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Abstract

We address the currently open problem of existence of multiple periodic orbits in the chemostat model with
periodic removal rate. We give conditions on a subset of growth functions that ensure the coexistence of an arbi-
trary number of species within this subset. We show that proportions of some powers of the species densities are
periodic functions, leading to an infinity of distinct periodic orbits depending on the initial condition. We give
also conditions allowing the coexistence of two distinct subsets of species. Although these conditions are non-
generic, we show in simulations that when these conditions are only approximately satisfied, then the behavior
of the solutions are close from the non-generic case over a long time interval, justifying the interest of our study.

Key-words. Chemostat model, Periodic removal rate, Coexistence, Poincaré map, Multiplicity of periodic
orbits.
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1 Introduction

The mathematical model of the chemostat can represent a vast array of natural phenomena where different
living species compete for a common limiting resource. In particular, it is widely used to model waste water bio-
processes or to capture competition for a single resource in ecological modeling [15, 5]. Recall that the chemostat
is originally an experimental device in which bacterial species grow in a perfectly stirred vessel of constant volume,
continuously removed and fed with fresh substrate. Of course, the mathematical model of the chemostat reflects
also the behavior of this device.

When several species (of densities xi, i = 1, · · · ) all consume a single substrate that is fed in the ecosystem at
a constant rate, then the mathematical theory of the chemostat claims that the Competitive Exclusion Principle
holds, meaning that all the species will asymptotically disappear from the system, except the fittest one [15, 5].
However, in more complex environments, this property does not always hold. This is for instance the case of
periodic operation of bioreactors [13] or temporal fluctuations in ecology [6, 4, 10]. If the environment favors for
some time one species and then another one in a balanced way, then one may expect the two species to coexist.
A large part of the literature is dedicated to the study of the asymptotic behavior of theses dynamics, with two
or more species, under periodic removal rate [16, 1, 7, 9] or periodic nutrient input [6, 14, 4, 17] or both [18, 11].

Indeed, when a vessel with two species of concentrations xi(t) at time t (i = 1, 2) is fed with a periodic removal
rate, the system can exhibit the following different behaviors :

• The two species are washed out, that is limt→+∞ xi(t) = 0, for i = 1, 2.

• One species only is washed out while the other survives.

• The two species coexist, that is xi(t) > ε > 0, for t ≥ 0 and i = 1, 2, for some ε > 0.
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Those behaviors can be predicted using the Floquet theory. Namely, the Floquet exponents allow to determine
if the periodic solutions with only one species are unstable. If both of these single-species periodic solutions are
unstable, then the theory of competitive planar systems [2] applied to the chemostat model shows that any positive
solution converges asymptotically to a periodic solution with species coexistence (a complete description of this
theory is given for instance in [15]). However, the possibility of having several attracting periodic orbits remains an
open problem. Although there is no theoretical obstruction for this, no such example has been yet exhibited in the
literature. The purpose of the present work is to show that having multiplicity of periodic orbits with coexistence
is indeed possible, but for a particular class of growth functions, providing moreover an infinite number of periodic
orbits, with two or more species.

The construction that we propose here is non-generic, relying on a relatively strong condition on the growth
functions that is deemed as unfeasible in real life. However, one may face practical situations close from this non-
generic case, which may provide a better understanding of the periodic chemostat over a long duration. Moreover,
our construction may be leveraged to design sufficient conditions for uniqueness of periodic orbits with coexistence.

Our construction lies on the concept of ”taxon”, which in this paper, denotes a group of species whose growth
functions share the same shape. We show that the fittest species from each taxon behave like one species in some
sense, and when they can coexist, then there exists an infinite number of periodic orbits. Moreover, when two
taxa are present in the chemostat, we show that the fittest species from each taxon can coexist all together under
conditions that generalize the coexistence conditions of two species in the chemostat with periodic removal rate.

The paper is organized as follows. In the next Section 2, we recall the equations of the model with the usual
assumptions and give some useful definitions and preliminary results. In Section 3, we present our new conditions
with a concept of ”taxon” and show some relevant properties. Sections 4 and 5 give our main results, first
for a single taxon and then for competition between taxa. Finally, we presents and discusses several numerical
simulations to illustrate our results Section 6, before drawing conclusions in Section 7.

2 The setting

We consider the multi-species chemostat model written as follows

ṡ = u(t)(sin − s)−
n∑
i=1

µi(s)

Yi
xi,

ẋi = (µi(s)− u(t))xi, 1 ≤ i ≤ n,
(1)

(with n ≥ 2) where s is the substrate concentration, sin the input substrate concentration and xi (1 ≤ i ≤ n) are
the respective concentrations of the n populations. We recall the well-known fact that the yield coefficients Yi,
1 ≤ i ≤ n can be taken equal to one without loss of generality, by a change of variables (xi/Yi replaced by xi). As
usual, the growth functions µi(.) satisfy the following properties.

Assumption 1. For any i = 1, · · · , n, µi is a C1 increasing function from R+ to R+ with µi(0) = 0.

Under this assumption, we define classically the break-even concentration for each species i = 1, · · · , n as the
function

λi(v) := sup {s ∈ R+; µ(s) < v} , v > 0.

Note that when λi(v) is finite, one has necessarily µi(λi(v)) = v.

Assumption 2. The removal rate u(·) is a time measurable function from [0,+∞) to [u−, u+] with 0 < u− ≤ u+,
which is T -periodic (with 0 < T < +∞). We posit

ū =
1

T

∫ T

0

u(t) dt.

Consider now the variable b := s+
∑n
i=1 xi, whose dynamics is given by

ḃ = u(t)(sin − b). (2)

Under Assumption 2, one has u(t) ≥ u− > 0 at any t ≥ 0 and one can deduce that the solution of (2) converges
exponentially to sin, independently of the initial condition of (1). With Assumption 1, the solutions of (1) are
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uniquely defined and bounded for any non-negative initial condition. Therefore the asymptotic behavior of the
n+ 1 dimensional system (1) is determined by the n dimensional dynamics

ẋi =

µi
sin − n∑

j=1

xj

− u(t)

xi, 1 ≤ i ≤ n, (3)

which leaves the set

∆0 :=

{
x ∈ Rn+, such that

n∑
i=1

xi ≤ sin

}
forwardly invariant. In the remaining, we shall consider the asymptotic dynamic (3) on the set ∆0 only (which is
biology relevant in the chemostat framework).

Note that solutions of (3) with xi(0) = 0 for some i are such that xi(t) = 0 for any t. Therefore, by uniqueness
of solutions of (3), we deduce that a solution x(·) of (3) with a positive initial condition has to stay positive for
any time.

We give below a Lemma that will be useful in the rest of the paper.

Lemma 1. There exists a number s ∈ (0, sin) such that the subset

∆ :=

{
x ∈ ∆0 ; sin −

n∑
i=1

xi > s

}

is forward invariant and attractive by the dynamics (3).

Proof. Posit s = sin −
∑n
i=1 xi. Since x is a solution of (3) and the set ∆0 is forward invariant, it comes

ṡ = −
n∑
i=1

µi(s)xi(t) + u(t)(sin − s)

≥ −
(

max
1≤i≤n

µi(s)

) n∑
i=1

xi(t) + u(t)(sin − s)

≥ −
(

max
1≤i≤n

µi(s)

)
sin + u(t)(sin − s)

≥ g(s) := −
(

max
1≤i≤n

µi(s)

)
sin + u−(sin − s).

The function g is continuous and decreasing with g(0) = u−sin > 0 and g(sin) < 0. By the intermediate value
Theorem, there exists a number sm ∈ (0, sin) such that g(sm) = 0 with g(s) > 0 for s < sm. Therefore, for any
s ∈ (0, sm), the domain {s > s} is forwardly invariant and attractive by the dynamics of s, which amounts to
claim that the subset ∆ is forward invariant and attractive by the dynamics (3).

3 A taxonomic assumption and its consequences

We shall consider subsets I ⊂ {1, · · · , n} of at least two species, whose growth functions µi (i ∈ I) share a
common property, defining what we propose to call a taxon in the present context.

Definition 1. A subset of populations I ⊂ {1, · · · , n} belong to a same taxon if there exists a C1 increasing
function ϕ with ϕ(s) < u− and ϕ(sin) > u+, and numbers αi > 0, βi ∈ R for i ∈ I such that

µi(s) = αiϕ(s) + βi, s ∈ [s, sin], i ∈ I. (4)

We shall say that such a function ϕ is a generating growth function of the taxon. We also define the subset I? ⊂ I,
which is such that

I? := {i ∈ I; λi(ū) = min
j∈I

λj(ū)}.
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In this definition, the choice of the generating function ϕ is not unique but it can typically represent a canonical
growth function that verifies Assumption 1 so that the growth functions µi among a taxon differ only by an affine
transformation away for 0 i.e. on the interval [s, sin]. Note that condition (4) cannot be imposed for any s > 0
if βi 6= 0, because growth functions have to be equal to 0 at the origin (Assumption 1). Several examples of
growth functions that satisfy Assumption 1 and condition (4) will be given in Section 6. Let us point out that
this condition does not prevent the graphs of the functions µi to cross on the domain [s, sin].

The second part of Definition 1 concerns the subset I? ⊂ I, which is made of all the species that share the
same minimal break-even concentration. In some sense, the set I? contains the fittest species, as these are the
surviving species in the autonomous chemostat model [5]. Generically, the set I? is reduced to a singleton, but we
shall study in this work the non-generic situation where more than one species belong to I?.

For convenience, we shall define some auxiliary numbers. The function ϕ being increasing with ϕ(s) < u− and
ϕ(sin) > u+, and as ū ∈ [u−, u+], there exists an unique s̄ ∈ (s, sin) such that

ϕ(s̄) = ū, (5)

and for any i ∈ I we define the numbers

γi := α−1i (µi(s̄)− ū) =
βi
αi

+ ū
(
1− α−1i

)
. (6)

Remark 1. We have for any i ∈ I that µi(λi(ū)) = ū, which is equivalent to write

ϕ(λi(ū)) = α−1i (ū− βi) = ū− γi, = ϕ(s̄)− γi.

Since the generating growth function ϕ is increasing, a higher value γi corresponds to a lower break-even concen-
tration λi. In particular, we have that i ∈ I? exactly when γi = maxj∈I γj.

The key point in our study will be to consider particular ratios of powers of species concentrations, for species
that belong to I, defined as follows

ρij :=
αi
√
xi

αj
√
xj
, i, j ∈ I.

The dynamics of these variables present some particular properties, as shown in the next Proposition.

Proposition 1. Let I be a subset of populations that belong to a same taxon. For any solution positive solution
in ∆, the dynamics of the ratios ρij are as follows

ρ̇ij =
(
γi − γj + (ū− u(t))(α−1i − α

−1
j )
)
ρij , i, j ∈ I. (7)

Proof. Let us first differentiate the equality αj
√
xjρij = αi

√
xi with respect to t:

1

αj
x

1
αj
−1

j ẋjρij + x
1
αj

j ρ̇ij =
1

αi
x

1
αi
−1

i ẋi, i, j ∈ I

and replace ẋk for k = i, j by the expression (αkϕ(s(t)) + βk − u(t))xk. One obtains

x
1
αj

j

(
ϕ(s(t)) +

βj
αj
− α−1j u(t)

)
ρij + x

1
αj

j ρ̇ij = x
1
αi
i

(
ϕ(s(t)) +

βi
αi
− α−1i u(t)

)
, i, j ∈ I.

Multiplying by x
αj
j , one can write

ρ̇ij =

(
βi
αi
− βj
αi
− u(t)(α−1i − α1

j)

)
ρij , i, j ∈ I.

Finally, from the definition (6) of numbers γk, k ∈ i, j, one can also write

ρ̇ij =
(
γi − γj + (ū− u(t))(α−1i − α

−1
j )
)
ρij , i, j ∈ I.
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The dynamics (7) of the ratios ρij within a taxon presents thus the remarkable feature that the time evolution of
each ratio depends only on its initial value and the function u, i.e. their dynamics are decoupled. As a consequence,
one obtains the following properties of the solutions of (3).

Proposition 2. Let I be a subset of populations that belongs to a same taxon. For any positive solution in ∆,
one has

1. For i, j in I?, ρij are periodic functions.

2. For i ∈ I \ I?, xi converges asymptotically to 0.

3. If lim inft>0 xi(t) > 0 for some i ∈ I?, then lim inft>0 xj(t) > 0 for any other j ∈ I?.

Proof. From (7), one obtains the expression

d

dt
log ρij = (γi − γj) + (ū− u(t))(α−1i − α

−1
j ), t ≥ 0

that we integrate between t and t+ T :

log ρij(t+ T ) = log ρij(t+ T ) + (γi − γj)T, t ≥ 0

which gives equivalently
ρij(t+ T ) = ρij(t)e

(γi−γj)T , t ≥ 0.

Then, for i, j ∈ I?, γi = γj and the function ρij is thus periodic. If i /∈ I?, for any j ∈ I?, one has γj > γi (see
Remark 1) and thus xi(t)→ 0 for t→ +∞. The last point of the Proposition is a straightforward consequence of
point 1.

This result states that the Competitive Exclusion Principle occurs within a taxon in the periodic chemostat. It
also means that when one or several species of a same taxon persist in a periodic chemostat, it can be invaded by
a new one belonging to the same taxon preserving the coexistence of all resident populations, under the condition
that all species have the same minimal break even concentration (for the average removal rate). Diversity can be
then (theoretically) augmented within a same taxon.

The (non-generic) property of having identical break-even concentrations that implies coexistence of species is
already known in the classical chemostat model with constant removal rate (see for instance [5]). However, it is
also known that this condition does not guarantee the coexistence under periodic removal rate. Instead, integral
conditions which depends on the periodic function u have to be fulfilled [15]. Here, the remarkable feature within
a taxon is that under the simple condition of equal break-even concentrations, coexistence can be guaranteed
whatever is the periodic function u (provided that its average value is equal to the fixed value ū). Moreover, we
show below that a multiplicity of periodic solutions can be obtained within a taxon, which is a new result in the
theory of the periodic chemostat model, up to our knowledge.

Now and for the rest of the paper, we shall assume that each species population can persist alone, which is
ensured by the following hypothesis.

Assumption 3. One has µi(sin) > ū for any i = 1, · · · , n.

4 Multiplicity of periodic solutions within a single taxon

We consider here that all the species belong to a same taxon.

Proposition 3. Assume that the whole set I = {1, · · · , n} of populations belong to a same taxon. Then for any
positive initial condition in ∆, the solution of (3) converges asymptotically to a periodic solution composed of all
species in I?, the other species being washout. Moreover, if I? is not reduced to a singleton, the system (3) admits
an infinite number of periodic solutions in ∆ with distinct orbits, which depend on the initial proportions of species
in I? only.
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Proof. Let x(·) be a positive solution of (3) in ∆ and ρij(·), i, j ∈ I, be the corresponding solutions of (7). Take
i? in I? such that

αi? = min
i∈I?

αi.

We show that xi? converges asymptotically to a positive periodic solution.

The variable xi? can be written as the solution of the non-autonomous scalar dynamics

ẋi? = (f(t, xi?)− u(t))xi?

where

f(t, y) := µi?

(
sin −

∑
i∈I?

ρii?(t)αi y
αi
αi? −

∑
i/∈I?

xi(t)

)
.

Let µ̃i? be a C1 increasing extension of the function µi? for negative arguments, and consider the dynamics

ẏ = (f̃(t, y)− u(t))y (8)

on R, where f̃ consists in replacing µi? by µ̃i? in the expression of the function f . Note that the choice of xi?

implies that one has αi/αi? ≥ 1 for any i ∈ I?. Therefore, f̃ is Lipschitz with respect to y and the solutions of
(8) are well defined. At y = sin, the argument of µ̃i? is negative, but as µi(0) = 0 and µ̃i? is increasing, one has
necessarily µ̃i? < 0 for negative arguments, and then f̃(t, sin) ≤ 0 for any t ≥ 0. The set [0, sin] is thus forwardly
invariant. Clearly, xi? is the solution of (8) for the initial value y(0) = xi?(0) (which belongs to [0, sin]).

According to Proposition 2, the functions ρii? for i ∈ I? are T -periodic and variables xi for i /∈ I? converge
asymptotically to 0. We then consider the limiting function

f̃l(t, y) := µ̃i?

(
sin −

∑
i∈I?

ρii?(t)αi y
αi
αi?

)

which is T -periodic and verifies

lim
t→+∞

|f̃(t, y)y − f̃l(t, y)y| = 0 uniformly for y ∈ [0, sin].

Consequently, by Proposition 3.2 in [19], the non-autonomous semi-flow of (8) in [0, sin] is asymptotically periodic
with limit periodic semi-flow of

ẏ = (f̃l(t, y)− u(t))y (9)

(for which [0, sin] is also forwardly invariant).

We follow now the approach exposed in [15] for one dimensional periodic dynamics, but adapted here to our
context. Let us consider the Poincaré map P associated to the periodic dynamics (9)

P : y0 ∈ [0, sin] 7→ y(T, y0) ∈ [0, sin]

where y(·, y0) denotes the solution of (9) with y(0) = y0. One has clearly P (0) = 0, and from the Theorem of
continuous dependency of the solution of ordinary differential equation with respect to the initial condition, P is
continuously differentiable with P ′(y0) = z(T ), where z(·) is solution of

ż =
(
∂y f̃l(t, y(t, y0))y(t, y0) + f̃l(t, y(t, y0))− u(t)

)
z, z(0) = 1

that is

z(T ) = exp

(∫ T

0

∂y f̃l(t, y(t, y0))y(t, y0) + f̃l(t, y(t, y0))− u(t) dt

)
> 0.

The map P is thus increasing and one has P ′(0) = exp
(
T (µi?(sin)− ū)

)
> 1 (by Assumption 3). So 0 is

a repulsive fixed point of the map P , and for any y0 > 0, the sequence
{
P ky0

}
k∈N is strictly monotonic and

bounded, thus converging to a positive fixed point y? of P . Moreover, as y(·, y?) is periodic, one has∫ T

0

f̃l(t, y(t, y?))− u(t) dt = 0
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and thus

P ′(ȳ) = exp

(∫ T

0

∂y f̃l(t, y
?)y(t, y?)dt

)
.

As the functions µ̃i are assumed to be increasing, one has µ̃′i? > 0 which implies ∂y f̃l < 0, and thus P ′(ȳ) < 1.
Therefore the map y 7→ P (y)− y is decreasing at each root, which implies that it cannot have more than one root.
We conclude that the (positive) fixed point y? is unique.

As P admits a finite number of fixed points (indeed only one), one can apply the results about asymptotically
autonomous discrete dynamical systems (Theorem 2.4 in [19]), from which one gets

lim
k→+∞

xi?(t+ kT ) = y(t, y?), t ∈ [0, T ].

and we conclude that the solution x(·) converges asymptotically to a periodic solution of (3) in ∆, for which all
species in I? are present, the other species being excluded:

lim
k→+∞

|x(t+ kT )− xp(t)| = 0, t ∈ [0, T ]

where xp(·) is the periodic solution given by

xpi (t) =

{
ρii?(t)αi y(t, y?)

αi
αi? > 0, i ∈ I?,

0, i /∈ I?,

for t ∈ [0, T ].

Consider now another positive initial condition in ∆ but with the same initial ratios ρii?(0) for i ∈ I?. According
to (7), the functions ρii? (i ∈ I?) are identical and consequently the limiting periodic dynamics (9) is also identical.
As this later one admits an unique periodic solution, we conclude that the solution of (3) converges asymptotically
to the same periodic solution xp(·).

We now show how to construct an infinity of distinct periodic solutions, when I? is not reduced to a singleton.
Consider a sequence {ρk0}k∈N of positive vectors in Rn such that

max
i∈I?\{i?}

(ρk+1
0 )i > max

t∈[0,T ]
max

i∈I?\{i?}
ρkii?(t), k ∈ N (10)

where ρkii?(·) are the periodic solutions of (7) with ρkii?(0) = (ρk0)i for i ∈ I? \ {i?}. Condition (10) imposes that
for each i ∈ I? \ {i?}, the orbits γ+(ρkii?) = {ρkii?(t), t ∈ [0, T ]} of (7) are all disjoint for k ∈ N. Moreover, for each
k, there exists an unique periodic solution xpk(·) of (3) in ∆ for which all species in I? are present with ratios
given by the functions ρkii? . This implies that the periodic orbits γ+(xpk) = {xpk(t), t ∈ [0, T ]}, k ∈ N, of (3) are
all disjoint. Indeed, if γ+(xpk) = γ+(xpl) for some k 6= l, there should exist τ ≥ 0 such that xpk(t) = xpl(t + τ)

for any t ≥ 0. In particular, one should have xpki (t) = xpli (t+ τ) for i 6= i? in I? and any t ≥ 0, but as the orbits

γ+(ρkii?), γ+(ρlii?) are disjoint, one should have ρkii?(t+ τ) 6= ρlii?(t) for some t, that is xpki? (t) 6= xpli?(t+ τ) and thus
a contradiction with with the fact that the orbits are non distinct.

The results of Proposition 3 are twofold. First, they complete those of Proposition 2, since we now have the
persistence of the species of I?, while the less fit species of I \ I? are washed-out. This stronger form of the
competitive exclusion principle comes from Assumption 3 and the fact that there is no species outside the taxon I.
This result allows coexistence in the periodic setting under the non-generic assumption that the surviving species
belong to I?. It generalizes known similar results in the non-autonomous setting [5].

Then, the second aspect of this result concerns the number of distinct periodic coexistence solutions of the
system (3), which is shown to be infinite under our assumptions. While the standard theory of the periodic
chemostat gives sufficient conditions for the existence of such solutions [15], it says nothing about the uniqueness
of such solutions. Our construction sheds new lights on this issue, since Proposition 3 shows that if the growth
functions are close enough to each other, in the sense that the corresponding species belong to I?, then there are
infinitely many periodic coexistence solutions. We may expect that eventual sufficient conditions for uniqueness
forbid growth functions to be too close in a sense close to ours.
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5 Multiplicity of periodic solutions with more than one taxon

We show here that it is possible to have coexistence of two taxa in competition, each of them preserving the
proportions of species having the same break-even concentrations, leading to an infinite number of periodic orbits.
For technicalities, we need in this section the following additional hypothesis.

Assumption 4. The functions µi, i ∈ {1, · · · , n}, are analytic at any s > s, and u is an analytic function of t.

For convenience, we shall denote for any integrable scalar function ζ(·) the average quantity by

〈ζ〉T :=
1

T

∫ T

0

ζ(t)dt.

Proposition 4. Assume that one has {1, · · · , n} = Ia t Ib, where species in Ia, resp. Ib, belong to a same taxon.
For any fixed positive initial condition in ∆, let (spa(·), xpa(·)), resp. (spb(·), x

p
b(·)) be the asymptotic periodic solution

of (1) when only species in Ia, resp. Ib, are initially present. If the conditions

λba := 〈µi(spb)〉T − ū > 0, i ∈ I?a , (11)

λab := 〈µi(spa)〉T − ū > 0, i ∈ I?b , (12)

are fulfilled, then the solution of (3) converges asymptotically to a periodic solution for which all species in I?a
and I?b are present, the other species being washed out. Moreover, when there exists at least one positive initial
condition satisfying the above conditions, and at least one of the subsets I?a , I?b is not reduced to a singleton, there
exists an infinity of distinct periodic orbits of (3) for which all the species in I?a t I?b are present.

Proof. The taxa are characterized by generating functions ϕa, ϕb and numbers αi > 0, βi ≥ 0 such that

µi(s) = αiϕa(s) + βi, i ∈ Ia, µi(s) = αiϕb(s) + βi, i ∈ Ib.

Take i?a ∈ I?a and i?b ∈ I?b . Let x(·) be a positive solution of (3) in ∆ and define the functions, for i ∈ I?a t I?b

ri(t) =

{
ρii?a(t), i ∈ I?a ,
ρii?b (t), i ∈ I?b ,

t ≥ 0. (13)

Then, variables xi?a , xi?b are solutions of the non-autonomous planar dynamics

ẏa = (fa(t, ya, yb)− u(t))ya,
ẏb = (fb(t, ya, yb)− u(t))yb,

with
fa(t, ya, yb) := µi?a(s(t, ya, yb)), fb(t, ya, yb) := µi?b (s(t, ya, yb)),

where

s(t, ya, yb) = sin −
∑
i∈I?a

ri(t)
αiy

αi
αi?a
a −

∑
i∈I?b

ri(t)
αiy

αi
αi?
b

b −
∑

i/∈I?atI?b

xi(t).

Let µ̃i?a , µ̃i?b be C1 increasing extensions of the functions µi?a , µi?b for negative arguments, and consider the dynamics

ẏa = (f̃a(t, ya, yb)− u(t))ya,

ẏb = (f̃b(t, ya, yb)− u(t))yb,
(14)

in the plane, where the functions f̃a, f̃b are defined with the expressions of fa, fb replacing the functions µi?a , µi?b
by their extensions µ̃i?a , µ̃i?b . As one has αi/αi?a ≥ 1 for i ∈ I?a , and αi/αi?b ≥ 1 for i ∈ I?b , this dynamics is Lipschitz
in (ya, yb). Moreover the set

S := [0, sin]× [0, sin]

is forwardly invariant as one has fa(t, sin, yb) < 0, fb(t, ya, sin) < 0 for any (ya, yb) ∈ S and t ≥ 0. Solutions of (14)
are thus well defined in S and unique. The pair (xi?a(·), xi?b (·)) is such a solution for (ya(0), yb(0)) = (xi?a(0), xi?b (0)).
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With Proposition 2, we know that the functions ri with i ∈ I?a t I?b are T -periodic, and variables xi with
i /∈ I?a t I?b converge asymptotically to 0. We thus consider the limiting dynamics

ẏa = (f̃ la(t, ya, yb)− u(t))ya,

ẏb = (f̃ lb(t, ya, yb)− u(t))yb,
(15)

where
f̃ la(t, ya, yb) := µ̃i?a(sl(t, ya, yb)), f̃ lb(t, ya, yb) := µ̃i?b (sl(t, ya, yb))

with

sl(t, ya, yb) := sin −
∑
i∈I?a

ri(t)
αiy

αi
αi?
a −

∑
i∈I?b

ri(t)
αiy

αi
αi?

b ,

which are time periodic functions. One has also

lim
t→+∞

|(f̃a(t, ya, yb)− f̃ la(t, ya, yb))ya| = lim
t→+∞

|(f̃b(t, ya, yb)− f̃ lb(t, ya, yb))yb| = 0

uniformly for (ya, yb) ∈ S. Therefore, the non-autonomous semi-flow of (14) in S is asymptotically periodic with
limit periodic semi-flow of (15) (see Proposition 3.2 in [19]). The system (15) is competitive and we can apply
the results of the literature about periodic competitive planar systems, which states that any bounded solution
converges to a periodic solution (ypa(·), ypb (·)) (see for instance Theorem 4.2 in [15]). Let P be the Poincaré map
associated to this dynamics

P : Y0 ∈ S 7→ Y (T, Y0) ∈ S

where Y (·, Y0) denotes the solution (ya(·), yb(·)) of (15) with (ya(0), yb(0)) = Y0. On the axis ya = 0 or yb = 0,
the dynamics is with a single taxon. One can then reproduce the arguments of the proof of Proposition 3 to show
that there are unique fixed points Y ?a = (y?a, 0), Y ?b = (0, y?b ) of P in S with y?a > 0, y?b > 0. Moreover, one
has y?a = (xpa)i?a(0), y?b = (xpb)i?b (0), where xpa(·), xpb(·) are the asymptotic periodic solutions of (3) for the initial
conditions ξ, ζ

ξi =

{
xi(0), i ∈ Ia,
0, i ∈ Ib,

ζi =

{
0, i ∈ Ia,
xi(0), i ∈ Ib

(remind from Proposition 2 that functions ρii?a (i ∈ Ia) or ρii?b (i ∈ Ib) remain the same).

The linearized dynamics Ẏ = M(t)Y of (15) is given by the matrix

M(t) =

[
a(t) b(t)
c(t) d(t)

]
with

a(t) = f̃ la(t, ya(t), yb(t))− u(t) + ∂ya f̃
l
a(yt, ya(t), yb(t))ya(t),

b(t) = ∂yb f̃
l
a(t, ya(t), yb(t))ya(t),

c(t) = ∂ya f̃
l
b(t, ya(t), yb(t))yb(t),

d(t) = f̃ lb(t, ya(t), yb(t))− u(t) + ∂yb f̃
l
b(t, ya(t), yb(t))yb(t)).

Along the periodic solution (xpa(·), 0), one has

M(t) =

[
? ?
0 f lb(t, ((x

p
a)i?a(t), 0)− u(t)

]
for which the characteristics multiplier exp

∫ T
0
f lb(t, ((x

p
a)i?a(t), 0) − u(t) dt is equal to exp(Tλba) and larger than

1 under condition (11). The fixed point Y ?a is thus hyperbolic repulsive. In a similar way, Y ?b is an hyperbolic
repulsive fixed point under condition (12). This implies that Y ?a and Y ?a are isolated fixed points of P .

For Y0 = 0, the solution of (15) is identically null and one has

M(t) =

[
µi?a(sin)− u(t) 0

0 µi?b (sin)− u(t)

]
.

The characteristics multipliers are thus exp
∫ T
0
µi?a(sin) − y(t) dt, exp

∫ T
0
µi?b (sin) − y(t) dt which are larger than

one under Assumption 3. The zero solution is thus repulsive.
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Along any positive solution ya(·), yb(·), note that one has b(t) < 0 and c(t) < 0 at any t ∈ [0, T ]. Then, one has
Ẏ1 > 0 for Y1 = 0 and Y2 < 0, and Ẏ2 < 0 for Y1 > 0 and Y2 = 0. Therefore, the second and fourth quadrant are
invariant by the linear dynamics Ẏ = M(t)Y , which implies that the matrix P ′(Y0) has strictly positive diagonal
elements and strictly negative off-diagonal elements for a positive Y0 ∈ S. Let S ′ = {Y ∈ S; sl(0, Y ) ∈ (s, sin]}.
By Lemma 1, S ′ is invariant by P and any fixed point of P belongs to S ′, including Y ?a and Y ?b . Following the
arguments given in [2], the positive fixed points of P lie on a continuous curve Γ in S ′, which connects the fixed
points Y ?a , Y ?b . Under Assumption 4, x(·) is analytic and the functions ri(·) as well. Therefore, the map P is
analytic on S ′. Then, the curve Γ is also analytic (see [2, 4]). If there were an infinite number of fixed points of P
in S then all the points of the curve Γ will be fixed points by analyticity, which contradicts the fact that Y ?a and
Y ?b are isolated fixed points.

Finally, as P has a finite number of fixed points on S, we can apply the results about asymptotically autonomous
discrete dynamical systems (Theorem 2.4 in [19]), from which one gets

lim
k→+∞

(xi?a(t+ kT ), xi?b (t+ kT )) = Y (T, Y ?), t ∈ [0, T ].

where Y ? is a fixed point of P in S. As the fixed points on the axes 0, Y ?a and Y ?b are all repulsive, we conclude
that Y ? is positive, and that x(·) converges asymptotically to the periodic solution xp(·) given by

xpi (t) =


ri(t)

αiya(t, Y ?)
αi
αi?a > 0, i ∈ I?a ,

ri(t)
αiyb(t, Y

?)
αi
αi?
b > 0, i ∈ I?b ,

0, i /∈ I?a t I?b ,

for t ∈ [0, T ].

When I?a is not reduced to a singleton, take i†a 6= i?a in I?a and consider perturbations xε(·) of the solution x(·),
as solutions of (3) for the initial condition

xεi(0) =

{
xi(0), i 6= i†a,

(ri†a(0) + ε)
a
i
†
axi?a(0)

αi
αi?a , i = i†a,

(16)

with ε > 0. By continuity of solutions of (1) with respect to the initial condition, there exists ε̄ > 0 such that for
any ε ∈ (0, ε̄) xε(0) belongs to ∆ and conditions (11), (12) are fulfilled for this new initial condition. As before,
we deduce that xε(·) converges asymptotically to a periodic solution xε,p(·) for which all species in I?a and I?b are
present.

Let ρεij be the ratio functions for the initial condition xεi(0). Note from (16) that one has ρε
i†ai?a

(0) = ρi†ai?a
(0)+ε.

One gets from (7)

ρε
i†ai?a

(t) = ρε
i†ai?a

(0) exp

∫ t

0

(ū− u(τ)
(
α−1
i†a
− α−1i?a

)
dτ = ρi†ai?a

(t) + ε exp

∫ t

0

(ū− u(τ)
(
α−1
i†a
− α−1i?a

)
dτ, t ≥ 0.

Therefore, the orbits γ+(ρε
i†ai?a

) for ε ∈ (0, ε̄) are all distinct and we deduce, as in the proof of Proposition 3 that

the orbits of the periodic solutions γ+(xε,p) are all distinct.

Remark 2. Conditions (11), (12) are independent of the choice of i ∈ I?a , I?b . Indeed, let s̄a = λi(ū) which is
identical for any i ∈ I?a , and one has

〈µi(spb)〉T − ū = αi〈ϕa(spb)〉T + βi − ū
= αi〈ϕa(spb)− ϕa(s̄a)〉T + αiϕa(s̄a) + βi − ū
= αi〈ϕa(spb)− ϕa(s̄a)〉T

(using the property ū = µi(s̄a) = αiϕa(s̄a) + βi for i ∈ I?a). The sign of 〈µi(spb)〉T − ū is thus independent of
i ∈ I?a , the numbers αi being positive. One obtains symmetrically the same property for the sign of 〈µi(spa)〉T − ū
with i ∈ I?b .

Similarly to Proposition 3, Proposition 4 generalizes known results while giving indications about the number
of periodic coexistence solutions of system (3). Indeed, when each taxon contains only one species, we obtain a
result similar to the ones in [15]. However, thanks to our taxonomic assumptions, we are able to extend it from
two species to two taxa, under very similar conditions. Then, we are also able to establish the existence of an
infinite number of periodic coexistence solutions, generalizing the result of Proposition 3 from one to two taxa.
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6 Numerical illustrations

We have considered three generating growth functions, among the class of Hill functions [8]

ϕa(s) =
mas

2

K2
a + s2

, ϕb(s) =
mbs

4

K4
b + s4

, ϕc(s) =
mcs

2

K2
c + s2

. (17)

with parameters given in Table 1, and operating conditions

sin = 4, ū = 0.8, T = 10

where the periodic removal rate is

u(t) = ū+ 0.2 sin

(
2πt

T

)
Graphs of the functions ϕa, ϕb, ϕc are depicted on Figure 1. Then, we have generated nine growth functions
within these three taxa with characteristic numbers given in Table 2 and s = 0.5. Let us denote the sets of indices
of species belonging to a same taxon Ia = {1, 2, 3}, Ib = {4, 5, 6}, Ic = {7, 8, 9}. The graphs of these functions are
depicted in Figure 2, where we have considered for each of these nine growth functions a C1 extension for s ≤ s as
a polynomial increasing on [0, s] and null at 0. Clearly, Assumptions 1, 2, 3, 4 are satisfied. We have checked in
all our simulations that the solutions remain in the set ∆ for this value of s. For the chosen value of ū, numbers
s̄ and γi defined in (5) in (6) are given in Table 3 for each taxon. Accordingly to Remark 1, the fittest species
within each taxon are given by the subsets of indices I?a = {1, 2}, I?b = {4, 5}, I?c = {8, 9}.

i a b c

mi 2 2.95 1.8

Ki

√
3
√

3
√

3

Table 1: Parameters defining the generating functions ϕa, ϕb, ϕc

species 1 2 3 4 5 6 7 8 9

taxon a b c
αi 0.9 1.15 0.85 0.8 1.05 0.6 0.9 1.1 0.7
βi 0.161 −0.0165 0.1455 0.232 0.0545 0.326 0.161 0.019 0.261

Table 2: Characteristics numbers of the nine growth functions with respect to their taxon

species 1 2 3 4 5 6 7 8 9

taxon a b c
s̄ 1.28 1.30 1.40
γi 0.09 0.09 0.03 0.09 0.09 0.01 0.09 0.09 0.03

Table 3: For each taxon, numbers s̄ and γi (with ū = 0.8)
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Figure 1: Graphs of the generating growth functions.
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(c) Taxon Ic

Figure 2: Graphs of the growth functions for each taxon.

6.1 Simulations with species of a single taxon

One can first observe on Figure 3 that species that are not the fittest within their taxon i.e. that do not belong
to I?a , I?b or I?c are washed-out in presence of all the species in Ia, Ib or Ic respectively. This observation is in
accordance with Proposition 3. Most interestingly, Figure 4 illustrates the multiplicity of periodic orbits with
coexistence of two species, which is the main result of the present work.

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5
x1
x2
x3

(a) xi(·) with xi(0) = 0.5, for i ∈ Ia

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

x4
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x6

(b) xi(·) with xi(0) = 0.5, for i ∈ Ib

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

x7
x8
x9

(c) xi(·) with xi(0) = 0.5, for i ∈ Ic

Figure 3: Simulations with species of the same taxon.
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(a) Orbits in the (x1, x2) plane when
species in I?a only are present
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(b) Orbits in the (x4, x5) plane
when species in I?b only are present
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(c) Orbits in the (x7, x8) plane when
species in I?c only are present

Figure 4: Multiplicity of periodic orbits among a single taxon.

6.2 Simulations with species of two different taxa

We have first considered species of Ia in presence with those of Ib (Figure 5). One can verify that these species
satisfy the coexistence conditions given in Proposition 4 for the initial condition (0.5, 0.5, 0.5, 0.5, 0.5, 0.5). Indeed,
we computed numerically λba = 0.012576 > 0 and λab = 0.006272 > 0.
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(a) run on the time interval [0, 100]
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(b) run on the time interval [0, 500]
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(c) run on the time interval [0, 2500]

Figure 5: Simulations of xi(·) with xi(0) = 0.5, for i ∈ Ia ∪ Ib.

We observe that the species from Ia \ I?a and Ib \ I?b are washed-out while all the other species coexist. We also
observe a transient behavior where the concentrations of species from I?b are initially raising faster than those of
I?a , before decreasing.

We have then considered species of Ia in presence with those of Ic (Figure 6). In this case, we computed
λca = 0.071 > 0 and λac = −0.0639 < 0, which no longer guarantee the coexistence of the two taxa.
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(c) run on the time interval [0, 2500]

Figure 6: Simulations of xi(·) with xi(0) = 0.5, for i ∈ Ia ∪ Ic.

This time, all the species that do not belong to I?a are washed-out, as the second taxon is not well fit to survive
in the competition.
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6.3 Simulations under approximate taxon condition

The conditions for species to belong to a same taxon, and that some of them have identical numbers γi, are
not generic among all increasing growth functions. In the spirit of former works [12, 3] for constant removal rate,
we investigate here numerically cases where the condition (4) is only approximately satisfied.

For this purpose, we considered an additional species labeled 2′ whose growth function µ2′ is closed to µ2 but
that does not belong to the taxon Ia. For the illustration, we have simply taken µ2′ = µ2 +εη, where η is a smooth
function null at 0 with η(λ2(ū)) > 0 that is not proportionate to ϕa, and ε is a small number.

Remark 3. In the particular case where the perturbation is such that µ2′ still satisfies the taxonomic assumption
with α2′ = α2 and γ2′ = γ2 − ε (recall that γ2 = γ1), it is possible to study how the perturbation propagates over
time. Indeed, we have from Proposition 1 that

ρ̇12′ =
(
ε+ (ū− u(t))(α−11 − α

−1
2 )
)
ρ12′ .

If x2(0) = x2′(0) and the other initial conditions are the same, we can integrate this dynamics over k ∈ N periods
from t = 0 and obtain the following comparison result:

ρ12′(kT ) = ρ12(kT )ekεT .

For the numerical illustration, we have taken η(s) = s
1+s and first run simulations with species 1, 2 and 2′. For

ε < 0, the species 2′ is asymptotically conducted to wash-out. However, as one can see on Figure 7, the transient
can be very long when µ2′ is very close to µ2 so that the three species coexist in an almost periodic manner during
a long time horizon. On the opposite, for ε > 0, the species 2′ is the final winner of the competition (Figure 8).
However, it can take a long time for the other species to decline, so that here also the three species coexist in an
almost periodic manner during a long time period.

0 100 200 300 400 500
t

0.3

0.6

0.9

1.2

1.5
x1
x2
x2′

(a) ε = −10−2
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Figure 7: Simulations with species 1, 2, 2′ together when ε < 0.
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Figure 8: Simulations with species 1, 2, 2′ together when ε > 0.
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Then, we have considered species of taxa Ia and Ib together, as before (Figure 5), but where species 2 is
replaced by species 2′. Figures 9, 10 show that depending on the sign of ε, species 2′ can be part or not of the
final composition of the ecosystem, and that the time necessary to distinguish this issue can be very long, even for
values of ε not extremely small. Note that coexistence of several species is maintained in both cases. A message
here is that the analysis of non generic situations, as we do here, could be of some interest when facing cases likely
to be closed from the non generic case, and we believe that this could be even more likely when considering many
species.
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Figure 9: Simulations with species 1, 2′, 3, 4, 5, 6 together when ε = −10−3.
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Figure 10: Simulations with species 1, 2′, 3, 4, 5, 6 together when ε = 10−3.

7 Conclusion

The present work has been motivated by the open problem about the number of periodic orbits that it is
possible to observe in the multi-species chemostat model with periodic removal rate. We introduced conditions
on subsets of species, that we call ”taxa”, and show with the help of a Poincaré map that the dynamics admits
an infinite number of distinct periodic orbits when species belonging to a same taxon possess identical break-even
concentrations. Moreover, we gave conditions to have coexistence between species of two different taxa, leading
to a ”double” infinity of periodic orbits. These constructions may serve as a counterexample to guide future
constructions of sufficient conditions for uniqueness of periodic orbits in the chemostat model. Finally, we showed
in simulation that although non-generic, these conditions could be ”almost” met in practice leading to many almost
periodic solutions with coexistence on a long time window.
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