 9. (RDNDVI)std distributions were logically unaffected, 
since the same constant values were withdrawn from all change pixels of 
a given plot during the process (Fig. 9a). For this indicator, higher values 
and a larger variance were observed on Aude 1 UDPI class compared to 

the two other events (Fig. 9a). This implied that Aude 1 change image 
inherently featured more disparate heterogeneities overall, with 
important implications on cross detection possibilities that will be dis
cussed in Section 3.5. 

(RDNDWI)max and (RDSAVI)mean distributions (see Fig. 9b and Fig. 9c) 
from the Aude 2 and Alpes-Mar samples were tilted downwards after 
demeaning, as opposed to upwards for Aude 1. This corrected the fact 
that RDk pixels in the Aude 1 S2 change images were predominantly 
negative (k = NDVI or SAVI, in response to the extreme weather event; 
see Fig. 4 of Cerbelaud et al., 2021). With UDPI test distributions being 

Fig. 6. Damages caused by overflowing and intense rainwater runoff following heavy rainfall. Classification strategy based on plot-specific pixel statistics is dis
played in the bottom right images. (a) Top left: IGN orthophotos 2017 with river network. Top right: IGN orthophotos Oct. 5, 2020, post event. Bottom left: OSO land 
cover on land cadastre. Bottom middle: S2 RDSAVI Sept. 28 - Oct. 8. Bottom right: S1 RDVV where NDVI < 0.25, Sept. 26 - Oct. 8; (b) Top left: IGN orthophotos 2017 
with river network. Top right: Pléiades true colors Nov. 3, 2018, post event. Bottom left: OSO land cover on land cadastre. Bottom middle: S2 RDSAVI Oct. 5–25. 
Bottom right: S1 RDVV where NDVI < 0.25, Oct. 11–17. 
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lower than the UDPI training one, better classification scores for unaf
fected lands was expected after demeaning. Smaller overlaps between 
UDPI and DPI classes were mostly obtained in the pre-processed RDSAVI 

and RDVV images for Aude 1 (see Fig. 9c and Fig. 9d). (RDVV)max distri
bution ranges among all three events turned out to be much more similar 
once demeaned, specifically for Aude 2 (albeit rather less for Alpes-Mar). 
As a result, the Gaussian process classifier should be able to better 
discriminate damaged areas using the demeaned datasets and produce 
less false positives. 

As damaged lands are significantly less numerous than unaffected 
areas when studying a sufficiently large region, emphasis was placed on 
achieving highest UDPI accuracies (or equivalently lowest false alarm 

rates). Classification scores for the two combinations of sole optical in
dicators as well as complemented by SAR (RDVV)max variable (with 
NDVI < 0.25 filter) are shown in Table 5. The benefits of (i) applying the 
demeaning pre-processing (when used, it is applied to both training and 
validation samples) to lower false alarm rates and (ii) using SAR data to 
improve classification accuracy can be derived from these tables. 

First off, the use of pre-processed change images for detection pur
poses did result in a decrease in the number of plots incorrectly classified 
as damaged, with lower false discovery and false positive rates, except 
for the [(RDNDVI)std; (RDSAVI)mean] combination on Aude 1. However, it 
turned out to be generally at the cost of lower identification capacity for 
damaged plot samples, mostly leading to slightly lower overall accu
racies. This could very well mean that, for some damaged plots featuring 

Table 4 
Overall accuracy, producer accuracy by class and false alarm rates from closest change images using optical indicators only.   

550 training plots from Aude 1 - Oct. 15, 2018: 240 UDPI(1,a) and 310 DGT(1) 

Aude 1 - 
Oct. 15, 2018 
602 validation plots: 
240 UDPI(1,b) and 362 DPI(1) 

Aude 2 - 
May 11, 2020 
681 validation plots: 
497 UDPI(2) and 184 DPI(2) 

Alpes-Mar - 
Oct. 3, 2020 
1006 validation plots: 
571 UDPI(3) and 435 DPI(3) 

Optical indicators (RDk)θ combination  1. NDVI - Std 
2. NDWI - Max 

1. NDVI - Std 
2. SAVI - Mean 

1. NDVI - Std 
2. NDWI - Max 

1. NDVI - Std 
2. SAVI - Mean 

1.NDVI - Std 
2. NDWI - Max 

1. NDVI - Std 
2. SAVI - Mean 

Overall accuracy 89% 89% 91% 89% 88% 83% 

UDPI 84% 88% 92% 95% 94% 97% 
DPI 92% 89% 86% 71% 80% 65% 
False discovery rate 10% 8% 19% 15% 9% 5% 
False positive rate 16% 12% 8% 5% 6% 3%  

Fig. 7. Mudslide around the city of Tende (06). Top left: IGN orthophotos Oct. 5, 2020 post event. Top right: Sentinel-2 RDNDVI Sept. 28 - Oct. 8 over land cadastre. 
Bottom: Output map displaying the probability of damage classification by Gaussian Process classifier on Alpes-Mar, based on [(RDNDVI)std; (RDNDWI)max] optical 
combination. 
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a specific land cover type, rightful prediction using the raw change 
images was previously incidental. This method’s true potential to single 
out damaged plots from plot-based pixel statistics of Sentinel change 
images with coarse spatial resolution (10 m) could thus be lower than 
initially found. Still, the land use inter-class demeaning pre-processing 
did allow for good detection efficiency with optimal DPI producer ac
curacies not falling below 70% while preventing improper identification 
as much as possible (Fig. 10a and b). 

Secondly, including SAR data in the classification process led to 
heterogeneous results (Table 5). Indeed, (RDVV)max seemed fairly com
plementary to the [(RDNDVI)std; (RDSAVI)mean] combination, yielding 
higher DPI accuracy when demeaned pre-processed change images were 
used. As seen in the bottom of Fig. 10b and on Table 5b, SAR information 

contributed to detecting a larger amount of damaged plots in Aude 2 that 
were not thoroughly identified with optical indices only (DPI accuracy 
going up from 53% to 70%). On the contrary, with lower scores mostly, 
SAR brought no additional explanatory power to the association of 
(RDNDVI)std and (RDNDWI)max (Table 5a). 

Furthermore, contribution of SWIR B11 band from S2 was tested in 
combination with visible and NIR indices from demeaned change images 
(Table 6). The addition of (RDB11)mean indicator in the classification 
variables was found more relevant than the use of any (RDNDMI)θ indi
cator. Although at a lower native spatial resolution, information from 
B11 spectral variations allowed enhancing overall results on all three 
study areas when used with the [(RDNDVI)std; (RDSAVI)mean] association 
(Table 6b), closer to what the [(RDNDVI)std; (RDNDWI)max]combination was 

Fig. 8. Boxplot of (RDk)θ distributions depending on NDVI threshold considered for S1 SAR change images. (a) k = VV polarization, θ = maximum; (b) k = VH 
polarization, θ = maximum. 

Fig. 9. Boxplot of (RDk)θ distributions (raw and with land use demeaning pre-processing) based on the closest S2 and S1 change images. (a) k = NDVI, θ = standard 
deviation; (b) k = NDWI, θ = maximum; (c) k = SAVI, θ = mean; (d) k = VV polarization when NDVI < 0.25, θ = maximum. 
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Table 5 
Overall accuracy, producer accuracy by class and false alarm rates from closest raw and demeaned change images, using visible-NIR indicators only or with (RDVV)max. Lecture note: underlined bold values indicate that better 
scores were achieved with the demeaning pre-processed images for a given event (if so, both raw and demeaning scores are tagged). Asterisks indicate best configurations for each event based on lowest false discovery rate, provided that 
the DPI producer accuracy reaches a reasonable ratio of 70%.  

(a) 1. NDVI - Std 2. NDWI – Max  

550 training plots from Aude 1 - Oct. 15, 2018: 240 UDPI(1,a) and 310 DGT(1) 

Aude 1 - 
Oct. 15, 2018 
602 validation plots: 
240 UDPI(1,b) and 362 DPI(1) 

Aude 2 - 
May 11, 2020 
681 validation plots: 
497 UDPI(2) and 184 DPI(2) 

Alpes-Mar - 
Oct. 3, 2020 
1006 validation plots: 
571 UDPI(3) and 435 DPI(3)  

Raw with demeaning pre-processing Raw with demeaning pre-processing Raw with demeaning pre-processing  

Vis-NIR only Vis-NIR 
+ SAR 

Vis-NIR only* Vis-NIR 
+ SAR 

Vis-NIR only Vis-NIR 
+ SAR 

Vis-NIR only* Vis-NIR 
+ SAR 

Vis-NIR only Vis-NIR 
+ SAR 

Vis-NIR only* Vis-NIR 
+ SAR 

Overall accuracy 89% 90% 85% 85% 91% 89% 90% 87% 88% 87% 86% 83% 

UDPI 84% 86% 88% 86% 92% 90% 96% 93% 94% 92% 99% 98% 
DPI 92% 92% 84% 84% 86% 89% 74% 72% 80% 80% 70% 64% 
False discovery rate 10% 9% 9% 10% 19% 24% 13% 22% 9% 11% 2% 4% 
False positive rate 16% 14% 12% 14% 8% 10% 4% 7% 6% 8% 1% 2%  

(b) 1. NDVI - Std 2. SAVI - Mean  

550 training plots from Aude 1 - Oct. 15, 2018: 240 UDPI(1,a) and 310 DGT(1) 

Aude 1 - 
Oct. 15, 2018 
602 validation plots: 
240 UDPI(1,b) and 362 DPI(1) 

Aude 2 - 
May 11, 2020 
681 validation plots: 
497 UDPI(2) and 184 DPI(2) 

Alpes-Mar - 
Oct. 3, 2020 
1006 validation plots: 
571 UDPI(3) and 435 DPI(3)  

Raw with demeaning pre-processing Raw with demeaning pre-processing Raw with demeaning pre-processing  

Vis-NIR only Vis-NIR 
+ SAR* 

Vis-NIR only Vis-NIR 
+ SAR 

Vis-NIR only Vis-NIR 
+ SAR 

Vis-NIR only Vis-NIR 
+ SAR* 

Vis-NIR only Vis-NIR 
+ SAR* 

Vis-NIR only Vis-NIR 
+ SAR 

Overall accuracy 89% 90% 82% 86% 89% 88% 86% 89% 83% 83% 79% 81% 

UDPI 88% 89% 83% 84% 95% 91% 98% 96% 97% 97% 100% 98% 
DPI 89% 90% 82% 87% 71% 79% 53% 70% 65% 66% 52% 58% 
False discovery rate 8% 7% 12% 11% 15% 24% 9% 14% 5% 6% 0% 4% 
False positive rate 12% 11% 17% 16% 5% 9% 2% 4% 3% 3% 0% 2%  
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able to yield on its own (Table 6a). Accounting for SWIR changes 
particularly allowed decreasing further the false discovery rate (down to 
9%) on the Aude 2 study event (Table 6a). On the contrary, both B11 and 
NDMI indicators brought slightly degraded performance on the two 
other events. 

Overall, the [(RDNDVI)std; (RDNDWI)max] combination appeared the 
most versatile on all three study events, with only marginal to no 
improvement from the use of SAR (RDVV)maxor SWIR (RDB11)mean in
dicators. Two demonstrations of satisfying detection capacity can be 
observed in Fig. 11 using this combination of optical indicators. 

3.4. Detection robustness with regards to the availability of optical pre 
event images 

Availability of satellite optical images greatly depends on atmo
spheric conditions. When investigating heavy rainfall events, persistent 
cloud cover is usually observed for days before and after the floods. 
Naturally, the further back in time the pre event images, the more the 
observed spectral changes are likely to carry multiple signatures from 

different sources, making them harder to interpret, especially during 
spring season where vegetation actively regrows. With land use specific 
demeaning, the pre-processing procedure was expected to help coun
teract at least some of these unwanted spectral patterns. To quantify this 
effect and address this concern, multiple S2 change images were created 
using the closest post event images and pre event acquisitions up to 70 
days beforehand. Because damages can be relatively durable (except for 
those that are rapidly cleaned up), one would expect the use of more 
distant post event images to be less problematic than pre event images. 
Thus, detection capacity with regards only to distant pre event images 
was investigated here. The distributions of the three plot-based optical 
(RDk)θ indicators from demeaned change images are exhibited in 
Fig. 12, by class and depending on the time interval between the S2 pre 
event and closest post event images. 

As the interval of time between both images got larger, an increase in 
the variance of UDPI and DPI distributions was generally observed for all 
indicators and all study sites, confirming that more numerous sources of 
spectral changes and thus greater overall disparities were expected over 
longer periods of time. For each site, (RDNDVI)std values (Fig. 12a) were 

Fig. 10. (a) Close-up example of damages on Aude 2 event over Pléiades image from 2020/05/22; (b) Output map displaying the probability of damage classification 
by Gaussian Process classifier based on [(RDNDVI)std; X] optical combination and improvements. 
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Table 6 
Overall accuracy, producer accuracy by class and false alarm rates from demeaned change images, using visible-NIR indicators only, or either with (RDB11)mean or (RDNDMI)mean. Lecture note: Asterisks indicate best con
figurations for each event based on lowest false discovery rate, provided that the DPI producer accuracy reaches a reasonable ratio of 70%.  

(a) 1. NDVI - Std 2. NDWI – Max  

550 training plots from Aude 1 - Oct. 15, 2018: 240 UDPI(1,a) and 310 DGT(1)  

Aude 1 - 
Oct. 15, 2018 
602 validation plots: 
240 UDPI(1,b) and 362 DPI(1) 

Aude 2 - 
May 11, 2020 
681 validation plots: 
497 UDPI(2) and 184 DPI(2) 

Alpes-Mar. - 
Oct. 3, 2020 
1006 validation plots: 
571 UDPI(3) and 435 DPI(3)  

Vis-NIR only* Vis-NIR + B11 Vis-NIR + NDMI Vis-NIR only Vis-NIR + B11* Vis-NIR + NDMI Vis-NIR only* Vis-NIR + B11 Vis-NIR + NDMI 

Overall accuracy 85% 83% 84% 90% 90% 91% 86% 83% 85% 

UDPI 88% 82% 82% 96% 97% 96% 99% 97% 98% 
DPI 84% 84% 85% 74% 69% 77% 70% 65% 69% 
False discovery rate 9% 12% 12% 13% 9% 13% 2% 5% 4% 
False positive rate 12% 18% 18% 4% 3% 4% 1% 3% 2%  

(b) 1. NDVI - Std 2. SAVI - Mean  

550 training plots from Aude 1 - Oct. 15, 2018: 240 UDPI(1,a) and 310 DGT(1)  

Aude 1 - 
Oct. 15, 2018 
602 validation plots: 
240 UDPI(1,b) and 362 DPI(1) 

Aude 2 - 
May 11, 2020 
681 validation plots: 
497 UDPI(2) and 184 DPI(2) 

Alpes-Mar. - 
Oct. 3, 2020 
1006 validation plots: 
571 UDPI(3) and 435 DPI(3)  

Vis-NIR only Vis-NIR + B11* Vis-NIR + NDMI Vis-NIR only Vis-NIR + B11* Vis-NIR + NDMI Vis-NIR only Vis-NIR + B11* Vis-NIR + NDMI 

Overall accuracy 82% 85% 83% 86% 89% 89% 79% 83% 81% 

UDPI 83% 83% 81% 98% 97% 97% 100% 99% 99% 
DPI 82% 86% 85% 53% 68% 67% 52% 61% 57% 
False discovery rate 12% 12% 13% 9% 10% 10% 0% 2% 2% 
False positive rate 17% 17% 19% 2% 3% 3% 0% 1% 1%  
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progressively tilted upwards illustrating greater intra plot heterogene
ities. UDPI and DPI classes remained however pretty well severable. 
Fairly good separation was also still observed with (RDNDWI)max medians 
(Fig. 12b) remaining globally stable in all study events. However, the 
(RDSAVI)mean indicator (Fig. 12c) was found the most unsteady with 
largely overlapping distributions between UDPI and DPI classes when 
considering more distant images, especially for the Aude 2 event. This 
could easily be fathomed since this particular storm took place on May 
11, during spring time, and the closest cloud free post event image was 
obtained on May 20. Therefore, the change images produced with pre 
event data acquired 40 days earlier (April 10) and 63 days earlier 
(March 18) carried considerable spectral changes due to spring blossom 
and agricultural practices. The other two events, Aude 1 and Alpes-Mar, 
occurring in the beginning of October, benefited from several months of 
far more stable weather and environmental conditions (from July to 
mid-October). 

Classification scores based on demeaned change images as a function 
of the time interval between the Sentinel-2 pre event and closest post 
event images can be observed in Table 7. 

Overall accuracies were pretty stable for the Aude 1 and Alpes-Mar 
events. For the latter, they dissimulated lower detection capacity for 

unaffected areas (UDPI) leading to false discovery rates going from 2% 
to 8% and for the worst case 18%. Still, rather stable DPI scores were 
achieved due to steady land cover conditions. Classification perfor
mance however significantly dropped for the Aude 2 site. In particular, 
the UDPI producer accuracy decreased from more than 96% to 80% and 
less, leading to false discovery rates up to 57% for the [(RDNDVI)std; 
(RDNDWI)max] combination, corroborating that the exploitation of change 
images between mid-March and mid-May in northern hemisphere mid- 
latitude countries like France can be misguiding. Surprisingly, greater 
accuracies were reached with the [(RDNDVI)std; (RDSAVI)mean] combination 
using highly distant images (70 days) on the Aude 1 event (Table 7b). 
This called for critical evaluation of the selection of plot samples and of 
the method’s performance, which will be discussed in Section 4.2. 
Nevertheless, the method still appeared reasonably robust as long as 
stable ground conditions (Aude 1 and Alpes-Mar) were observed between 
the pre event image and the event itself. As expected, the closer the pre 
and post event images, the greater discrimination capacity and the lesser 
false discovery rates in change detection. 

Because radar signals can be acquired in any meteorological condi
tion (cloudy and by night), interpretable SAR images can always be 
obtained in close proximity to a disaster should satellite revisit fre

Fig. 11. Close-up examples of damage detection based on [(RDNDVI)std; (RDNDWI)max] optical combination. Top: Pre event IGN orthophotos 2017. Middle: Post event 
Pléiades image or IGN orthophotos. Bottom: Resulting mapped hazards by Gaussian Process classifier with probability of damage classification. 
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quency be high enough (around 5 days for S1). In order to restore 
potentially reduced detection capacities from the use of distant optical 
change images, the most promising SAR variable, (RDVV)max, still 
derived from the closest S1 demeaned change images was also tested in 
combination with the demeaned optical indicators. Scores from Table 7 
show that for the [(RDNDVI)std; (RDNDWI)max] combination, SAR data 
mostly restored slightly greater UDPI and DPI producer accuracies on 
the Aude study sites. It was not the case for DPI in Alpes-Mar. This result 
was consistent with conclusions on SAR contribution derived from 
Table 5 and confirmed that either (i) all the available explanatory power 
was already carried by optical information on Alpes-Mar or (ii) radar 
signals might be much less interpretable or relevant on a steep moun
tainous woodland region. It could be explained by the presence of 
complex topography and the fact that, given the quantities of rainfall 
involved (500 mm+) in such a short time period, most damages 
observed on the high slopes likely originated from Horton overland flow, 
or alternatively that most of the soils in the whole area, damaged or not, 
were saturated likewise (Carrega and Michelot, 2021). Finally, although 
the introduction of SAR data might have helped marginally on agricul
tural areas like those of the Aude department, it turned out to be unable 
to fully recover the detection ability derived from closest optical images. 

3.5. Cross-site training 

In the previous subsections of Section 3, only one training configu
ration based on Aude 1 data was tested. Here, a cross-site validation 
approach was set up using Alpes-Mar or Aude 2 classes instead of Aude 1 

as training sample. Results are displayed in Table 8 using the closest 
demeaned optical change images on the two remaining validation 
samples. UDPI producer accuracy was found very poor on Aude 1 with 
only 50% of the unaffected areas correctly classified when Alpes-Mar 
was used as training (column (a) of Table 8), indicating massive damage 
overestimations. This could be related to higher values and a larger 
variance for all three demeaned optical indicators on Aude 1 unaffected 
plots (Fig. 9). A close although weaker outcome was observed on Aude 2 
(column (b) of Table 8) with large numbers of false discoveries, or 
comparatively when Aude 2 was used as training to perform detection on 
Aude 1 (column (c) of Table 8). The most likely explanation was that 
Aude 1 change image, and to a lesser extent Aude 2′s, intrinsically dis
played more variety in patterns of spectral changes than Alpes-Mar data 
samples, which in turn stemmed from Aude’s landscape featuring much 
more various types of soils in different growing conditions (see Fig. 6 or 
Fig. 13). In addition, Aude 1 change image was derived from more 
distant acquisitions than Aude 2, and even more than Alpes-Mar (20, 13 
and 10 days respectively). Global spectral variations were thus more 
pronounced on Aude 1 than on the two other sites. This led to the 
classifier trained on Alpes-Mar or Aude 2 being scarcely able to recognize 
Aude 1 UDPI plots as carrying so much inner variability and wrongly 
tagging too many of them as damaged. Because these variabilities were 
partly present on homogeneous land covers, the demeaning pre- 
processing was unable to efficiently smooth this effect. Finally, classi
fication accuracies on Alpes-Mar using the [(RDNDVI)std; (RDNDWI)max]

combination and Aude 2 as learning sample (column (d) of Table 8) 
turned out to be very close to those obtained using Aude 1 (99% UDPI, 
70% DPI, 2% false discoveries versus 97%, 71% and 6% here), high
lighting some robustness in the methodology between Aude 1 and Aude 2 
demeaned samples. 

As seen in the result Sections 3.1 and 3.3, detection of Alpes-Mar and 
Aude 2 damaged areas was satisfactory using Aude 1 as training data 
(70% and 74% respectively with < 4% false positives). This has great 
implications for land cover change detection replicability based on 
statistical methods in general. It could be concluded that when using a 
Gaussian process type classifier, suitable detection of damaged areas 
should better be carried out using UDPI learning classes featuring 
slightly more inherent variabilities than the test ones, which in turn 
should also partly rely on using more distant change images for training. 
That may however lead to plots with small damages bearing weak 
spectral signatures being mistaken as unaffected. Therefore, eventually 
for this method to be fully and more satisfactorily replicable, a handful 
of different training samples could be set up depending on the type of 
region to be analysed (multi agricultural areas, mountainous wood
lands) and on the time distance between the pre and post event 
acquisitions. 

4. Discussion 

4.1. Detection accuracy 

Various remote sensing studies have implemented change detection 
techniques through thresholding, change vector and principal compo
nent analysis or supervised classification to identify areas affected by 
flood and erosion or assess landslide occurrence after heavy rainfall 
events. For instance, Dhakal et al. (2002) reached 88% overall accuracy 
using Landsat TM data on a small-size watershed in Nepal. However, 
they only had 94 ground truths reference data (among which 50 from 
affected areas) to assess the accuracy of their method. In this study, more 
than 2800 land cadastre plots over the three study areas served for 
training/accuracy assessment, emphasizing the robustness of the results. 

In other works, Byun et al. (2015) obtained from bi-temporal 
KOMPSAT-2 VHR images an overall accuracy of 75% and a false dis
covery rate (also referenced as commission error) of 33.5% to detect 
flooded areas in the city of N′djamena in Chad. Using a Random Forest 
classifier with both S2 and S1 pre and post event data, Kocaman et al. 

Fig. 12. Boxplot of (RDk)θ distributions from demeaned change images 
depending on the time interval between the S2 pre event and the closest post 
event images. (a) k = NDVI, θ = standard deviation; (b) k = NDWI, θ =
maximum; (c) k = SAVI, θ = mean. 
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Table 7 
Overall accuracy, producer accuracy by class and false alarm rates from demeaned change images depending on the time interval between the S2 pre event and closest post event images, using visible-NIR indicators only or 
with (RDVV)max. Lecture note: underlined bold values indicate that better scores were achieved including the (RDVV)maxSAR indicator among the classification variables for a given event (if so, both visible-NIR and visible-NIR + SAR 
scores are tagged).  

(a) 1. NDVI - Std 2. NDWI – Max  

550 training plots from Aude 1 - Oct. 15, 2018: 240 UDPI(1,a) and 310 DGT(1) 

Aude 1 - 
Oct. 15, 2018 
602 validation plots: 
240 UDPI(1,b) and 362 DPI(1) 

Aude 2 - 
May 11, 2020 
681 validation plots: 
497 UDPI(2) and 184 DPI(2) 

Alpes-Mar - 
Oct. 3, 2020 
1006 validation plots: 
571 UDPI(3) and 435 DPI(3)  

Vis-NIR only Vis-NIR + SAR Vis-NIR only Vis-NIR + SAR Vis-NIR only Vis-NIR + SAR 

Interval of time in optical change image for validation (days) 20 30 70 20 30 70 13 40 63 13 40 63 10 25 47 10 25 47 

Overall accuracy 85% 82% 85% 85% 85% 85% 90% 74% 68% 87% 77% 72% 86% 86% 82% 83% 83% 82% 

UDPI 88% 85% 88% 86% 85% 89% 96% 80% 71% 93% 83% 76% 99% 95% 87% 98% 95% 92% 
DPI 84% 80% 82% 84% 84% 83% 74% 57% 60% 72% 63% 61% 70% 73% 76% 64% 66% 68% 
False discovery rate 9% 11% 9% 10% 11% 8% 13% 49% 57% 22% 43% 51% 2% 8% 18% 4% 9% 13% 
False positive rate 12% 15% 12% 14% 15% 11% 4% 20% 29% 7% 17% 24% 1% 5% 13% 2% 5% 8%  

(b) 1. NDVI - Std 2. SAVI - Mean  

550 training plots from Aude 1 - Oct. 15, 2018: 240 UDPI(1,a) and 310 DGT(1) 

Aude 1 - 
Oct. 15, 2018 
602 validation plots: 
240 UDPI(1,b) and 362 DPI(1) 

Aude 2 - 
May 11, 2020 
681 validation plots: 
497 UDPI(2) and 184 DPI(2) 

Alpes-Mar - 
Oct. 3, 2020 
1006 validation plots: 
571 UDPI(3) and 435 DPI(3)  

Vis-NIR only Vis-NIR + SAR Vis-NIR only Vis-NIR + SAR Vis-NIR only Vis-NIR + SAR 

Interval of time in optical change image for validation (days) 20 30 70 20 30 70 13 40 63 13 40 63 10 25 47 10 25 47 

Overall accuracy 82% 82% 86% 86% 83% 85% 86% 79% 76% 89% 77% 73% 79% 81% 79% 81% 81% 81% 

UDPI 83% 82% 88% 84% 81% 88% 98% 83% 80% 96% 78% 73% 100% 96% 94% 98% 95% 92% 
DPI 82% 81% 84% 87% 85% 84% 53% 70% 65% 70% 73% 71% 52% 62% 59% 58% 62% 66% 
False discovery rate 12% 13% 9% 11% 13% 9% 9% 40% 45% 14% 45% 50% 0% 8% 11% 4% 10% 13% 
False positive rate 17% 18% 12% 16% 19% 13% 2% 17% 20% 4% 22% 27% 0% 4% 6% 2% 5% 8%  
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(2020) reached around 90% overall correct classification to discriminate 
flooded areas on one case study in Turkey. Landslide susceptibility was 
also achieved but without the use of satellite products. Pulvirenti et al. 
(2020) showed that clustering and thresholding techniques using S2 
multitemporal data allowed obtaining 91% overall accuracy and 12% 
false discovery rate in identifying flood pixels during the Northern 
Queensland (Australia) February 2019 event. Furthermore, semi
automated landslide detection combining object-based image analysis 
and support vector machine classifier on a single GeoEye-1 multispectral 
image yielded 95% producer accuracy and a false discovery rate below 
26% in Madeira Island (Heleno et al., 2016). In this study, various kinds 
of extreme rainfall-related disturbances from overflowing to mudslides, 
landslides and vegetation uprooting, were successfully discriminated 
using S2 optical and S1 radar data, as well as plot delineation and land 
cover information. More than 85% overall accuracy and no more than 
13% false discovery rate was achieved on three distinct events using 
only one training sample from one of them. Taking into account the need 
for adequate unaffected training classes discussed in Section 3.5, such 
precision is particularly satisfying and encouraging to perform future 
detection in other areas without requiring additional training data. 

4.2. Plot selection bias and territorial subdivision 

Complementing ground truths obtained from various sources, photo- 
interpretation of VHR images was crucial to validating the method 
presented in this paper. Although most deteriorations were pretty well 
recognizable, especially on the Alpes-Mar site thanks to the post event 
airborne orthophotos from IGN at 0.15 m resolution, some were subject 
to our own interpretations. Should photo-interpretation have been 
performed by another operator, DPI samples would have certainly 
turned out to be slightly different, particularly in the Aude department. 
Indeed, sizable heterogeneities and color patterns were sometimes pre
sent (e.g. Fig. 13), leading to potential misjudgements and thus biases 
towards indicating unaffected plots as damaged (much less the other 
way around). Such misinterpretation in turn could explain how both 
better UDPI and DPI accuracies were reached with more distant images 
on Aude 1 (see Table 7b, 70 days versus 20 days, optical only). Indeed, 
rightful classification of plots falsely categorized in DPI classes may have 
been greater due to higher likeliness of detecting unusual patterns on 
longer periods. 

The assumption about land use homogeneity inside land cadastre 
plots was critical in this approach. Indeed, each land cover changes in 
distinctive ways depending on the time of the year and can react very 
differently to heavy precipitation. As a consequence, a plot containing 
two contrasting land covers could present high disparity in change pixels 
even though no significant change occurred due to the extreme weather 
event between the two acquisition dates. Step 2.a described in Section 
2.5 thus appeared appealing within the demeaning pre-processing to 
correct this effect on plots with several overlaying land covers. On the 
other hand, when the images were close enough in time (which was 
particularly the case for Alpes-Mar), unaffected plots usually bore 
neutral responses over their whole extent (RDk ∼ 0), even with 
different types of land cover. Step 2.b was therefore chosen for the land 
use demeaning procedure so that no artificial disparities were intro
duced inside these unchanged plots. As a consequence, some plots made 
of several land use categories or lineaments were sometimes tagged in 
the resulting probability maps (Fig. 13). 

Because the land cadastre featured great variability in plot dimen
sion and change detection relied on fixed pixel size (10 m), large plots 
were sometimes overlooked (Fig. 14). Indeed, with intra-plot pixel sta
tistics as classification variables, plot size played a major role in detec
tion capacity, with mean and standard deviation of change pixels being 
greatly dependent on damage extent in proportion to plot area. The 
larger the plots, the more small damages could be characterized by 
values of (RDk)std or (RDk)mean falling in the same range as other Ta
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“average” plots. Only the use of the (RDk)max indicator allowed avoiding 
such biases, despite also wrongly inducing damage classification based 
on single isolated change pixels. In related terms, roads covered in mud 
or small overflowing deposits were sometimes unidentified, for they 
could lie in-between land cadastre plots (see for example Fig. 13). 

4.3. Spatial resolution of satellite products and VHR post-processing 

As in all studies involving detection from remote sensing imagery, 
results were highly dependent on the spatial resolutions at stake. First, if 
land surface patterns were very well discernible on IGN orthophotos with 

15 cm resolution, Pléiades images were sometimes harder to interpret, 
even with a 50 cm resolution, especially when images were acquired 
with large viewing angles and when small scale damages were involved. 
Sentinel images, providing pixel information at 10 m ground range, 
obviously bore great limitations in terms of detection capacity, for 
instance to identify gullies that are a few meters wide at the most. The 
methodology developed in this study rather relied upon the statistical 
likeliness that most damaged plots featured singular variations in coarse 
neighboring pixels. This was obvious for plots with large scale damages 
that were able to stand out at the scale of Sentinel pixels but it was more 
questionable for smaller ones. Obviously, if optical and SAR imagery 

Fig. 13. Example of plots incorrectly flagged as 
damaged by the classifier because of distinctive 
reactions between mixed land use types. Top left: 
Pléiades true colors Nov. 3, 2018, post event. Top 
right: OSO land cover on land cadastre. Bottom 
left: S2 demeaned RDNDVI Oct. 5–25. Bottom 
right: Resulting mapped damages by Gaussian 
Process classifier. Top left image illustrates the 
difficulty in photo-interpreting potential dam
ages. Bottom left figure shows great disparity in 
Aude 1 RDNDVI pixels, even after plot-wise 
demeaning.   

Fig. 14. Example of mudslides undetected on the centre left plot due to cadastre subdivision. Top left: IGN orthophotos Oct. 5, 2020, post event. Top right: OSO land 
cover on land cadastre. Bottom left: S2 demeaned RDNDVI Sept. 28 - Oct. 8. Bottom right: Resulting mapped damages by Gaussian Process classifier. 
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with higher spatial resolution were available at a comparable or higher 
revisit frequency (a few days), new evaluations should be carried out. 
Nevertheless, the finer the resolution the greater the number of pixels 
and thus the variability of spectral information contained in a single 
plot. In order to obtain better results, damage signatures would have to 
be more prominent than other natural and possibly confounding arti
facts on the fine-scale change pixels. With multitemporal VHR images, 
increased attention would have to be paid to co-registration, and an 
effective modeling of spatial context in neighboring pixels would be 
required to accurately capture change information (see Saha et al., 2019, 
for instance). 

For now, most VHR products are not continuously acquired and are 
thus only available after natural disasters. Therefore, they often can’t be 
used for change detection (or only with very distant images). Still, Yésou 
et al. (2015a, 2015b) and Huber et al. (2013) proved that accurate 
detection capacity could be reached using only post disaster Pléiades 
products. Hence, they could rather be of service in a post-processing step 
within plots already identified using the coarser Sentinel-based change 
detection method developed here. Patch-based semantic segmentation 
could be performed to refine damage identification (e.g. Basnyat et al., 
2021, on floods or Brand and Manandhar, 2021, on wildfires) and 
overcome cadastre subdivision issues (Fig. 13). Unsupervised deep 
learning techniques with convolutional neural networks (CNN) could 
also be tested as they proved relevant for large-scale mapping of floods 
(Jiang et al., 2021). 

This work aimed at deriving suitable indicators that can reliably 
provide statistical likeliness of damage evidence without a priori as
sumptions on the shapes of damages. Further detection capacity, for 
example aiming at discriminating the different types of deteriorations 
such as gullies or landslides, could be developed through the use of more 
advanced algorithms allowing for pattern recognition, considering that 
intense overland flow mostly occurs along continuous lines and 
perpendicularly to topographical contour levels. 

5. Conclusions 

Various types of land surface deteriorations arise in the aftermath of 
extreme hydro-meteorological events. While the vast majority of 
research and operational activities to date have focused on the most 
familiar type of flood-related degradations, i.e. overflowing in the vi
cinity of active rivers, an original approach aiming at identifying large- 
scale evidence of intense overland flow of rainwater was developed in 
this work. Because actual intense rainwater runoff is hardly ever 
observable, focus was made on detecting its resulting footprints at the 
ground. Plot delineation and land use information were combined to 
high temporal resolution optical (Sentinel-2) and SAR (Sentinel-1) open- 
source data to design and test an automatic and repeatable plot-based 
change detection method on three major storms in the Aude and 
Alpes-Maritimes departments in the South of France. Based on ground 
truths confirmed by photo-interpretation of VHR optical imagery and a 
unique training sample from one study site, a supervised classification 
algorithm involving statistical patterns in the temporal variations of 
spectral indices allowed successful discrimination of damaged plots. A 
demeaning pre-processing of the images by land use type led to more 
unequivocal results on the method’s potential to single out various kinds 
of deteriorations in contrasted environments from satellite imagery with 
10 m spatial resolution. The [(RDNDVI)std; (RDNDWI)max] combination 
yielded highest overall accuracies and false positive rates on all three 
events (at least 85% and 12% respectively). The benefits of introducing 
SWIR in addition to visible and near-infrared indices were limited to a 
few percentage points. SAR-derived proxies of soil moisture and 
roughness were found consistent with the presence of weakly vegetated 
damaged areas, with VV being the most sensitive polarization. None
theless, additional classification accuracy was not significantly reached 
with S1 data as compared to the exclusive use of S2. Although good 
results were reached on all three events with a unique training sample, 

performance of the method was found conditional to the use of change 
images displaying more inherent time variabilities in the unaffected 
learning plots than in the test ones. Such conditions should be partly met 
by using more distant images to derive the training dataset than for the 
assessed event. 

For post disaster operational needs, reasonable reliability in ordering 
relief interventions or in helping the certification of disaster claims 
could be achieved with false discovery rates below 13%. In terms of 
prevention, such detection accuracy will allow evaluating and 
improving diagnostic methods for mapping intense runoff spatial haz
ard. Relying on similar principles as data assimilation in meteorology, 
detection of actual historical damages in a given region would allow 
creating proxy databases. Extreme overland flow susceptibility in
dicators, currently inferred from terrestrial data (topography, land use, 
soil type), could thus be further fine-tuned using non redundant infor
mation from remote sensing. Besides, future research will aim at 
providing refined identification capacity and at differentiating the 
different types of deteriorations at an intra-plot scale, for instance by 
using U-net CNN with VHR post event data. This work could also turn 
out to be very helpful in other parts of the world such as tropical regions, 
and especially mountainous islands, which are even more exposed to 
intense overland flow risks induced by repeated extreme weather events. 
For this, the high temporal resolution of Sentinel-2 could provide suf
ficient coverage to circumvent the enduring cloudy conditions. Should 
close optical images still be hard to come by at these latitudes, VHR SAR 
products such as TerraSAR-X might be able to help restoring slightly 
better detection capabilities. 
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2 octobre 2020 dans les montagnes des Alpes-Maritimes. Physio-Géo 16, 1–70. 
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