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SUMMARY
Parkinson’s disease (PD) is the most common progressive neurological disorder compromising motor func-
tions. However, nonmotor symptoms, such as gastrointestinal (GI) dysfunction, precede those affecting
movement. Evidence of an early involvement of the GI tract and enteric nervous system highlights the
need for better understanding of the role of gut microbiota in GI complications in PD. Here, we investigate
the gut microbiome of patients with PD using metagenomics and serum metabolomics. We integrate these
data using metabolic modeling and construct an integrative correlation network giving insight into key
microbial species linked with disease severity, GI dysfunction, and age of patients with PD. Functional
analysis reveals an increased microbial capability to degrade mucin and host glycans in PD. Personalized
community-level metabolic modeling reveals the microbial contribution to folate deficiency and hyperhomo-
cysteinemia observed in patients with PD. Themetabolic modeling approach could be applied to uncover gut
microbial metabolic contributions to PD pathophysiology.
INTRODUCTION

Parkinson’s disease (PD), a progressive neurological disorder

with a presumed multifactorial etiology (Chin and Vora, 2014;

Ma, 2018), is the most common neurodegenerative disease

compromising motor functions (Brown et al., 2005; Gammon,

2014). Nonmotor symptoms (NMSs) commonly cause morbidity

in later stages of PD (Aarsland et al., 2017). PD is a heteroge-

neous multi-systemic disorder (Aarsland et al., 2017; Lee and

Koh, 2015), and its pathophysiology is only partially understood

(Antony et al., 2013). A growing body of evidence links the

gastrointestinal (GI) tract to PD, opening possibilities for diag-

nosis and treatment (Braak et al., 2006; Fasano et al., 2015;

Pfeiffer, 2011; Savica et al., 2009). GI dysfunction is a common

NMS experienced by people with PD (Fasano et al., 2015;

Pfeiffer, 2011). Hence, it is necessary to elucidate the underlying

molecular mechanisms of the gut in the development and pro-

gression of PD for a better understanding of the bidirectional in-

teractions within the gut-brain axis. Analysis of the microbiota of
This is an open access article und
sigmoid mucosal biopsies and stool samples from patients with

PD revealed significant alterations in the composition of the gut

microbiota (Keshavarzian et al., 2015; Scheperjans et al., 2015),

with a significant decrease in the abundance of bacteria with

anti-inflammatory features and a significant increase in the abun-

dance of pro-inflammatory species (Keshavarzian et al., 2015). It

has been reported that the abundance of the genes involved in

lipopolysaccharide (LPS) biosynthesis and type III bacterial

secretion systems is increased in people with PD (Keshavarzian

et al., 2015). Furthermore, the abundance of Enterobacteriaceae

is positively correlated with motor impairment, suggesting that

dysbiosis in the microbiome of patients with PD is related to

the disease-motor phenotype (Scheperjans et al., 2015). In addi-

tion to GI and motor dysfunction, gut microbial metabolic

changes could trigger neuroinflammation in a model of PD

(Sampson et al., 2016). Microbial alterations and inflammatory

cascades underlying gut leakiness facilitate the translocation

of pathogens and toxic bacterial fragments capable of reaching

the central nervous system (CNS). Subsequently, a mouse
Cell Reports 34, 108807, March 2, 2021 ª 2021 The Authors. 1
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model of PD has shown that the inflammation of the mucosal

layer and the associated state of oxidative stress can initiate

alpha-synuclein-aggregate (a-syn) accumulation in the enteric

nervous system (ENS) (Kim et al., 2019).

PD has been studied from the perspective of the gut-brain axis

(Chiang and Lin, 2019; Gerhardt and Mohajeri, 2018). However,

the metabolic interactions between gut bacteria and their contri-

bution todiseaseprogression havenot been fully investigated. To

elucidate these interactions, individual- and systems-level anal-

ysis is required. Therefore, systems biology approaches could

be applied to reveal associations between the abundances of

different microbes and the molecular mechanisms underlying

PD on a functional level (Witherden et al., 2017; Mardinoglu

et al., 2018; Rosario et al., 2020). Genome-scale metabolic

models (GEMs) havebeenapplied to gain detailed understanding

of microbial metabolic changes in different environments (Gu

et al., 2019). GEMs have been previously employed to reveal

the metabolic interactions among bacteria as well as between

the bacteria and the host (Mardinoglu et al., 2015; Rosario

et al., 2018; Shoaie et al., 2013; Tramontano et al., 2018). There-

fore, efforts have been made to develop methods capable of

metabolic modeling of microbial community and apply this in

the gut microbiome (Baldini et al., 2019; Shoaie et al., 2015).

Bedarf et al. (2017) collected fecal samples from people with

PD and generated metagenomics data for analyzing the spe-

cies abundances. The cohort comprised 31 early-stage

L-DOPA-naive PD male individuals and 28 matched controls.

In the present study, the metagenomics data from this cohort

have been re-analyzed with improved metagenome species

profiles. We applied an integrative correlation network (ICN)

approach, which provides insight into the common and unique

microbial species associated with PD severity, GI dysfunction,

and age. We analyzed the carbohydrate-active enzymes

(CAZymes) of the significantly altered species and found that

the abundance of the genes associated with degradation of

mucin and host glycans was increased in patients with PD

and linked with disease severity, GI dysfunction, and age in

people with PD. We performed personalized community-level

modeling using the GEMs, and our analysis revealed a

decreased production of folate and an increased production

of homocysteine in patients with PD. We generated targeted

metabolomics data using the serum samples collected from

patients with PD of the same cohort. Metabolomics and meta-

genomics data were integrated using GEMs to study the effect

of the microbiome on the host metabolism. The integrative

metabolic modeling approach enabled the identification of the

roles played by gut microbiota in the host metabolism contrib-

uting to PD pathophysiology.

RESULTS

Profiling the gut microbial compositional changes in the
PD cohort
We quantified publicly available shotgun metagenomics data of

31 male patients with early-stage levodopa (L-DOPA)-naive PD

and 28 matched controls (Bedarf et al., 2017). In the metage-

nomics data analysis, we used the latest available human gut mi-

crobiome catalog (Wen et al., 2017) to determine the gene
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abundances (Method details). Using metagenome species pan-

genomes (MSPs), our analysis facilitated the identification of

perturbed gut microbial species with more in-depth functional

annotations of the key metagenome species. Because of data

processing requirements to keep deep-sequenced samples

(see Method details), we removed a few samples and re-

analyzed the metagenomics data of 26 PD and 25 controls, of

which 11 were healthy controls (COs) while 14 were diseased

controls (DCs) with cardiovascular risk factors. For simplicity,

we refer in the text to both the COs and DCs, unless otherwise

specified. Here, the microbiome compositional change between

PD and control was defined as PD dysbiosis. The significant

taxonomic changes at the phylum, family, and genus levels be-

tween patients with PD and controls can be found in Table S1

and Figure S1. We performed enterotype analysis by unsuper-

vised clustering and found three clusters enriched with Bacter-

oides, Firmicutes, and Prevotella enterotypes (Method details).

We observed that the microbiome of patients with PD was clus-

tered into Bacteroides and Firmicutes enterotypes and was

related to richness (Figure 1A). Unlike in the controls among

PD samples, there was no Prevotella enterotype.

The species-level abundances (Wilcoxon signed-rank test,

false discovery rate [FDR] < 0.05) of 132 MSPs were signifi-

cantly altered between people with PD and controls: 73

MSPs were significantly increased (16 classified at all taxo-

nomic levels), while 59 MSPs were significantly decreased

(32 of classified at all phylogenetic levels) in PD (Table S1).

We also identified significant changes specific to each sub-

group of the controls. The abundances of 3 and 19 classified

MSPs were significantly increased and decreased between

PD and COs, respectively. Comparing PD to DCs, the abun-

dances of 11 classified MSPs were significantly increased,

while 26 classified MSPs were significantly decreased, of

which 5 are Prevotella spp., 6 are Lactobacillus spp., and 3

are Streptococcus spp. The use of the MSPs and gut micro-

bial gene catalog enabled the identification of additional spe-

cies with altered abundance in patients with PD compared to

controls (Figure 1B). In accordance with the original study (Be-

darf et al., 2017), the abundances of Akkermansia muciniphila

and Alistipes shahii were significantly increased, while the

abundances of Prevotella copri and Clostridium saccharolyti-

cum were significantly decreased in PD compared to controls.

We identified additional species— Alistipes obesi, Alistipes

ihumii, and Candidatus gastranaerophilales—with significantly

higher abundances in patients with PD than in controls. Ruth-

enibacterium lactatiformans was significantly increased in

people with PD compared to COs, while Clostridium spiro-

forme was significantly increased in PD compared to disease

controls. Methanobrevibacter smithii_2 (M. smithii_2), a major

human gut archaea producer of methane (Gaci et al., 2014;

Triantafyllou et al., 2014), was significantly increased in PD.

Desulfibrio piger, a sulfate reducer, was significantly

decreased in PD compared to controls, and Roseburia intes-

tinalis and Faecalibacterium prausnitzii, both butyrate pro-

ducers (Horz and Conrads, 2010), were decreased compared

to COs. Another strain of F. prausnitzii and a second strain of

P. copri were significantly depleted in patients with PD

compared to DCs.
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Figure 1. Enterotype and microbial compositional changes

(A) Left: enterotype for PD samples. Principle component analysis (PCA) plot represents PD samples highlighted by enterotype. Right: relation between gene

richness and enterotype of PD samples.

(B) Barcodes of significantly increased and decreased (Wilcoxon signed-rank test, FDR < 0.05) MSPs between PD and controls (asterisks), PD and healthy

controls (COs) (crosses), and PD and diseased controls (DCs) (silcrows). Barcodes represent each sample in the group and respective gene counts of each gene

clustered into MSPs. Sample size under analysis: 26 samples of PD and 25 controls, of which 11 were COs and 14 were DCs with cardiovascular risk factors.

(C) Distribution and quartiles illustration of age, GSRS scores representative of GI function, andUPDRS III scores used to gauge disease progression and severity.

Sample size of first and fourth quartiles of PD clinical parameters: PD severity 8 and 6 samples, respectively; PD GI dysfunction contains 7 samples in each

quartile; PD age with 7 and 8 samples, correspondingly.

(D) Integrative correlation network (ICN) based on MSPs significance and Spearmen correlation between PD and controls and metadata of patients with PD

(Wilcoxon signed-rank test, FDR < 0.05). PD dysbiosis represents MSPs with abundance significantly increased or decreased between PD and controls. The

network of PD-related clinical parameters shows MSPs that were both correlated and significantly altered with respect to age of patients with PD, disease

severity, and GI dysfunction. In the network, species circled in gray were found to be associated with more than one clinical parameter in PD and/or dysbiosis

against controls. Squared, circled, and hexagonal shapes are related to GI dysfunction, age, and disease severity, respectively. The coloring of these shapes in

circled species represents the microbe association with additional clinical parameters.
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The gut microbiome compositional changes were
associated with disease severity, GI dysfunction, and
age in patients with PD
Besides PD dysbiosis, we determined taxonomic alterations

considering clinical parameters of patients with PD. The Unified

PDRating Scale III (UPDRS) score was used to gauge the course

of PD in the cohort, here referred as PD severity. A modified

version of the GI Symptom Rating Scale (GSRS; see original

study [Bedarf et al., 2017]) score was applied to infer GI symp-

toms in people with PD, referred to as GI dysfunction. Spear-

man’s correlation was used to determine the associations

between the abundances of gut microbiota and PD severity, GI

dysfunction, and the age of patients with PD (Wilcoxon signed-

rank test, FDR < 0.05). To identify significant alterations in bacte-

rial abundances considering each clinical parameter in PD, we
clustered patients into quartiles based on individual metadata in-

formation (Figure 1C) and identified the differences between the

microbial abundances of the first and fourth quartiles using the

Wilcoxon signed-rank test (FDR < 0.05). Detailed analysis on

MSPs with significantly altered abundance associated with PD

clinical parameters and/or correlated MSPs abundances are

laid out in Table S2 and Figure S2.

Based on these results and classified MSPs associated with

PD and clinical data, we constructed an ICN to better understand

the interactions between the species and their relevance to

different clinical data (Figure 1D; Method details). ICN results re-

vealed that the abundance of Escherichia coli (E. coli) is signifi-

cantly increased and positively correlated with age, PD severity,

and increased GI dysfunction in patients with PD. Erysipelato-

clostridium sp1 and Victivallis vadensis were significantly
Cell Reports 34, 108807, March 2, 2021 3
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Figure 2. Functional annotation of the altered MSPs

(A and B)Carbohydrate-active enzymes (CAZymes) genes annotation of significantly increased and decreased (Wilcoxon signed-rank test, FDR < 0.05) MSPs in

PD dysbiosis (PD against controls), PD severity (UPDRS III score), PD GI dysfunction (GSRS), and PD patients’ ages. Genes annotated to mucin and host glycans

degrading CAZymes were higher in MSPs significantly increased in PD compared to controls, disease severity, GI dysfunction, and age of people with PD.

(C) Metabolic pathway prevalence andmaximal coverage of significantly (Wilcoxon signed-rank test, FDR < 0.05) increased and decreasedMSPs (PD compared

to controls), where maximal coverage represents the highest pathway coverage in each set of MSPs (significantly increased and decreased).

(D and E) Significant personalized metabolic pathways enrichment based on GEMs for MSPs in PD (26 samples) compared to COs (11 samples) (Wilcoxon

signed-rank test, p < 0.05) (D) and in PD compared to DCs (14 samples) (E).
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increased in PD compared to controls and positively correlated

with diseased severity and age of people with PD. Another strain

of Erysipelatoclostridium sp. was increased in PD compared to

DCs and increased with greater GI dysfunction in patients with

PD (Figure S1). Abundances of Azospirillum sp. 51_20 and Azo-

spirillum sp. CAG:239 were significantly increased in PD

compared to controls and were positively correlated with age.

As previously mentioned, the abundance of M. smithii_2 was

significantly increased in PD compared to controls, while ICN

analysis showed Methanobrevibacter smithii_1 was significantly

increased and positively correlated with GI dysfunction and

significantly increased with disease severity.

Mucin and host glycan degradation was associated with
PD dysbiosis, severity, GI dysfunction, and age
As carbohydrate metabolism is one of the key features in the gut

microbiome,CAZymesanalysisongeneswasused to identifypo-

tential alterations in the microbial conversion of carbohydrates

(Table S3). Overall, we found an increased number of annotated

mucin and host glycan degradation gene-coding CAZymes in

MSPs with increased abundance in PD compared to controls,

and MSPs increased in patients with PD with more severe dis-

ease, GI dysfunction, and older people with PD (Figures 2A and

2B). The abundance of A. muciniphila, which is well known for

its capability to degrade host glycans and mucins (Kovatcheva-

Datchary et al., 2019), was significantly increased in PD. MSPs

with capacity for LPS synthesis was increased in older patients

with PDand inmore severe disease.We found an increased num-

ber of annotated CAZymes associated with the conversion of

multiple polysaccharides, pectins, mannan, starch, and other
4 Cell Reports 34, 108807, March 2, 2021
storagecarbohydrates inMSPswithsignificantly increasedabun-

dance in PD compared to controls in more severe and elderly in-

dividualswithPD. In contrast, peoplewithPDwithmore severeGI

dysfunctionshowedan increasednumberof theseannotatedCA-

Zymes in MSPs with significantly decreased abundance.

GEMs for pathway analysis of associated MSPs with PD
To gain a mechanistic understanding of gut microbiota meta-

bolism in PD and reveal the interactions between the gut mi-

crobes and their contribution to host metabolism, we generated

GEMs for the selected 158 MSPs with significantly changed

abundances compared to controls and significantly altered de-

pending on disease severity, GI dysfunction, and age (Figure S3).

We used these metabolic models for personalized community-

level metabolic modeling and in-depth pathway analysis

(Method details). A matrix of reaction abundance was generated

for each patient and control based on MSP abundances and re-

actions in the GEMs.We used Kyoto Encyclopedia of Genes and

Genomes (KEGG) metabolic pathways to identify the differences

between the prevalence of metabolic reactions. Maximal

coverage was used, representing the highest pathway coverage

in each set of MSPs under each clinical condition (Method de-

tails). We analyzed maximal coverage and pathway prevalence

in significantly increased and decreased sets of MSPs in people

with PD. Enrichment analysis of bacterial metabolic pathways

with respect to gut microbial perturbations revealed starch, su-

crose, glycine, serine, and threonine metabolisms to be more

prevalent in decreased MSPs in PD compared to controls. Prev-

alence of folate biosynthesis was also higher in MSPs that were

decreased in PD compared to controls (Figure 2C). Arginine and
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proline metabolisms revealed higher prevalence in MSPs with

increased abundances in higher stages of disease severity.

Similar trends were observed for valine, leucine, and isoleucine

biosynthesis. In contrast, the prevalence of riboflavin meta-

bolism was found to be higher in MSPs decreased in more se-

vere PD (Figure S4). Methane metabolism was more prevalent

in increased MSPs in people with PD with increased GI dysfunc-

tion. Reduced thiamine metabolism was the main metabolic

feature associated with increased GI dysfunction, being more

prevalent inMSPs decreased inmore severe GI dysfunction (Fig-

ure S4). Both riboflavin metabolism and folate biosynthesis were

more prevalent in decreased MSPs in older people with PD (Fig-

ure S4). Glyoxylate and dicarboxylate metabolism were more

prevalent in decreased MSPs related to PD dysbiosis, disease

severity, and age but were also more prevalent in augmented

MSPs with increased GI dysfunction.

Personalized metabolic pathway enrichment was performed

using the reaction abundance matrix. Through KEGG pathway

enrichment analysis, we identified significant alterations be-

tween PD and controls and between PD and each sub-control

group (p < 0.05) (Method details). Methane metabolism was

significantly increased in PD compared to healthy individuals

(Figure 2D). Based on pathway enrichment analysis using func-

tional metabolic models, glutamine and glutamate metabolism

were significantly decreased in PD compared to DCs. Bacterial

folate biosynthesis was also significantly decreased in PD

compared to DCs (Figure 2E). The starch and sucrose metabolic

pathways were significantly decreased in PD compared to dis-

ease controls, while fructose and mannose metabolism were

significantly decreased in PD compared to COs.

GEM of individual species associated with PD
GEMs for selected MSPs were used for constraint-based

modeling. We performed flux balance analysis (FBA) for each

GEM to assess the bacterial growth rate and themajor metabolic

activities of each MSP (Method details). Simulations showed

lower bacterial growth rate for significantly increased species

under four PD clinical conditions of interest in comparison to

depleted species (Figure 3A). Based on GEMs for increased

and decreased MSPs identified in PD, we investigated the con-

sumption and production of each metabolite. There was specific

microbial metabolic alteration related to each distinct PD condi-

tion, such as higher production of indole by increased species

(PD compared to controls) (Figure 3B). Moreover, propionate

and butyrate production were linked to decreased species in

PD dysbiosis and severity (Figure S5). Additionally, the simula-

tions showed that mannose consumption was higher in species

decreased in PD dysbiosis and more severe PD. Proline produc-

tion was higher in species significantly increased with PD

severity. Production of glycine and arginine was higher by

depleted species in increased stages of GI dysfunction in PD

(Figure S5). Moreover, hydrogen sulphide (H2S) production

was higher in species with increased abundance in PD dysbiosis

and severity. Ammonia (NH3) production was higher in species

with increased abundance in PD dysbiosis and people with PD

with increasedGI dysfunction. Based on FBA predictions, we as-

sessed the potential contribution of bacteria to the gut micro-

biome metabolism.
Personalized-level metabolic community modeling and
metabolomics revealed the gutmicrobial contribution to
altered metabolism in patients with PD
Metabolic modeling of individual MSPs enabled the assessment

of species-level potential role in overall gut microbial meta-

bolism. However, the individual microbial activity is different in

a microbial community considering the abundances of species

and the availability of nutrients. Thus, for a deeper understanding

of the contribution of the gut microbiota to host metabolism in

patients with PD, we reconstructed personalized community

models for each individual in the PD cohort (25 PD, 10 CO, 13

DC) (Method details). Personalized-level community modeling

indicated that the microbial production of homocysteine,

glycine, isoleucine, glutamate, nitrate, and valine was signifi-

cantly increased in patients with PD compared to controls (Fig-

ure 3C). Personalized community models also indicated that

microbial secretion of cysteine, cysteine-glycine, and taurine

was higher in PD. Additionally, we predicted that microbial pro-

duction of NH3, H2S, and hydrogen peroxide (H2O2) is increased

in PD communities (Figure 3D). Moreover, the secretion of tryp-

tophan, indole, ornithine, phenylalanine, and putrescinewas pre-

dicted to be increased in PD compared to controls. On the other

hand, the production of folate, glutamine, carnosine, and succi-

nate is predicted to be decreased in patients with PD.

To evaluate the predictions, we generated targeted metabolo-

mics data using the serum samples obtained from 8 PD, 5 CO,

and 5 DC subjects of the same PD cohort (Table S4). Based on

analyte class, there were increased levels of indoles and deriva-

tives in PD compared to controls (Figure 4A). Similarly, sphingo-

myelins and biogenic amines were increased, whereas the

profile of bile acids and fatty acids was decreased in PD

compared to controls. Partial least-squares-discriminant anal-

ysis (PLS-DA) between PD and controls was performed using

the metabolomics data and identified significantly different me-

tabolites (p < 0.05) (Table S5). Hippuric acid and indolepropionic

acid (IPA), previously associated with gut microbiota (Wikoff

et al., 2009), were significantly increased in PD compared to

COs and DCs (Figure 4B). Tryptophan betaine was significantly

increased, while indoxyl sulfate was significantly decreased in

PD compared to COs.

Personalized gut-microbiota community modeling and

plasma metabolomics were integrated for a holistic understand-

ing of gut microbiome-host metabolic interactions. Based on the

modeling of the gut microbial community, we were able to iden-

tify those species within the community that may contribute to

the production/consumption of metabolites. There was an

increased microbial production of indole and tryptophan in PD

compared to controls. A. muciniphila, A. ihumii, A. shahii, and

C. gastranaerophilales were found to be the main producers of

indole, while A. muciniphila, Erysipelatoclostridium spp., and a

species of Eubacterium contributed to tryptophan secretion (Fig-

ure 5). Metabolomic profiling of serum samples showed

increased concentrations of indoles and derivatives in PD sam-

ples compared to controls. IPA concentration was significantly

increased in PD, while the concentration of indoxyl sulfate was

significantly decreased. Moreover, levels of folate were

decreased in PD compared to controls, and increased secretion

of homocysteine was verified in PD communities.
Cell Reports 34, 108807, March 2, 2021 5
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Figure 3. GEM of individual MSPs and personalized gut microbial community modeling of the PD cohort

(A) Predictions of individual bacterial growth rate (h�1). Overall, MSPs with significantly decreased abundance revealed a higher growth rate in comparison to

MSPs with significantly increased abundance.

(B) Potential contribution to host-intestinal metabolic pool based on metabolites production and consumption of significantly increased and decreased MSPs in

PD dysbiosis (Wilcoxon signed-rank test, FDR < 0.05). The x axis represents the number of decreased or increased MSPs contributing to the metabolite con-

sumption or production in y axis (green negative or blue positive values, respectively).

(C) Personalized gutmicrobial communitymodeling of each subject from the PDmetagenomics cohort: 25 PD communities and 23 control communities, fromwhich

10 were COs and 13 were DCs. Significantly (Wilcoxon signed-rank test, p < 0.05) different fluxes (FBA-based predictions) of secreted microbial metabolites are

shownbetweengut-communitymodelsofpatientswithPDandcontrols.Theheatmapshows theZscoresof themeansofmicrobial-metabolitesfluxes ineachgroup.

(D) Potential contribution of gut microbiota to host intestinal metabolic pool, based on personalized gut microbial community modeling FBA predictions. Blue,

increased secretion of microbial metabolites in controls communities compared to PD; green, increased secretion of microbial metabolites in PD communities

compared to controls.
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Based on the community modeling, we identified Parapreve-

tella clara, Prevotella sp., and R. intestinalis were decreased in

PD compared to controls and produced folate. A. muciniphila,
6 Cell Reports 34, 108807, March 2, 2021
Subdoligranulum sp., Eubacterium sp., and Clostridiales family

XIII were identified as the main producers of homocysteine and

increased in PD compared to controls. We performed
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Figure 4. Metabolomics of serum samples from 8 patients with PD, 5 COs, and 5 DCs

(A) Relative concentration of analytes class in PD and controls.

(B) Significant metabolites between PD and both controls, PD and COs, and PD and DCs (Wilcoxon signed-rank test, p < 0.05). Metabolite position in the

barycentric diagram depicts the concentration ratios of the metabolite across the three groups. These metabolites were also found as features of the principal

components of partial least-squares-discriminant analysis (PLS-DA) between PD and controls.
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Spearman’s correlation analysis between the fluxes predicted by

the community models, fromwhich we have identified themicro-

bial producers within the communities and the MSPs abun-

dances in the metagenomics samples. We have found that

metabolite levels significantly correlated with abundances of

relevant bacteria (Table S6).

DISCUSSION

Downstream analysis of gut microbial abundance alterations be-

tween PD and controls using the latest improved human gut

microbiome catalog allowed an extended identification of per-

turbed gut microbial species and strains in PD (Wen et al.,

2017). We generated GEMs for key species and performed

pathway analysis and individual- and community-level modeling

with integration of serum metabolomics data. These analyses

provided insights into the metabolic contribution of gut micro-

biota to PD pathophysiology.

We observed a decrease in the abundances of bacterial

short-chain fatty acids (SCFAs)-producing bacteria.

B. thetaiotaomicron has protective effects due to the anti-inflam-

matory activity of its pirin-like protein, reducing proinflammatory

nuclear factor kB (NF-kB) signaling in epithelial cells (Delday

et al., 2019). The absence of Prevotella was observed in PD,

and this could be linked to gut microbiome dysfunction in people

with PD and consequently contribute to the alterations in the

ENS (Borre et al., 2014). Depletion of Prevotellaceae has also

been reported previously in patients with PD (Keshavarzian

et al., 2015). Increase of A. muciniphila abundance and decrease

of Prevotella could be inferred as higher mucus degradation that

may result in gut permeability in people with PD (Forsyth et al.,

2011). This was also observed in CAZymes analysis, which indi-

cated increased mucin and host glycan degradation, decreased

polysaccharide degradation, and increased LPS synthesis in

elderly patients with PD and higher severity of PD. Increased

gut permeability facilitates the translocation of pro-inflammatory

bacterial products such as LPS. Bacterial fragments like LPS

promote pro-inflammatory stimuli that trigger a-syn aggregation
and deposition in the ENS andmight thus contribute to the devel-

opment and pathogenesis of PD (Braak et al., 2006; Keshavar-

zian et al., 2015).

In our study, the abundance of E. coli was significantly

increased and positively correlated with disease severity and

age in people with PD. Additionally, it was found to be positively

correlated with GI dysfunction in PD. Previous research has

shown that increased intestinal biopsy staining for a-syn and

nitrotyrosine, indicative of oxidative stress in the sigmoid mu-

cosa with stained E. coli, is linked with intestinal hyperpermeabil-

ity in PD (Forsyth et al., 2011). Translocation of endotoxins into

the colonic mucosa can trigger a pro-inflammatory cascade of

events and might be involved in the progression of neuroinflam-

mation in the ENS and CNS in patients with PD (Forsyth et al.,

2011). E. coli is known for its inflammatory activity, and its abun-

dance is positively correlated with proinflammatory cytokines

interleukin (IL)-1b, NLRP3, and CXCL2 of the peripheral inflam-

matory state in cognitively impaired elderly patients (Cattaneo

et al., 2017). In addition to its role in triggering intestinal inflam-

mation, E. coli has amyloidogenic properties by contributing

extracellular bacterial amyloid protein curli (Chen et al., 2016).

Besides the�30 amyloidogenic proteins encoded by the human

genome, the intestinal microbiota also produces functional am-

yloids such as curli, which are amyloid proteins abundantly ex-

pressed by certain gut bacteria (Sampson et al., 2020). Aged

rats exposed to bacterial producers of amyloid protein curli,

including E. coli, have demonstrated increased deposition of

misfolded a-syn in both gut and brain (Chen et al., 2016). Curli

protein produced by E. coli promoted a-syn pathology in the

gut and brain of mice overexpressing human a-syn (Sampson

et al., 2020). Such evidence suggests that exposure to bacterial

amyloid in the GI tract, from an increased abundance of E. coli,

might trigger or accelerate a-syn aggregation in the gut and

brain, therefore contributing to PD pathogenesis (Chen et al.,

2016; Sampson et al., 2020).

Increased abundance of M. smithii could have a negative

impact on fecal butyrate concentrations (Horz and Conrads,

2010; Triantafyllou et al., 2014) since methanogens live in
Cell Reports 34, 108807, March 2, 2021 7



Figure 5. Personalized gut-microbial community predictions and links to the serum metabolomics of patients with PD

Top: predictions of metabolic modeling of personalized gut-microbiota communities (PD versus controls). Increased microbial-metabolites secretion (yellow

arrow) in PD and decreased microbial metabolites production (green arrow) in PD. FBA predictions of main microbial producers are indicated for metabolites of

interest (purple arrow). Bottom: significantly increased (red arrow) and decreased (blue arrow) metabolites in serum samples of patients with PD compared to

controls.
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syntrophy with butyrate-degrading bacteria. Moreover, metha-

nogens outcompete acetogens and reduce the bioavailability

of acetate (Horz and Conrads, 2010). Thus, F. prausnitzii and

R. intestinalis, both known to produce butyrate from acetate

(Horz and Conrads, 2010), could be outcompeted by an

increased M. smithii abundance in patients with PD. Methane,

produced bymethanogens, has been linked to chronic constipa-

tion (Triantafyllou et al., 2014), one of the most commonly re-

ported NMSs in patients with PD (Fasano et al., 2015; Pfeiffer,

2011; Savica et al., 2009). The neuromuscular transmitter role

of methane has been suggested to propagate the peristaltic

movement of the intestine (Triantafyllou et al., 2014). The gut mi-

crobial perturbations identified demonstrated a shift toward a

proinflammatory state with the stimulus of an oxidative state

and the depletion of gut-microbial anti-inflammatory activity.

Such pathophysiologic alterations have been suggested as trig-

gers of a-syn aggregation and deposition in the ENS in PD

(Chiang and Lin, 2019; Scheperjans et al., 2015).

We also showed that thiamine metabolism decreased in

higher stages of GI dysfunction in people with PD. The preva-

lence of folate biosynthesis and riboflavin metabolism was

decreased in elderly individuals with PD. Personalized

pathway enrichment analysis demonstrated that folate biosyn-

thesis was significantly decreased in PD. Folate biosynthesis

in gut could also impact the homocysteine level. Our modeling

showed increase microbial production of homocysteine in the
8 Cell Reports 34, 108807, March 2, 2021
gut communities of patients with PD. A previous study has

also reported decreased vitamin levels of thiamine and folate

in individuals with PD (dos Santos et al., 2009). A low-folic-

acid diet administered to a mouse model resulted in the devel-

opment of motor symptoms identical to PD, accompanied by

increased levels of homocysteine, which demonstrated that

folate indirectly impacts dopaminergic neurofunction and

dopaminergic neuron cells’ death (Duan et al., 2002). In

accordance, there is previous evidence of folic acid deficiency

as a major determinant of hyperhomocysteinemia in PD (dos

Santos et al., 2009), possibly because the breakdown of ho-

mocysteine can be through its remethylation, converted to

methionine in a reaction dependent on folate metabolism

and vitamin B12. Alternatively, the pathway for homocysteine

metabolism can be through transsulfuration via cysteine

(M€uller, 2008). Hyperhomocysteinemia is considered a risk

factor for the development of atherosclerosis (Guthikonda

and Haynes, 2006), cognitive disorders, and neuropathies

(Xie et al., 2017). Moderately increased homocysteine plas-

matic levels have also been linked to endothelial dysfunction

(Chambers et al., 1998). A previous study interested in under-

standing the effects of acute L-DOPA intake on homocysteine

levels in patients with PD revealed that L-DOPA metabolism

(measured by the drug absorption after intake) is an important

component contributing to homocysteine levels (M€uller and

Kuhn, 2009). Chronic (M€uller, 2008) L-DOPA intake increased
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the plasma levels of homocysteine, following O-methylation of

L-DOPA to 3-O-methyldopa with production of homocysteine

via the methyl-group donor of methionine/S-adenosylmethio-

nine. Increased levels of homocysteine might aggravate PD

progression (M€uller, 2008). Therefore, vitamin supplementa-

tion (e.g., folic acid) has been suggested to complement

L-DOPA therapy (Chen et al., 2004). However, the patients in

our study were L-DOPA naive.

In addition, gut-community modeling showed increased levels

of indole and tryptophan in PD. We predicted that A. muciniphila,

A. ihumii, A. shahii, andC. gastranaerophilales, whose abundance

was significantly increased in PD, contribute to increased concen-

trations of indole, which could be converted into IPA. Metabolo-

mics analysis of serum revealed that IPA was significantly

increased in peoplewith PD. IPA is known for its anti-inflammatory

properties in the GI tract and periphery (Tuomainen et al., 2018;

Wlodarska et al., 2017; Zhao et al., 2019). Our results showing

increased IPA differ with the functional implications of the GI tract

in thepathophysiologyofPD thatmove towardapro-inflammatory

environment. Further studies are required tounderstand thisdiver-

gence in findings. Intestinalmicrobiotamay evolve to compensate

thedisruption ingut homeostasis and limit the inflammation,which

could be revealed by a longitudinal study of the gut microbiome in

PD. It isalso important tountangledrug interactionswith themicro-

biome, given that PD medications such as metformin are sug-

gested to affect the gut microbiome (Rosario et al., 2018; Wu

et al., 2017). Complementary, future studies considering the die-

tary routine of patients with PD are of interest, as adaptation of

the diet could improve GI dysfunction and constipation.

Through our systems-level analysis, we identified that

A. muciniphila, Erysipelatoclostridium, and a species of Eubacte-

rium contribute to increased production of tryptophan. Addition-

ally, we found that serum levels of tryptophan betaine were signif-

icantly increased in patients with PD. We also found that serum

levels of hippuric acid significantly increased in patients with

PD. Hippuric acid has previously been reported to be increased

in a metabolic profile of sebum from the upper back of patients

with PD, contributing to the distinctive odor of people with PD

(Trivedi et al., 2019). Previous studies have linked hippuric acid

and IPA to the gut microbiota metabolism (Wikoff et al., 2009;

Zhang and Davies, 2016). The conjugation between glycine and

benzoic acid might originate hippuric acid, a reaction that can

occur in the liver, kidney, and intestine (Wikoff et al., 2009). Simi-

larly, our personalized gut microbial community modeling showed

an increased level of glycine in patients with PD; therefore, gut mi-

crobial dysbiosis and changes in metabolite production levels in

PD could contribute to the increased level of hippuric acid.
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KEY RESOURCES TABLE
SOFTWARE and ALGORITHMS SOURCE IDENTIFIER

Meteor (N. Pons et al., 2010,

JOBIM, conference;

Wen et al., 2017)

https://www.academia.edu/14061278/METEOR_

a_plateform_for_quantitative_metagenomic_

profiling_of_complex_ecosystems

Trimmomatic Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

Integrated Gut Catalog version 2 (IGC2) Wen et al., 2017 https://data.inrae.fr/dataset.xhtml?persistentId=

doi:10.15454/QVCYRB

MetaOMineR Le Chatelier et al., 2013 https://cran.r-project.org/web/

packages/momr/index.html

KEGG Kanehisa et al., 2017 https://www.genome.jp/kegg/

dbCAN2 Zhang et al., 2018 http://bcb.unl.edu/dbCAN2/index.php

Cytoscape Shannon et al., 2003 https://cytoscape.orgversion3.7.1

DirichletMultinomial Holmes et al., 2012 http://bioconductor.org/

packages/release/bioc/html/

DirichletMultinomial.html

KBase Arkin et al., 2018 https://www.kbase.us

COnstraint-Based Reconstruction

and Analysis (COBRA) Toolbox (v2.0)

Schellenberger et al., 2011 https://opencobra.github.io/cobratoolbox/

stable/index.html

mixOmics package Rohart et al., 2017 https://www.bioconductor.org/

packages/release/bioc/html/

mixOmics.html

MIGRENE Toolbox Bidkhori et al., 2021 https://github.com/sysbiomelab/MIGRENE
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Saeed Shoaie (saeed.

shoaie@kcl.ac.uk).

Materials availability
This study did not generate new reagents.

Data and code availability
The metagenomics sequences were downloaded from the original study repository deposited in the European Bioinformatics Insti-

tute-Sequence Read Archive database, under accession number ERP019674. The metabolomics data can be found in the Table S3.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
We downloaded publicly available shotgun metagenomics data from a German PD cohort (Bedarf et al., 2017) consisted of 31 early

stage, L-DOPA-naive patients with PD and 28 age and male-sex matched controls from European Nucleotide Archive (ENA) repos-

itory, ID ERP019674, project description: faecal microbiota in a L-DOPA naive PD patient. We removed some of the samples and re-

analyzed the metagenomics data of 26 PD and 25 controls, of which 11 were healthy controls (CO) while 14 were diseased controls

with cardiovascular risk factors (DC). Clinical characteristics of the individual’s cohort are detailed in Table S4.

Serum samples from 8 people with PD, 5 CO and 5 DC of the same cohort were obtained via peripheral venous sampling following

centrifugation (10 min. at 2.000 g at 20�C). The study was approved by the local ethics committee of the University of Bonn. The par-

ticipants in the study were recruited from the Department of Neurology at the University of Bonn and all gave informed consent (in-

ternal ethics vote 126/02). Supernatants were stored at �80�C prior to analysis.
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Processing and downstream analysis of PD metagenomics
We downloaded publicly available shotgun metagenomics data from a German PD cohort (Bedarf et al., 2017) consisted of 31 early

stage, L-DOPA-naive patients with PD and 28 age and male-sex matched controls from European Nucleotide Archive (ENA) repos-

itory, ID ERP019674, project description: faecal microbiota in a L-DOPA naive PD patient. The metagenomics cohort have been

composed by Illumina HiSeq 2500 paired end sequencing runs belonging to patients with PD and controls, where these were

sub-grouped into healthy controls and disease controls with cardiovascular risk factors. We used Meteor (Bolger et al., 2014; Lang-

mead and Salzberg, 2012; N. Pons et al., 2010, JOBIM, conference; Wen et al., 2017), a software for quantitative metagenomic

profiling of complex ecosystems, to generate the gene abundance profiling table. First, only reads mapping to an unique gene

part of the gut catalog were attributed to those corresponding genes. Second, reads mapping to multiple genes existent in the cat-

alog were attributed considering the ratio of the unique mapping counts of the genes. MetaOMineR (Le Chatelier et al., 2013) was

applied for gene counts table normalization process and further downstream analysis.

We observed that downstream analysis of metagenomics data is strongly affected by variability in sequencing depth. Therefore,

we downsized the data before normalizing the gene counts to reduce this effect, as this may bias our downstream analysis. This pro-

cess requires compromising the loss of information with the gain of identified MSPs. A level of minimum 10million reads was defined

as threshold for downsizing with 1 repetition, previous to normalization of the raw gene counts table. Such process requires a

compromise between loss of information (data, here samples) and later gain of identified MSPs, which is defined by the downsizing

threshold. We removed some of the samples and re-analyzed the metagenomics data of 26 PD and 25 controls, of which 11 were

healthy controls (CO) while 14 were diseased controls with cardiovascular risk factors (DC). Samples metadata, namely, age, UP-

DRSIII score and GSRS score can be found in Table S4.

Richness and enterotype assessment
Gene richness is highly sensitive to sequencing depth, therefore, level of downsizing applied was of 10 million reads, with 30 repe-

titions, from which the mean was considered as the richness. To assess samples’ bacterial diversity gene richness was obtained

based on the downsized and normalized gene counts table, while MSP richness based on clusteredMSPs table. DirichletMultinomial

(Holmes et al., 2012) for Clustering and Classification of Microbiome Data was applied to identify samples enterotype, by defining

three Dirichlet components to model and by providing genera count data.

Identification of microbial compositional changes in PD dysbiosis, severity, gastrointestinal function and age
Significant taxonomic alterations between PD and were determined by Wilcoxon signed-rank test and by correcting the P values for

multiple testing applying Benjamini-Hochberg false discovery rate (FDR) (Benjamini, 2010), q-values. PD samples were grouped into

quartiles considering metadata, namely: (1) UPDRSIII scores, here denoted as PD severity; (2) a modified version of GSRS scores

(see original study) resembling GI function across people with PD; (3) age. Significant taxonomic alterations between 1st and 4th quar-

tiles of each metadata variable were obtained as previously mentioned for PD against controls. Spearman correlation between PD

metadata andMSPs abundances was determined and adjusted for FDR. Cytoscape (Shannon et al., 2003) was used to construct an

integrative correlation network (ICN) between PD dysbiosis against controls, PD clinical parameters under study and respective sig-

nificant and/or correlated MSPs abundances. ICN enabled us to identified known species commonly altered in different clinical pa-

rameters of PD, as well as perturbedMSPs uniquely related to one of these clinical parameters. Based on this representation, we can

identify known species and if its alteration in abundance is related to more than one clinical parameter in PD and which type of as-

sociations exists.

Carbohydrate-active enZymes annotation
Gut catalog genes (Wen et al., 2017) respective to MSPs found significantly altered considering PD dysbiosis (PD against controls),

severity (UPDRSIII score), GI function (GSRS score) and age were annotated to dbCAN2 (Zhang et al., 2018). Subsequently, identi-

fication of substrate conversion from annotated Carbohydrate-Active enZymes (CAZymes) was performed based on literature review

(Baroncelli et al., 2016; Borin et al., 2015; Breier et al., 2014; Geisler-Lee et al., 2006; Wegmann et al., 2014).

Reconstruction of individual gut-microbial metabolic models of interest in PD dysbiosis, severity, gastrointestinal
function and age
GEMs reconstruction was performed based on genes from the gut catalog binned into MSPs. KEGG Ontology (KO) (Kanehisa et al.,

2017) annotation for IGC2 genes was mapped to reference model reactions from KBase (Arkin et al., 2018). Reaction score was ob-

tained based on the catalog for each microbe. Biomass and exchange reactions were functionally defined together with gap filling

using COnstraint-Based Reconstruction and Analysis (COBRA) Toolbox (Schellenberger et al., 2011) and the KBase originated refer-

ence model. The simulation of functional GEMs was then constrained based on western diet in anaerobic conditions.
Cell Reports 34, 108807, March 2, 2021 e2



Article
ll

OPEN ACCESS
KEGG metabolic pathway analysis based on reactions abundance
The Microbial and personalized GEM, REactobiome and community NEtwork modeling (MIGRENE) toolbox (https://github.com/

sysbiomelab/MIGRENE) (Bidkhori et al., 2021) was used for reaction abundance and enrichment analysis. KEGG metabolic path-

ways prevalence and maximal coverage was determined based on pathway presence and respective coverage in the generated mi-

crobial GEMs. Equally sized sets of top most significantly increased and decreased MSPs for each PD condition under study were

defined, namely: 46 most significantly increased and 46 most significantly decreased between PD and controls (dysbiosis), top ten

for severity, top nine for GI function and top 14 for age. A threshold of at least 15%was used to identify differently prevalent metabolic

pathways, as well as the maximal pathway coverage found in each set of MSPs. Microbial reaction abundance per sample of the PD

metagenomics cohort was determined based on each MSP identified per sample that we could originate a functional metabolic

model. A reaction pool was generated, and reactions were multiplied by MSP abundance in each sample. Personalised reaction

abundance was calculated based on the summation of each reaction frequency within each individual-microbiota. Reactions with

significantly different abundanceswere identified byWilcoxon signed-rank test (p value < 0.05) for PDdysbiosis, severity, GI dysfunc-

tion and age. Significant reactions were mapped to respective KOs, or Enzyme Commission number (EC number) when KO was not

available, which in turn were mapped to KEGG metabolic pathways. The metabolic pathway enrichment was performed based on

microbial reaction presence retrieved from the metabolic models in each PD cohort sample. Hypergeometric test was applied for

pathway enrichment. Significant (p value < 0.05) enriched pathways were identified using Wilcoxon signed-rank test.

Individual modeling simulations
COBRA Toolbox was used to define simulations settings. Predictions given specified parameters (e.g., diet constrains under anaer-

obic conditions) were performed based on flux balance analysis (FBA) with biomass defined as cellular objective. Microbial growth

rate and metabolites consumption and production by microbes was determined by FBA. Functional individual metabolic model

representative of each condition of interest (PD dysbiosis, severity, GI dysfunction and age) were selected based on equally sized

sets of top most significantly increased and decreased MSPs, as previously applied in metabolic pathways prevalence.

Personalised gut-microbial-community metabolic models
Personalised community models were reconstructed for each sample in the PD cohort, using MIGRENE toolbox (Bidkhori et al.,

2021). Due to computational power requirements and in order to assure model functionality, a maximum of 50 MSPs per community

was stablished. Microbial S matrices were combined guaranteeing that each microbe would have their own cellular compartment.

Besides microbial cells, it was designed a compartment representative of the intestinal lumen where metabolites derived from

food ingestion would be available. Additionally, another compartment was designed for secreted microbial-metabolites and remain-

ing food-derived metabolites that were not consumed by bacteria. These represent microbial metabolites that can be absorbed and

reach the human blood circulation or instead be found in human faeces. Community-microbial biomass function is composed by

biomass functions of each microbe constituent of the community. For each community, each individual microbe biomass function

was constrained based on respective abundance in that specific sample. Community biomass was defined as objective function.

Each personalised community contains the top most abundant MSPs in each particular individual till it reaches 50 bacteria per com-

munity. For each community, we performed FBA with cellular objective defined as biomass and we collected the predicted fluxes of

exchange reactions representing food-derivedmetabolites (FoEx) andmicrobial-derivedmetabolites (FeEx). The difference between

FeEx and FoEx fluxes was determined. Significantly different FeEx production between PD and controls was identified based onWil-

coxon signed-rank test (p value < 0.05).

Reactions of interest were defined as personalised community model objective to identify principal microbial producers. Models

with similar number of productions across communities in both groups, namely PD and controls, were ignored, in order to identify

main contributors to increased or decreased secretions in PD. Only microbial models with production in at least 3 communities in

the group were considered. Correlation analysis between predicted metabolites fluxes from personalized community modeling

and MSPs abundances from metagenomics samples was performed. We have calculated the variation between in (FoEx) and out

(FeEx) fluxes and correlated it with MSPs abundances. Significant (p value < 0.01) spearman correlations were determined.

Targeted metabolomics of serum samples from PD cohort
Serum samples from 8 PD samples, 5 CO and 5 DCwere obtained via peripheral venous sampling following centrifugation (10min. at

2.000 g at 20�C). The study was approved by the local ethics committee of the University of Bonn. The participants in the study were

recruited from the Department of Neurology at the University of Bonn and all gave informed consent (internal ethics vote 126/02).

Supernatants were stored at �80�C prior to analysis. Targeted (mass spectrometry-based) metabolomics was generated by Bio-

crates’ MxP� Quant 500 kit (Table S3). The kit allows the quantification of endogenous metabolites from diverse biochemical clas-

ses. Case and control average of each analyte absolute concentration (mM)was clustered into and represented by analyte class. For a

matter of representation, analyte relative concentrations were determined. Partial Least-squares-Discriminant Analysis (PLS-DA)

was performed using mixOmics (Rohart et al., 2017) package. PLS-DA was performed between PD and control groups separately.

Significant alterations ofmetabolite concentration between PD and controls were determined byWilcoxon signed-rank test (p value <

0.05). Spearman correlation was determined between metabolites concentration and MSPs abundances.
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Statistical analysis was performed using R software v 3.6.1. Significant taxonomic alterations between PD and were determined by

Wilcoxon signed-rank test and by correcting the P values for multiple testing applying Benjamini-Hochberg false discovery rate (FDR)

(Benjamini, 2010), q-values (significance FDR < 0.05), which can be found in Figure 1. Reactions with significantly different abun-

dances were identified by Wilcoxon signed-rank test (p value < 0.05) for PD dysbiosis, severity, GI dysfunction and age, in Figure 2.

Significant (p value < 0.05) enriched pathways were identified using Wilcoxon signed-rank test, in Figure 2. The difference between

FeEx and FoEx fluxes was determined. Significantly different FeEx production between PD and controls was identified based onWil-

coxon signed-rank test (p value < 0.05). We have calculated the variation between in (FoEx) and out (FeEx) fluxes and correlated it

with MSPs abundances. Significant (p value < 0.01) spearman correlations were determined, found in Table S5. Significant alter-

ations of metabolite concentration between PD and controls were determined by Wilcoxon signed-rank test (p value < 0.05), repre-

sented in Figure 4.
Cell Reports 34, 108807, March 2, 2021 e4
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