Resistance to aphids in melon: R-cluster and QTLs
Nathalie Boissot

To cite this version:
Nathalie Boissot. Resistance to aphids in melon: R-cluster and QTLs. Plant-Insect-Symbiont interaction meeting, 2nd annual meeting of Japan-France PISI-net, Nov 2019, Le Rheu, France. hal-03973344

HAL Id: hal-03973344
https://hal.inrae.fr/hal-03973344
Submitted on 4 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Resistance to aphids in melon: R-cluster and QTLs

“Plant-Insect-Symbiont interaction meeting”
2nd annual meeting of Japan-France PISI-net
Le Rheu
4-6th November 2019

GAFL – CBGP – Pathologie Végétale
EPGV/CNRGV/Gentyane/Genotul
BAPOA
Vat Resistance
First described in 1979 (Pitrat & Lecoq)

A remarkable phenotype: Vat confers resistance
to *Aphis gossypii*
To viruses only, and only when, they are inoculated by *Aphis gossypii*

In 1987 a first Charentais line was proposed to growers

In 2000 hybrids with the Vat resistance produced by private companies are highly successful
80% of the melon produced in South-East of France

In 2008 fine mapping and chromosome walking studies (Dogimont et al 2008, 2014)

Vat belongs to CC-NBS-LRR resistance gene family
Each pathogen express an array of effectors inhibiting PTI

R protein is activated by the product of a specific pathogen isolate effector gene.

R genes are present in multigene clusters, True alleles exist across genetic backgrounds.
Vat resistance belongs to NB-LRR R gene family

Each pathogen express an array of effectors inhibiting PTI

R protein is activated by the product of a specific pathogen isolate effector gene.

R genes are present in multigene clusters, True alleles exist across genetic backgrounds.

The first Vat genes characterized belong to NB-LRR R gene family.
Vat resistance belongs to NB-LRR R gene family

The first Vat genes characterized

CC - NB - LRR1 LRR2 LRR3 - Nterm

PHENOTYPES that have been validated with transgenic plants

Resistance to podwery mildew race 3-5
Resistance to aphid clone NM1 and to viruses when transmitted by NM1
The first Vat genes characterized

Vat resistance belongs to NB-LRR R gene family

CC - NB - LRR1 LRR2 LRR3 - Nterm

PHENOTYPES that have been validated with transgenic plants

Resistance to podwery mildew race 3-5
Resistance to aphid clone NM1 and to viruses when transmitted by NM1

Long range PCR to characterize Vat homologs in the melon diversity
Vat resistance belongs to NB-LRR R gene family

35 Vat homologs from 20 melon lines

CC - NB - LRR1 LRR2 LRR3 - Nterm

PHENOTYPES that have been validated with transgenic plants

Resistance to podwery mildew race 3-5
Resistance to aphid clone NM1 and to viruses when transmitted by NM1

1300 to 2900 pb

and SNPs ...
Vat resistance belongs to NB-LRR R gene family

35 Vat homologs from 20 melon lines

PHENOTYPES that have been validated with transgenic plants

Resistance to podwery mildew race 3-5
Resistance to aphid clone NM1 and to viruses when transmitted by NM1

Probability to have non synonymous SNP when the codon is different,
Vat resistance belongs to NB-LRR R gene family

35 Vat homologs from 20 melon lines

CC - NB - LRR1 LRR2 LRR3 - Nterm

PHENOTYPES that have been validated with transgenic plants

Resistance to podwery mildew race 3-5
Resistance to aphid clone NM1 and to viruses when transmitted by NM1

Probability to have non synonymous SNP when the codon is different,

=> Non synonymous SNPs are more often observed at the end of the NB pattern ans in the LLR1 and LRR2 patterns
Vat homologs are expected in the same genomic area

Our sequencing objectives: get a robust assembly of the Vat cluster ADN with very long fragments

- enough reads that overlap each homolog \(\Rightarrow\) sup 3 kb
- reads that overlap at least two or three homologs \(\Rightarrow\) sup 50 kb

\(\Rightarrow\) Nanopore + Illumina or PacBio sequencing + Optical map
Vat resistance genes belong to a cluster

- Genetic markers

Vat1, Vat2, Vat3 genes that have an ORF up to exon 4

PseudoVat sequences have early STOP codons or large insertion or large deletion

Genetic markers Vat resistance genes belong to a cluster
• Vat1, Vat2, Vat3 genes that have an ORF up to exon 4
• PseudoVat sequences have early STOP codons or large insertion or large deletion
• Genetic markers
La résistance Vat : famille des NB-LRR

- Vat1, Vat2, Vat3 genes that have an ORF up to exon 4
- PseudoVat sequences have early STOP codons or large insertion or large deletion
- Genetic markers
In summary, what we know from 4 *C. melo* lines...

- Vat Homologs are clustering in 200-300 kb
- Some sequences (genes STK, CGN, 50 S ?) surrounding this cluster are highly conserved
- 2 – 5 Vat ORFs per cluster
- 1 – 2 Pseudo Vat sequences per cluster

Unbalance crossing-over are probably involved in building this cluster aside insertion of transposons
Vat resistance belongs to NB-LRR R gene family

Each pathogen isolate express an array of effectors.

VAT protein is activated by the product of a specific *Aphis gossypii* effector gene.

R genes are present in multigene clusters, True alleles exist across genetic backgrounds.

A specific *Aphis gossypii* effector gene

- **Syntax**
 - Avirulent allele product in aphid triggers resistance in Vat plants
 - (a) Virulent does not trigger resistance in Vat plants

- **The hypothesis**
 - (a) Virulent allele is recessive
 - This recessive allele is express or not
 - The peptide is excreted in saliva

Vat resistance belongs to NB-LRR R gene family
A specific *Aphis gossypii* effector gene

Tools
- Head Transcriptomes from one (a)Virulent clone and two Avirulent clones
- Illumina sequencing
- BUSCO = 94-96%

In silico analysis
- (a)Virulent allele is recessive
- This recessive allele is express or not = CDS present or not
 => 700 candidates
- The peptide is excreted in saliva
 => 50 candidates

Vat resistance belongs to NB-LRR R gene family
Vat resistance belongs to NB-LRR R gene family

A specific *Aphis gossypii* effector gene

• de novo sequencing by Sanger of the candidates in the three clones
 => None candidate fitted the hypothesis

• Transcriptome quality?
 => We are developing full genomes with Nanopore + Illumina + Optical map
To summarize where we are today

Vat resistance belongs to NB-LRR R gene family

Vat plants/ *A. gossypii* interaction set up using a complex genetic framework in melon

Which level(s) of polymorphism does play a key role in phenotype?

Vat plants/ *A. gossypii* interaction set up using an unknown genetic system in *A. gossypii*

Which effector does trigger the Vat resistance?

We are building high quality genomes -melon and aphids- to address both questions
First described in 1979 (Pitrat & Lecoq)

A remarkable phenotype: Vat confers resistance to *Aphis gossypii*
To viruses only and only when they are inoculated by *Aphis gossypii*

In 1987 a first Charentais line was proposed to growers

In 2000 hybrids with the Vat resistance produced by private companies are highly successful
80% of the melon produced in South-East of France

Since 2010 Vat resistance is jeopardized in South East of France
Erosion of Vat effect: which mechanism?

Plant resistance to colonization by aphids

Resistance to virus when they are inoculated by A. gossypii

Indicating that ETI occurs independantly of aphid genetic background
Vat resistance belongs to NB-LRR R gene family

A specific *Aphis gossypii* effector gene

- Syntax
 - Product of the Avirulent allele in aphid triggers ETI in Vat plants
 - Product of the (a)Virulent does not trigger ETI in Vat plants

- The hypothesis
 - (a)Virulent allele is recessive
 - This recessive allele is express or not
 - The peptide is excreted in saliva
Vat resistance belongs to NB-LRR R gene family

A specific *Aphis gossypii* effector gene

• Syntaxe
 • Product of the Avirulent allele in aphid triggers ETI in Vat plants => *resistance to virus*
 • Product of the (a)Virulent does not trigger ETI in Vat plants => *no resistance to virus*

• The hypothesis
 • (a)Virulent allele is recessive
 • This recessive allele is express or not
 • The peptide is excreted in saliva
Erosion of Vat effect: which mechanism?

Clone triggering resistance to viruses

Clone not triggering resistance to viruses

High colonisation

Low colonisation

Melon Vat
Erosion of Vat effect: which mechanism?

Some Avirulent clones are adapted to ETI.

Clones triggering resistance to viruses

Clone not triggering resistance to viruses

High colonisation

Low colonisation

Melon Vat
Erosion of Vat effect: which mechanism?

Some Avirulents clones are adapted to ETI

Clones triggering ETI

Clone not triggering ETI

High colonisation

Low colonisation

Quantitative adaptation
FREQUENT

Qualitative Adaptation
SELDOM?

Melon Vat
Southeastern France
Vat largely used by growers since 2000

> 3000 spring migrants aphids early collected in plots in melon fields since 2004
Erosion of Vat effect: which mechanism?

Southeastern France
Vat largely used by growers since 2000

> 3000 spring migrants aphids early collected in plots in melon fields since 2004

3 most frequent clones
Erosion of Vat effect: which mechanism?

Southeastern France
Vat largely used by growers since 2000

> 3000 spring migrants aphids early collected in plots in melon fields since 2004

3 most frequent clones

Clones triggering immunity

quantitative Adaptation

Vat colonization
What are the QTLs responsible of the quantitative adaptation? Which strategy?

Southeastern France
Vat largely used by growers since 2000

> 3000 spring migrants aphids early collected in plots in melon fields since 2004

Clones triggering immunity

Erosion of Vat effect: which mechanism?
Resistance to *Aphis gossypii* sensu stricto:

Observed in a melon line with a clone not triggering resistance to virus
non-Vat Resistance: un genetic background for Vat durability?

3 cosmopolitan clones
non-Vat Resistance: a genetic background for Vat durability?

837 melon lines infested by at least one of these 3 clones.
non-Vat Resistance: un genetic background for Vat durability?

Number of resistant melon lines

<table>
<thead>
<tr>
<th></th>
<th>Strong resistance</th>
<th>Strong, partial or heterogenous resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>R NM1</td>
<td>5 %</td>
<td>R NM1</td>
</tr>
<tr>
<td>R C9</td>
<td>8 %</td>
<td>R C9</td>
</tr>
<tr>
<td>R CUC1</td>
<td>6 %</td>
<td>R CUC1</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
One melon accession / one clone => partial resistance to aphids & no resistance to virus

What are the QTLs responsible of the quantitative resistance?
One melon accession/ one clone => partial resistance to aphids no resistance to virus

Production of 500 F2 (from a cross R XS) with private companies
DNA production for the 500 F2, Seeds production of 500 F3

Phenotypage of the F3 => bulk of DNA for the most resistant and the most susceptible F2
according to the F3 phenotype

Illumina sequencing of each bulks
QTL seq analyses on the basis of a high quality genome for each R and S parents
La résistance non-Vat : un background pour la durabilité de Vat

Certaines accessions expriment une résistance partielle plus stable
Quelle(s) accession(s), Quel(s) clone(s) ?

- Choisir un clone qui ne déclenche pas la résistance aux virus....
- Génotypage d’une descendance F2/Phénotypage des F3, puis une stratégie QTLseq (CASDAR)

Genome Wide Analysis Study ? Analyse d’un grand nombre d’accessions (matrice SNP + phénotypage) (H2020 ?)

Quel trait mesuré ?

- Colonisation ?
- Trait spécifique de durabilité (SMACH)
Aphis gossypii clones express an array of effectors

- **Les hypothèses**
 - Peptides dans la salive, spécifiques des races d’hôtes d’*Aphis gossypii*,
 - Orthologues existant chez les autres espèces,

- **Recherche de candidats**
 - In silico => 52 candidats
 - Amplification de 10 cDNA chez 17 clones de différentes races d’hôte

- Un ‘mega-CDS’ ancêtre pour tous les clones Cucurbitacées
 - 3 gènes sous sélection positive

=> Impliqués dans la spécialisation sur Cucurbitacées?