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INTRODUCTION

Simulation of surface runo by conceptual rainfall-runo (R-R) models involves error due to uncertainties related to input data, hydrological uncertainties associated with the model structure, and parameter calibration. In a ood forecasting system the inherent impreciseness of R-R models become more problematic since the system performance relies highly on performances of the incorporated R-R model.

One way to deal with this problem is to try to improve R-R prediction accuracy by correcting their simulations. This is equivalent to precisely predicting R-R simulation errors, i.e. the discrepancy between observed stream ow values and values computed by R-R models. The error prediction approach, also called error assimilation, o ers several key advantages including that it is simple, fully automated, and applicable to any R-R model independent of its conceptual description and degree of complexity. In this approach, a supplementary stochastic model is rst calibrated on the historical error data and is then used to predict future error. The predicted error is subsequently added as a correction term to the initial outputs of the R-R model. There are di erent types of stochastic error forecasting methods.

Reviews agree on the following classes as the most popular ones.

An essential classical category of these methods is based on the fact that there is a persistence in The main objective of this work is to develop and test LSTM-based error forecasting models for output assimilation of the conceptual model GRD (Jay-Allemand et al., ) across a range of lead times (up to [H]). Runo errors associated with input data are not treated in this study since it is considered that at the short lead times of this study hydrological uncertainties (i.e. uncertainties related to R-R models)

are dominant (Demargne et al., ). The number of study catchments is very limited in this work. Only three catchments with an identical hydrological regime (Mediterranean) are investigated. It is however tried to answer the following questions:

. How do error forecasting performances evolve with increasing lead time?

. How single step forecasting is evaluated against multiple step forecasting?

. Does training the model only based on errors of high ows improve error forecasting?

. Does error forecasting using more explanatory variables bring performance improvement?
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Case study . Catchments and data

The case study is based on two gauged catchments of the Loup River and one gauged catchment of the Brague River located in the West of the Alpes-Maritimes department in the South of France. These catchments belong to the Mediterranean regime and are shown in Figure . Their key information is listed in .

Conceptual rainfall-runo model

Organde ( ) used the GRD conceptual distributed R-R model (Jay-Allemand et al 

METHODS

At time step t, the simulation error (e t ) and the corrected simulated discharge (Q t asim ) are de ned as follows:

e t = Q t obs -Q t grd ( ) Q t asim = e t + Q t grd ( )
The idea here is to use an 

. Model training

The goal is to forecast time-varying simulation error ([m 3 /s]) as target, y = (y 1 , y 2 , ..., y t , ..., y T ) ∈ R T , H time steps into future given one or several (M ) explanatory variables as features, X = (X 1 , X 2 , ..., X M ).

In mathematical terms, the task consists of learning one optimal set of parameters, θ, of the model Φ, so that the targets (forecasted simulation errors [m 3 /s]), ŷ, accurately approaches the real targets (y) and thus the loss function l(ŷ, y) is globally minimized:

ŷ = Φ θ (X t-L+1 , ..., X t-1 , X t , θ) ( )
Where L [hour] is the LSTM's window size for looking to the past and is hereafter called lookback. All LSTM-based models of this study are trained using the mean square error (mse) as loss function.

Model training is performed two times. Once taking into account the whole ow range and once on only high ows (i.e. ows lying in the rd and th quartiles). The two trainings are di erentiated hereafter by the terms "thresholding is False" (in the former case) and "thresholding is True" (in the latter case).

Typically, three sets of data, namely, training, validation, and test sets, are needed to perform a DL task.

The training data is used to t the model, i.e. nding model optimal weights and biases. The validation set is used to provide an unbiased evaluation of the model performance during the learning process and to prevent over-tting. The test set is used to provide an unbiased evaluation of the nal model t based on unseen data. Deciding the ratios between training, validation, and test sets is very dependent on the problem and data available. In this study, the common ratios %, %, and % are used to get the train (period P ), validation (period P ), and test (period P ) sets, respectively.

.

Choice of hyperparameters

In a DL task hyperparameters control the learning process and need therefore to be tuned. Hyperparameters are many. To avoid taking some a priori values of the hyperparameters and at the same time to keep the tuning task within manageable proportions, the hyperparameter optimization is conducted only for the following three hyperparameters, batch size, lookback, and lead time. The search parameter space is given therefore based on the following values for the chosen hyperparameters:

• lead times (H): , , ,

• lookbacks (L): , , ,
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• batch sizes:

, ,

Every possible combination of these values are tested. The combination that achieves the highest performance on test data (period P ) is considered as the optimal hyperparameter set.

Taking into account the geometry hyperparameters, the number of LSTM layers and nodes are set to and , respectively. The number of epochs and patience depend on the model variant and will be speci ed later when describing the two tested LSTM variants. Taking into account the regime of the catchments, study lead times for each catchment are selected based on autocorrelation coe cients between e t and e t+H (Table ). Lead times associated with too small (< . ) autocorrelation coe cients are not studied. .

Horizon

Model variants . . With respect to the con guration of features

Three model variants with respect to inputs are considered. The rst variant ("UV") is univariate and uses only discharge error (e t ) as input. In the second variant ("MV "), which is a multivariate model, discharge observations (Q t obs ) are added as additional input, aiming to improve error forecasting accuracy. The third variant ("MV ") includes all input variables from the second variant (e t and Q t obs ) plus rainfall observations (P t obs ) in order to investigate whether introducing this information brings further prediction accuracy improvement.

The data is standardized using the mean and standard deviation of only the training period (P ). This is because the model should have no access to the values in the validation and test sets to prevent data leakage.

. . With respect to the LSTM's topology

Two variants with respect to the topology of the LSTM are tested. First, the standard many-to-one topology (Figure ) and then going forward with the more complex many-to-many (or sequence-tosequence) structure, also called Encoder-Decoder LSTM (ED-LSTM).

The standard LSTM takes a sequence of past information (X t-L+1 , ..., x t-1 , x t ) and predicts the target lead time (H, for example, H= [hour]) into future (y t+H ). The forecast (lead time) window has a width of and is located at time step t + H. It is therefore a single step ("SS") prediction since the prediction is made for only one time step. The length of the sequence of the past data is the lookback size (L). The sequence-to-sequence LSTM makes prediction for all consecutive time steps of a future sequence all at once (from y t+1 to y t+H ). It is therefore a multi step ("MS") prediction. The forecast (lead time) window has a width of H. We call hereafter the width of this window the forecast "horizon" de ning the span of LSTM output assimilation of the conceptual model GRD Octobre p.
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Model benchmarking

Performances of the LSTM-based models are compared against a "Naive" model that assumes that the H-step ahead error (e t+H ) equals the last observed error (e t ). Although being very simple, since errors of conceptual R-R models are generally strongly autocorrelated this benchmark model gives usually good results (Anctil et al., ).

.

Performance evaluation

The evaluation of the performance of the models is based on the root mean square error (RMSE) metric on the test data set (period P ).

RMSE = T i=1 (Q i sim -Q i obs ) 2 T ( )
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Where index sim in Q i sim refers to one of the three types of simulated discharges: ) initial discharges of GRD (in short "Initial"), or ) discharges of GRD corrected using an LSTM-based model, or ) discharges of GRD corrected using the Naive model.
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RESULTS AND DISCUSSION

The RMSE metric obtained from the optimal hyperparameter set of the LSTM-based, Naive, and Initial models is reported for each horizon in Table (for when thresholding is False) and Table (for when thresholding is True). The two tables present the results corresponding to exactly the same time steps.

The RMSE results of all other hyperparameter sets for the LSTM-based, Naive, and Initial models are provided in Appendices A, B, and C, respectively. Note that . performances of the Naive and Initial models change with changing lookbacks since di erent lookbacks lead to di erent sets of time steps. In a similar way and due to the presence of NANs, time steps for the LSTM-based models vary depending on whether the model is an SS or an MS variant. For the sake of comparison, the considered time steps for the Naive and Initial models change correspondingly.

. performances of the Naive and Initial models do not depend on the con guration of features.

. all presented results correspond to the time steps in common between the two training approaches (when thresholding is True and when thresholding is False). LSTM output assimilation of the conceptual model GRD Octobre p.

Catchment Horizon

Based on the presented results the following observations can be made.

. No matter the catchment and the horizon and whether thresholding is applied or not, both LSTMbased models and Naive models do always manage to improve initial simulations of the GRD model. These improvements are more pronounced for the Loup at Tourrettes catchment and less signi cant for the Brague at Biot catchment.

. . Comparing performances of di erent LSTM-based models, it is observed that they depend explicitly in the rst place on horizon. Therefore, for each catchment, an LSTM model involving whatever con guration of inputs or whatever LSTM topology has always a better forecast performance at horizon H 1 than another LSTM model with a more/less complex con guration of inputs/LSTM topology at horizon H 2 that is greater than H 1 . This behavior can be explained again by the fact that these are Mediterranean catchments featured by very short term responses.

. Keeping the topology variant (SS or MS) constant and considering di erent input variants (UV, MV , and MV ), all catchments do not show the same behavior. For the Brague at Biot catchment, with increasing horizon the most complex variant (MV ) outperforms for both SS and MS topologies. For the Loup at Tourrettes catchment and the SS models, the MV variant is better able to forecast with increasing horizon. This is while in MS models the simpler input variant UV (and MV ) gives better forecasts. The observed pattern is completely inverse in the Loup at Villeneuve catchment: the univariate variant UV in the SS models and the multivariate MV in the MS models outperform with increasing horizon. One possible explanation for such di erence is the size of train data available for each catchment. Looking at . Between SS and MS variants, the latter have a harder task to deal with. It is not however always the case that the SS models outperform the corresponding MS models. Outperformance of the SS models turns out also to depend on the training approach (whether thresholding on high ows or not). For instance, in the Brague at Biot catchment, when thresholding is False and the input con guration is univariate, the MS model outperforms at all horizons. But when thresholding is true, it is the SS model that outperforms at all horizons. Taken together, the SS models outperform the corresponding MS models at either most (all) of the horizons or at half of the studied horizons. Nevertheless, the di erence in RMSE between two corresponding SS and MS models is not so important in any case that the MS model and the advantage it o ers should be excluded. . The optimal lead time depends on the regime of catchment. In this study since all catchments belonged to the Mediterranean regime errors were highly autocorrelated and therefore with increasing lead time, forecast performances degraded monotonically. Therefore, the optimal lead time occurred always at the minimum lead time. In other regimes with a di erent response time and behavior, it is expected that the optimal lead time does not necessarily happen at the smallest lead time.

. The size of available data and the complexity of features both tend to have complementary roles.

That is, when there is ample data for model training less features give better forecasts. But when data is scarce, including more feature could make up for this issue.

. Thresholding on high ows does not show an obvious improvement of the RMSE metric for the time steps in common between the two cases (when thresholding is performed and not).

. The multi step approach shows forecast performances (very) similar to single step forecast performances. The advantage of getting a sequential forecast for multiple lead times all at once should not be therefore excluded.

The current conclusions are drawn based on the results only from three catchments that is too few. It 

  R-R model output errors and they are mainly autocorrelated. Examples of this class include Auto-Regressive (AR), Auto-Regressive Moving Average (ARMA), and Auto-Regressive Integrated Moving Average (ARIMA) models (Schreider et al., , Shamseldin et O'CONNOR, , Toth et al., , Goswami et O'Connor, , Sun et al., ). Similarity based models are another type of error forecasting models. In these models, instances with similar outputs are considered to have similar errors. Time steps similar to a given time step are detected through the K Nearest Neighbor (KNN) algorithm and using a set of reference error-calibration data (Akbari et Afshar, ). Other classes include Dual Pass (Pagano et al., , Liu et al., ), Bayesian Joint Probability (BJP) (Pokhrel et al., ), and hybrid methods combining, for instance, Kalman Filters (KFs) with ARMA (Bidwell et Gri ths, ) or Arti cial Neural Networks (ANNs) (Muluye, ), or an ensemble based maximum a posteriori (MAP) estimation approach with a lag-aware ensemble Kalman smoother (EnKS) (Li et al., ), or Least Squares-Support Vector Machines (LS-SVM) with a D copula function (Liu et al., ), and so forth. Following the purely ANN output assimilation models (Babovic et al., , Anctil et al., , Humphrey et al., , Ghaith et al., ), it is only very recently that the Deep Learning LSTM technique has begun to be used in error forecasting models. Alizadeh et al. ( ) developed a Self-Activated Internal Attention based LSTM model and used it for four catchments with various hydroclimatic conditions across the United States. The attention based LSTM is designed to account for the dynamics of time series by focusing on the most informative and ignoring the less relevant time steps of a sequence.
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 : Figure : Mean observed stream ow and rain for each month of the year (panels on the left) and for individual years (panels on the right). In right panels years with missing data are taken into account while in left panels only full-record years are considered.

  Comparing the LSTM-based models with the Naive model, there is always an LSTM-based model outperforming the Naive model. This is true for the three catchments and both training approaches. More precisely, for horizons as small as [hour], the Naive model gives performances very close to those given by the LSTM. This is natural taking into account that catchments are from the Mediterranean regime and the Naive model has an autocorrelation nature. With increasing horizon (H≥ [hour]), the LSTM-based models start to clearly out perform, almost always, independent of their input con guration and their LSTM topology.
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  Comparing the RMSE between two exactly corresponding cases of Tables (thresholding is False) and (thresholding is True), no obvious conclusion can be made except that in out of cases LSTM output assimilation of the conceptual model GRD Octobre p. thresholding does not improve the RMSE (on exactly the same time steps). LSTM output assimilation of the conceptual model GRD Octobre p. , Model: SS-UV, Horizon=3 [H] Initial GRD Corrected GRD-LSTM Corrected GRD-naive Simulated discharge [m 3 /s] Observed discharge [m 3 /s]
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 :: Figure : Scatter plot example of corrected discharges by the LSTM-based models versus the Naive model versus the Initial simulations by the GRD model. LSTM output assimilation of the conceptual model GRD Octobre p.
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  Figure : Results of the SS-UV model when thresholding is False.

  Figure : Results of the SS-UV model when thresholding is True.

  Figure : Results of the SS-MV model when thresholding is False.
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  Figure : Results of the SS-MV model when thresholding is True.

  Figure : Results of the MS-UV model when thresholding is False.

  Figure : Results of the MS-UV model when thresholding is True.

  Figure : Results of the MS-MV model when thresholding is False.

  Figure : Results of the MS-MV model when thresholding is True.

  Figure : Results of the MS-MV model when thresholding is False.

  Figure : Results of the MS-MV model when thresholding is True.
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 : Figure : Results of the Naive model for the time steps de ned by the SS models.
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 : Figure : Results of the Naive model for the time steps de ned by the MS models.
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Figure:

  Figure : Initial results of the GRD model for the time steps de ned by the SS models.
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Figure :

 : Figure : Initial results of the GRD model for the time steps de ned by the MS models.

  

  Table and their average monthly and interannual observed discharge and rainfall are shown in Figure . Observed time series of discharge for the Loup and the Brague rivers are available from
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Figure : Location of the case study catchments.

Catchment Area [km ] Missing-ow days [%] Missing-rain days [%] -ow days [%] Mean ow [ mm year ] Runo ratio [-]

Table :

 : Case study catchments and their properties.

the Banque Hydro date set (http://hydro.eaufrance.fr/) at variable time steps over a -year period from

  LSTM-based model to predict GRD's output error H time steps [hour] into future. LSTM networks are a type of Recurrent Neural Networks (RNNs) and are able to learn time dependency in time series prediction problems. This an appealing feature that traditional neural networks like ANNs do not have and domains such as hydrological forecasting can bene t from it. Please refer to Hashemi

	et al. (	) for an overview of the LSTM's principles.
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Table : The

 : Pearson correlation coe cients between e t and e t+H for di erent lead times and for di erent catchments.