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MULTIPLICITY OF NEUTRALLY STABLE PERIODIC ORBITS1

WITH COEXISTENCE IN THE CHEMOSTAT SUBJECT TO2

PERIODIC REMOVAL RATE3

THOMAS GUILMEAU∗ AND ALAIN RAPAPORT†4

Abstract. We identify a taxonomic property on the growth functions in the multi-species5
chemostat model which ensures the coexistence of a subset of species under periodic removal rate.6
We show that proportions of some powers of the species densities are periodic functions, leading7
to an infinity of distinct neutrally stable periodic orbits depending on the initial condition. This8
condition on the species for neutral stability possesses the feature to be independent of the shape of9
the periodic signal for a given mean value. We give also conditions allowing the coexistence of two10
distinct subsets of species. Although these conditions are non-generic, we show in simulations that11
when these conditions are only approximately satisfied, then the behavior of the solutions is close12
from the non-generic case over a long time interval, justifying the interest of our study.13

Key words. Chemostat model, Periodic removal rate, Coexistence, Poincaré map, Multiplicity14
of periodic orbits, Neutral stability.15

MSC codes. 34C25, 37C25, 92-10, 92D25, 92D4016

1. Introduction. The mathematical model of the chemostat can represent a17

vast array of natural phenomena where different living species compete for a common18

limiting resource. In particular, it is widely used to model waste water bio-processes19

or to capture competition for a single resource in ecological modeling [15, 5]. Recall20

that the chemostat is originally an experimental device in which bacterial species grow21

in a perfectly stirred vessel of constant volume, continuously removed and fed with22

fresh substrate. Of course, the mathematical model of the chemostat reflects also the23

behavior of this device.24

When several species (of densities xi, i = 1, 2, . . . ) all consume a single substrate25

that is fed in the ecosystem at a constant rate, then the mathematical theory of the26

chemostat claims that the Competitive Exclusion Principle holds, meaning that all the27

species will asymptotically disappear from the system, except the fittest one [15, 5].28

However, in more complex environments, this property does not always hold. This is29

for instance the case of periodic operation of bioreactors [13] or temporal fluctuations30

in ecology [6, 4, 10]. If the environment favors for some time one species and then31

another one in a balanced way, then one may expect the two species to coexist. A32

large part of the literature is dedicated to the study of the asymptotic behavior of33

theses dynamics, with two or more species, under periodic removal rate [16, 1, 7, 9]34

or periodic nutrient input [6, 14, 4, 17] or both [18, 11].35

Indeed, when a vessel with two species of concentrations xi(t) at time t (i = 1, 2)36

is fed with a periodic removal rate, the system can exhibit the following different37

behaviors :38

• The two species are washed out, that is limt→+∞ xi(t) = 0, for i = 1, 2.39

• One species only is washed out while the other survives.40

• The two species coexist, that is xi(t) > ε > 0, for t ≥ 0 and i = 1, 2, for some41

ε > 0.42

Those behaviors can be predicted using the Floquet theory. Namely, the Flo-43
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quet exponents allow to determine if the periodic solutions with only one species are44

unstable. If both of these single-species periodic solutions are hyperbolic unstable,45

then the theory of competitive planar systems [2] applied to the chemostat model46

shows that any positive solution converges asymptotically to a periodic solution with47

species coexistence (a complete description of this theory is given for instance in [15]).48

However, the possibility of having several attracting periodic orbits remains an open49

problem. Although there is no theoretical obstruction for this, no such example has50

been yet exhibited in the literature. Let us underline that for a given set of species,51

the condition for the single-species periodic solutions to be unstable depends on the52

periodic removal rate function, and not only on its mean value. Differently to the sta-53

tionary environment for which the single break-even concentrations determine which54

species can survive, the shapes of the growth functions come into play in periodic55

environments.56

In the present work, we investigate how having species whose growth functions57

share similar shapes allow their coexistence and the multiplicity of neutrally stable58

periodic orbits (with two or more species). We do not assume the single-species59

periodic solutions to be hyperbolic, and generalize in a functional way the neutral60

stability condition in constant environment (which is given by the equality of break-61

even concentrations). The construction that we propose here is non-generic, relying62

on a relatively strong condition on the growth functions that is deemed as unfeasible63

in real life. However, one may face practical situations close from this non-generic64

case, which may provide a better understanding of the periodic chemostat over a long65

duration.66

Our construction lies on the concept of ”taxon”, which in this paper, denotes a67

group of species whose growth functions share the same shape, in a sense which is68

made precise later on. We show that the fittest species from each taxon behave like69

one species to some extent, and when they can coexist, then there exists an infinite70

number of periodic orbits. Moreover, we also study the case when two taxa are present71

in the chemostat. In this situation, we show that the fittest species from each taxon72

can coexist all together, under an additional condition of instability of single-species73

periodic solutions chosen in each taxon.74

The paper is organized as follows. In the next Section 2, we recall the equa-75

tions of the model with the usual assumptions and give some useful definitions and76

preliminary results. In Section 3, we present our new conditions with a concept of77

”taxon” and show some relevant properties. Sections 4 and 5 give our main results,78

first for a single taxon and then for competition between taxa. Finally, we presents79

and discusses several numerical simulations to illustrate our results Section 6, before80

drawing conclusions in Section 7.81

2. The setting. We consider the multi-species chemostat model written as fol-82

lows83

(2.1)
ṡ = u(t)(sin − s)−

n∑
i=1

µi(s)

Yi
xi,

ẋi = (µi(s)− u(t))xi, 1 ≤ i ≤ n,
84

(with n ≥ 2) where s is the substrate concentration, sin the input substrate concen-85

tration and xi (1 ≤ i ≤ n) are the respective concentrations of the n populations. We86

recall the well-known fact that the yield coefficients Yi, 1 ≤ i ≤ n can be taken equal87

to one without loss of generality, by a change of variables (xi/Yi replaced by xi). As88

usual, the growth functions µi(·) satisfy the following properties.89
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Assumption 2.1. For any i = 1, . . . , n, µi is a C1 increasing function from R+ to90

R+ with µi(0) = 0.91

Under this assumption, we define classically the break-even concentration for each92

species i = 1, . . . , n as the function93

λi(v) := sup {s ∈ R+; µi(s) < v} , v > 0.94

Note that when λi(v) is finite, one has necessarily µi(λi(v)) = v.95

Assumption 2.2. The removal rate u(·) is a measurable function from [0,+∞) to96

[u−, u+] with 0 < u− ≤ u+, which is T -periodic (with 0 < T < +∞). We posit97

ū =
1

T

∫ T

0

u(t) dt.98

Consider now the variable b := s+
∑n
i=1 xi, whose dynamics is given by99

(2.2) ḃ = u(t)(sin − b).100

Under Assumption 2.2, one has u(t) ≥ u− > 0 at any t ≥ 0 and one can deduce that101

the solution of (2.2) converges exponentially to sin, independently of the initial con-102

dition of (2.1). With Assumption 2.1, the solutions of (2.1) are uniquely defined and103

bounded for any non-negative initial condition. Therefore the asymptotic behavior of104

the n+ 1 dimensional system (2.1) is determined by the n dimensional dynamics105

(2.3) ẋi =

µi
sin − n∑

j=1

xj

− u(t)

xi, 1 ≤ i ≤ n,106

which leaves the set107

∆0 :=

{
x ∈ Rn+ ; such that

n∑
i=1

xi ≤ sin

}
108

forwardly invariant. In the remaining, we shall consider the asymptotic dynamic (2.3)109

on the set ∆0 only (which is biology relevant in the chemostat framework).110

Note that solutions of (2.3) with xi(0) = 0 for some i are such that xi(t) = 0 for111

any t. Therefore, by uniqueness of solutions of (2.3), we deduce that a solution x(·)112

of (2.3) with a positive initial condition has to stay positive for any time.113

We give below a Lemma that will be useful in the rest of the paper.114

Lemma 2.3. There exists a number s ∈ (0, sin) such that the subset115

∆ :=

{
x ∈ ∆0 ; sin −

n∑
i=1

xi > s

}
116

is forward invariant and attractive by the dynamics (2.3).117
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Proof. Posit s = sin −
∑n
i=1 xi. Since x is a solution of (2.3) and the set ∆0 is118

forward invariant, it comes119

ṡ = −
n∑
i=1

µi(s)xi(t) + u(t)(sin − s)120

≥ −
(

max
1≤i≤n

µi(s)

) n∑
i=1

xi(t) + u(t)(sin − s)121

≥ −
(

max
1≤i≤n

µi(s)

)
sin + u(t)(sin − s)122

≥ g(s) := −
(

max
1≤i≤n

µi(s)

)
sin + u−(sin − s).123

124

The function g is continuous and decreasing with g(0) = u−sin > 0 and g(sin) < 0.125

By the intermediate value Theorem, there exists a number sm ∈ (0, sin) such that126

g(sm) = 0 with g(s) > 0 for s < sm. Therefore, for any s ∈ (0, sm), the domain127

{s > s} is forwardly invariant and attractive by the dynamics of s, which amounts to128

claim that the subset ∆ is forward invariant and attractive by the dynamics (2.3).129

3. A taxonomic assumption and its consequences. We shall consider sub-130

sets I ⊂ {1, . . . , n} of at least two species, whose growth functions µi (i ∈ I) share a131

common property, defining what we propose to call a taxon in the present context.132

Definition 3.1. A subset of populations I ⊂ {1, . . . , n} belong to a same taxon if133

there exists a C1 increasing function ϕ with ϕ(s) < u− and ϕ(sin) > u+, and numbers134

αi > 0, βi ∈ R for i ∈ I such that135

(3.1) µi(s) = αiϕ(s) + βi, s ∈ [s, sin], i ∈ I.136

We shall say that such a function ϕ is a generating growth function of the taxon. We137

also define the subset I? ⊂ I, which is such that138

I? := {i ∈ I; λi(ū) = min
j∈I

λj(ū)}.139

In this definition, the choice of the generating function ϕ is not unique but it140

can typically represent a canonical growth function that verifies Assumption 2.1 so141

that the growth functions µi among a taxon differ only by an affine transformation142

away for 0 i.e. on the interval [s, sin]. Note that condition (3.1) cannot be imposed143

for any s > 0 if βi 6= 0, because growth functions have to be equal to 0 at the origin144

(Assumption 2.1). Several examples of growth functions that satisfy Assumption 2.1145

and condition (3.1) will be given in Section 6. Let us point out that this condition146

does not prevent the graphs of the functions µi to cross on the domain [s, sin].147

The second part of Definition 3.1 concerns the subset I? ⊂ I, which is made of all148

the species that share the same minimal break-even concentration. In some sense, the149

set I? contains the fittest species, as these are the surviving species in the autonomous150

chemostat model [5]. Generically, the set I? is reduced to a singleton, but we shall151

study in this work the non-generic situation where more than one species belong to152

I?. Let us recall from [15] that sharing the same break-even concentration does not153

ensure in general the existence of periodic orbits with coexistence: the instability of154

periodic solutions with single species is required, which relies on an interplay between155

the shapes of the growth functions and the time-varying removal rate.156
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For convenience, we shall define some auxiliary numbers. The function ϕ being157

increasing with ϕ(s) < u− and ϕ(sin) > u+, and as ū ∈ [u−, u+], there exists an158

unique s̄ ∈ (s, sin) such that159

(3.2) ϕ(s̄) = ū,160

and for any i ∈ I we define the numbers161

(3.3) γi := α−1i (µi(s̄)− ū) =
βi
αi

+ ū
(
1− α−1i

)
.162

Remark 3.2. We have for any i ∈ I that µi(λi(ū)) = ū, which is equivalent to163

write164

ϕ(λi(ū)) = α−1i (ū− βi) = ū− γi, = ϕ(s̄)− γi.165

Since the generating growth function ϕ is increasing, a higher value γi corresponds to166

a lower break-even concentration λi. In particular, we have that i ∈ I? exactly when167

γi = maxj∈I γj .168

The key point in our study will be to consider particular ratios of powers of species169

concentrations, for species that belong to I, defined as follows170

ρij :=
αi
√
xi

αj
√
xj
, i, j ∈ I.171

The dynamics of these variables present some particular properties, as shown in the172

next Proposition.173

Proposition 3.3. Let I be a subset of populations that belong to a same taxon.174

For any solution positive solution in ∆, the dynamics of the ratios ρij are as follows175

(3.4) ρ̇ij =
(
γi − γj + (ū− u(t))(α−1i − α

−1
j )
)
ρij , i, j ∈ I.176

Proof. Let us first differentiate the equality αj
√
xjρij = αi

√
xi with respect to t:177

1

αj
x

1
αj
−1

j ẋjρij + x
1
αj

j ρ̇ij =
1

αi
x

1
αi
−1

i ẋi, i, j ∈ I178

and replace ẋk for k = i, j by the expression (αkϕ(s(t)) + βk − u(t))xk. One obtains179

x
1
αj

j

(
ϕ(s(t)) +

βj
αj
− α−1j u(t)

)
ρij + x

1
αj

j ρ̇ij = x
1
αi
i

(
ϕ(s(t)) +

βi
αi
− α−1i u(t)

)
180

for i, j ∈ I. Multiplying by x
αj
j , one can write181

ρ̇ij =

(
βi
αi
− βj
αi
− u(t)(α−1i − α1

j)

)
ρij , i, j ∈ I.182

Finally, from the definition (3.3) of numbers γk, k ∈ i, j, one can also write183

ρ̇ij =
(
γi − γj + (ū− u(t))(α−1i − α

−1
j )
)
ρij , i, j ∈ I.

184
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The dynamics (3.4) of the ratios ρij within a taxon presents thus the remarkable185

feature that the time evolution of each ratio depends only on its initial value and186

the function u, i.e. their dynamics are decoupled. As a consequence, one obtains the187

following properties of the solutions of (2.3).188

Proposition 3.4. Let I be a subset of populations that belongs to a same taxon.189

For any positive solution in ∆, one has190

1. For i, j in I?, ρij are periodic functions.191

2. For i ∈ I \ I?, xi converges asymptotically to 0.192

3. If lim inft>0 xi(t) > 0 for some i ∈ I?, then lim inft>0 xj(t) > 0 for any other193

j ∈ I?.194

Proof. From (3.4), one obtains the expression195

d

dt
log ρij = (γi − γj) + (ū− u(t))(α−1i − α

−1
j ), t ≥ 0196

that we integrate between t and t+ T :197

log ρij(t+ T ) = log ρij(t) + (γi − γj)T, t ≥ 0198

which gives equivalently199

ρij(t+ T ) = ρij(t)e
(γi−γj)T , t ≥ 0.200

Then, for i, j ∈ I?, γi = γj and the function ρij is thus periodic. If i /∈ I?, for any201

j ∈ I?, one has γj > γi (see Remark 3.2) and thus xi(t) → 0 for t → +∞. The last202

point of the Proposition is a straightforward consequence of point 1.203

This result states that the Competitive Exclusion Principle occurs within a taxon204

in the periodic chemostat. It also means that when one or several species of a same205

taxon persist in a periodic chemostat, it can be invaded by a new one belonging206

to the same taxon preserving the coexistence of all resident populations, under the207

condition that all species have the same minimal break even concentration (for the208

average removal rate). Diversity can be then (theoretically) augmented within a same209

taxon. Once one has shown that ratios are periodic functions, it is not surprising that210

one could obtain coexistence of species. However, one has to study the asymptotic211

behavior of the total biomass within a taxon to show the effective convergence of the212

solutions to a periodic orbit in Rn+, which is the matter of the next sections.213

The (non-generic) property of having identical break-even concentrations that214

implies coexistence of species is already known in the classical chemostat model with215

constant removal rate (see for instance [5]). However, as we have recalled earlier, this216

property does not guarantee the coexistence under periodic removal rate. Instead,217

integral conditions which depends on the periodic function u have to be fulfilled218

[15]. Here, the remarkable feature within a taxon is that under the simple condition219

of equal break-even concentrations, coexistence can be guaranteed whatever is the220

periodic function u (provided that its average value is equal to the fixed value ū). This221

property presents thus a robustness with respect to the removal rate u(·) fluctuating222

about its mean value.223

Now and for the rest of the paper, we shall assume that each species population224

can persist alone, which is ensured by the following hypothesis.225

Assumption 3.5. One has µi(sin) > ū for any i = 1, . . . , n.226

6
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4. Multiplicity of periodic solutions within a single taxon. In this sec-227

tion, we consider that all the species belong to a same taxon. Let us underline that we228

deal with dynamics in Rn+ (with n possibly larger than 2), for which the mathematical229

tools for studying asymptotic periodic solutions that are specific to planar dynamics230

[2] do not apply here. In the proof of the coming results, we shall exploit the re-231

sults of Proposition 3.4 to rewrite the dynamics of each species as a non-autonomous232

dynamical system and use the theory of asymptotic periodic semi-flows [19].233

Proposition 4.1. Assume that the whole set I = {1, . . . , n} of populations belong234

to a same taxon. Then for any positive initial condition in ∆, the solution of (2.3)235

converges asymptotically to a periodic solution composed of all species in I?, the other236

species being washout. Moreover, if I? is not reduced to a singleton, the system (2.3)237

admits an infinite number of periodic solutions in ∆ with distinct orbits, which depend238

on the initial proportions of species in I? only.239

Proof. Let x(·) be a positive solution of (2.3) in ∆ and ρij(·), i, j ∈ I, be the240

corresponding solutions of (3.4). Take i? in I? such that241

αi? = min
i∈I?

αi.242

We show that xi? converges asymptotically to a positive periodic solution.243

The variable xi? can be written as the solution of the non-autonomous scalar244

dynamics245

ẋi? = (f(t, xi?)− u(t))xi?246

where247

f(t, y) := µi?

(
sin −

∑
i∈I?

ρii?(t)αi y
αi
αi? −

∑
i/∈I?

xi(t)

)
.248

Let µ̃i? be a C1 increasing extension of the function µi? for negative arguments, and249

consider the dynamics250

(4.1) ẏ = (f̃(t, y)− u(t))y251

on R, where f̃ consists in replacing µi? by µ̃i? in the expression of the function f . Note252

that the choice of xi? implies that one has αi/αi? ≥ 1 for any i ∈ I?. Therefore, f̃ is253

Lipschitz with respect to y and the solutions of (4.1) are well defined. At y = sin, the254

argument of µ̃i? is negative, but as µi(0) = 0 and µ̃i? is increasing, one has necessarily255

µ̃i? < 0 for negative arguments, and then f̃(t, sin) ≤ 0 for any t ≥ 0. The set [0, sin]256

is thus forwardly invariant. Clearly, xi? is the solution of (4.1) for the initial value257

y(0) = xi?(0) (which belongs to [0, sin]).258

According to Proposition 3.4, the functions ρii? for i ∈ I? are T -periodic and259

variables xi for i /∈ I? converge asymptotically to 0. We then consider the limiting260

function261

f̃l(t, y) := µ̃i?

(
sin −

∑
i∈I?

ρii?(t)αi y
αi
αi?

)
262

7
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which is T -periodic and verifies263

lim
t→+∞

|f̃(t, y)y − f̃l(t, y)y| = 0 uniformly for y ∈ [0, sin].264

Consequently, by Proposition 3.2 in [19], the non-autonomous semi-flow of (4.1) in265

[0, sin] is asymptotically periodic with limit periodic semi-flow of266

(4.2) ẏ = (f̃l(t, y)− u(t))y267

(for which [0, sin] is also forwardly invariant).268

We follow now the approach exposed in [15] for one dimensional periodic dynam-269

ics, but adapted here to our context. Let us consider the Poincaré map P associated270

to the periodic dynamics (4.2)271

P : y0 ∈ [0, sin] 7→ y(T, y0) ∈ [0, sin]272

where y(·, y0) denotes the solution of (4.2) with y(0) = y0. One has clearly P (0) = 0,273

and from the Theorem of continuous dependency of the solution of ordinary differential274

equation with respect to the initial condition, P is continuously differentiable with275

P ′(y0) = z(T ), where z(·) is solution of276

ż =
(
∂y f̃l(t, y(t, y0))y(t, y0) + f̃l(t, y(t, y0))− u(t)

)
z, z(0) = 1277

that is278

z(T ) = exp

(∫ T

0

∂y f̃l(t, y(t, y0))y(t, y0) + f̃l(t, y(t, y0))− u(t) dt

)
> 0.279

The map P is thus increasing and one has P ′(0) = exp
(
T (µi?(sin)− ū)

)
> 1 (by280

Assumption 3.5). So 0 is a repulsive fixed point of the map P , and for any y0 > 0, the281

sequence
{
P ky0

}
k∈N is strictly monotonic and bounded, thus converging to a positive282

fixed point y? of P . Moreover, as y(·, y?) is periodic, one has283 ∫ T

0

f̃l(t, y(t, y?))− u(t) dt = 0284

and thus285

P ′(ȳ) = exp

(∫ T

0

∂y f̃l(t, y
?)y(t, y?)dt

)
.286

As the functions µ̃i are assumed to be increasing, one has µ̃′i? > 0 which implies287

∂y f̃l < 0, and thus P ′(ȳ) < 1. Therefore the map y 7→ P (y)− y is decreasing at each288

root, which implies that it cannot have more than one root. We conclude that the289

(positive) fixed point y? is unique.290

As P admits a finite number of fixed points (indeed only one), one can apply the291

results about asymptotically autonomous discrete dynamical systems (Theorem 2.4292

in [19]), from which one gets293

lim
k→+∞

xi?(t+ kT ) = y(t, y?), t ∈ [0, T ].294

8
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and we conclude that the solution x(·) converges asymptotically to a periodic solution295

of (2.3) in ∆, for which all species in I? are present, the other species being excluded:296

lim
k→+∞

|x(t+ kT )− xp(t)| = 0, t ∈ [0, T ]297

where xp(·) is the periodic solution given by298

xpi (t) =

{
ρii?(t)αi y(t, y?)

αi
αi? > 0, i ∈ I?,

0, i /∈ I?,
299

for t ∈ [0, T ].300

Consider now another positive initial condition in ∆ but with the same initial301

ratios ρii?(0) for i ∈ I?. According to (3.4), the functions ρii? (i ∈ I?) are identical and302

consequently the limiting periodic dynamics (4.2) is also identical. As this later one303

admits an unique periodic solution, we conclude that the solution of (2.3) converges304

asymptotically to the same periodic solution xp(·).305

We now show how to construct an infinity of distinct periodic solutions, when I?306

is not reduced to a singleton. Consider a sequence {ρk0}k∈N of positive vectors in Rn307

such that308

(4.3) max
i∈I?\{i?}

(ρk+1
0 )i > max

t∈[0,T ]
max

i∈I?\{i?}
ρkii?(t), k ∈ N309

where ρkii?(·) are the periodic solutions of (3.4) with ρkii?(0) = (ρk0)i for i ∈ I? \ {i?}.310

Condition (4.3) imposes that for each i ∈ I? \ {i?}, the orbits γ+(ρkii?) = {ρkii?(t), t ∈311

[0, T ]} of (3.4) are all disjoint for k ∈ N. Moreover, for each k, there exists an unique312

periodic solution xpk(·) of (2.3) in ∆ for which all species in I? are present with313

ratios given by the functions ρkii? . This implies that the periodic orbits γ+(xpk) =314

{xpk(t), t ∈ [0, T ]}, k ∈ N, of (2.3) are all disjoint. Indeed, if γ+(xpk) = γ+(xpl) for315

some k 6= l, there should exist τ ≥ 0 such that xpk(t) = xpl(t + τ) for any t ≥ 0. In316

particular, one should have xpki (t) = xpli (t + τ) for i 6= i? in I? and any t ≥ 0, but317

as the orbits γ+(ρkii?), γ+(ρlii?) are disjoint, one should have ρkii?(t + τ) 6= ρlii?(t) for318

some t, that is xpki? (t) 6= xpli?(t + τ) and thus a contradiction with with the fact that319

the orbits are non distinct.320

The results of Proposition 4.1 are twofold. First, they complete those of Proposi-321

tion 3.4, since we now have the persistence of the species of I?, while the less fit species322

of I \ I? are washed-out. This stronger form of the competitive exclusion principle323

comes from Assumption 3.5 and the fact that there is no species outside the taxon324

I. This result allows coexistence in the periodic setting under the non-generic as-325

sumption that the surviving species belong to I?. It generalizes known similar results326

in the non-autonomous setting [5]. Then, the second aspect of this result concerns327

the number of distinct periodic coexistence solutions of the system (2.3), which are328

a continuum of neutrally stable periodic solutions. Proposition 4.1 shows that if the329

growth functions are close enough to each other, in the sense that the corresponding330

species belong to I?, then there are infinitely many periodic coexistence solutions. We331

may expect that eventual sufficient conditions for uniqueness forbid growth functions332

to be too close in a sense close to ours.333
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5. Multiplicity of periodic solutions with more than one taxon. In this334

section, we show that it is possible to have coexistence of two taxa in competition, each335

of them preserving the proportions of species having the same break-even concentra-336

tions, leading to an infinite number of periodic orbits. Roughly speaking, the idea of337

the proof of Proposition 5.2 below is to consider a non-autonomous planar system that338

is asymptotically periodic, and to revisit the results about periodic planar dynamics339

in this framework, with the help of the theory of asymptotic periodic semi-flows. For340

technicalities, we need in this section the following additional hypothesis.341

Assumption 5.1. The functions µi, i ∈ {1, . . . , n}, are analytic at any s > s, and342

u is an analytic function of t.343

For convenience, we shall denote for any integrable scalar function ζ(·) the average344

quantity by345

〈ζ〉T :=
1

T

∫ T

0

ζ(t)dt.346

Proposition 5.2. Assume that one has {1, . . . , n} = Ia t Ib, where species in347

Ia, resp. Ib, belong to a same taxon. For any fixed positive initial condition in ∆,348

let (spa(·), xpa(·)), resp. (spb(·), x
p
b(·)) be the asymptotic periodic solution of (2.1) when349

only species in Ia, resp. Ib, are initially present. If the conditions350

λba := 〈µi(spb)〉T − ū > 0, i ∈ I?a ,(5.1)351

λab := 〈µi(spa)〉T − ū > 0, i ∈ I?b ,(5.2)352353

are fulfilled, then the solution of (2.3) converges asymptotically to a periodic solution354

for which all species in I?a and I?b are present, the other species being washed out.355

Moreover, when there exists at least one positive initial condition satisfying the above356

conditions, and at least one of the subsets I?a , I?b is not reduced to a singleton, there357

exists an infinity of distinct periodic orbits of (2.3) for which all the species in I?a t I?b358

are present.359

Proof. The taxa are characterized by generating functions ϕa, ϕb and numbers360

αi > 0, βi ≥ 0 such that361

µi(s) = αiϕa(s) + βi, i ∈ Ia, µi(s) = αiϕb(s) + βi, i ∈ Ib.362

Take i?a ∈ I?a and i?b ∈ I?b . Let x(·) be a positive solution of (2.3) in ∆ and define the363

functions, for i ∈ I?a t I?b364

(5.3) ri(t) =

{
ρii?a(t), i ∈ I?a ,
ρii?b (t), i ∈ I?b ,

t ≥ 0.365

Then, variables xi?a , xi?b are solutions of the non-autonomous planar dynamics366

ẏa = (fa(t, ya, yb)− u(t))ya,
ẏb = (fb(t, ya, yb)− u(t))yb,

367

with368

fa(t, ya, yb) := µi?a(s(t, ya, yb)), fb(t, ya, yb) := µi?b (s(t, ya, yb)),369
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where370

s(t, ya, yb) = sin −
∑
i∈I?a

ri(t)
αiy

αi
αi?a
a −

∑
i∈I?b

ri(t)
αiy

αi
αi?
b

b −
∑

i/∈I?atI?b

xi(t).371

Let µ̃i?a , µ̃i?b be C1 increasing extensions of the functions µi?a , µi?b for negative argu-372

ments, and consider the dynamics373

(5.4)
ẏa = (f̃a(t, ya, yb)− u(t))ya,

ẏb = (f̃b(t, ya, yb)− u(t))yb,
374

in the plane, where the functions f̃a, f̃b are defined with the expressions of fa, fb375

replacing the functions µi?a , µi?b by their extensions µ̃i?a , µ̃i?b . As one has αi/αi?a ≥ 1376

for i ∈ I?a , and αi/αi?b ≥ 1 for i ∈ I?b , this dynamics is Lipschitz in (ya, yb). Moreover377

the set378

S := [0, sin]× [0, sin]379

is forwardly invariant as one has fa(t, sin, yb) < 0, fb(t, ya, sin) < 0 for any (ya, yb) ∈ S380

and t ≥ 0. Solutions of (5.4) are thus well defined in S and unique. The pair381

(xi?a(·), xi?b (·)) is such a solution for (ya(0), yb(0)) = (xi?a(0), xi?b (0)).382

With Proposition 3.4, we know that the functions ri with i ∈ I?a t I?b are T -383

periodic, and variables xi with i /∈ I?a t I?b converge asymptotically to 0. We thus384

consider the limiting dynamics385

(5.5)
ẏa = (f̃ la(t, ya, yb)− u(t))ya,

ẏb = (f̃ lb(t, ya, yb)− u(t))yb,
386

where387

f̃ la(t, ya, yb) := µ̃i?a(sl(t, ya, yb)), f̃ lb(t, ya, yb) := µ̃i?b (sl(t, ya, yb))388

with389

sl(t, ya, yb) := sin −
∑
i∈I?a

ri(t)
αiy

αi
αi?
a −

∑
i∈I?b

ri(t)
αiy

αi
αi?

b ,390

which are time periodic functions. One has also391

lim
t→+∞

|(f̃a(t, ya, yb)− f̃ la(t, ya, yb))ya| = lim
t→+∞

|(f̃b(t, ya, yb)− f̃ lb(t, ya, yb))yb| = 0392

uniformly for (ya, yb) ∈ S. Therefore, the non-autonomous semi-flow of (5.4) in S is393

asymptotically periodic with limit periodic semi-flow of (5.5) (see Proposition 3.2 in394

[19]). The system (5.5) is competitive and we can apply the results of the literature395

about periodic competitive planar systems, which states that any bounded solution396

converges to a periodic solution (ypa(·), ypb (·)) (see for instance Theorem 4.2 in [15]).397

Let P be the Poincaré map associated to this dynamics398

P : Y0 ∈ S 7→ Y (T, Y0) ∈ S399

where Y (·, Y0) denotes the solution (ya(·), yb(·)) of (5.5) with (ya(0), yb(0)) = Y0.400

On the axis ya = 0 or yb = 0, the dynamics is with a single taxon. One can then401

reproduce the arguments of the proof of Proposition 4.1 to show that there are unique402

fixed points Y ?a = (y?a, 0), Y ?b = (0, y?b ) of P in S with y?a > 0, y?b > 0. Moreover,403
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one has y?a = (xpa)i?a(0), y?b = (xpb)i?b (0), where xpa(·), xpb(·) are the asymptotic periodic404

solutions of (2.3) for the initial conditions ξ, ζ405

ξi =

{
xi(0), i ∈ Ia,
0, i ∈ Ib,

ζi =

{
0, i ∈ Ia,
xi(0), i ∈ Ib

406

(remind from Proposition 3.4 that functions ρii?a (i ∈ Ia) or ρii?b (i ∈ Ib) remain the407

same).408

The linearized dynamics Ẏ = M(t)Y of (5.5) is given by the matrix409

M(t) =

[
a(t) b(t)
c(t) d(t)

]
410

with411

a(t) = f̃ la(t, ya(t), yb(t))− u(t) + ∂ya f̃
l
a(yt, ya(t), yb(t))ya(t),412

b(t) = ∂yb f̃
l
a(t, ya(t), yb(t))ya(t),413

c(t) = ∂ya f̃
l
b(t, ya(t), yb(t))yb(t),414

d(t) = f̃ lb(t, ya(t), yb(t))− u(t) + ∂yb f̃
l
b(t, ya(t), yb(t))yb(t)).415416

Along the periodic solution (xpa(·), 0), one has417

M(t) =

[
? ?
0 f lb(t, ((x

p
a)i?a(t), 0)− u(t)

]
418

for which the characteristics multiplier exp
∫ T
0
f lb(t, ((x

p
a)i?a(t), 0) − u(t) dt is equal to419

exp(Tλba) and larger than 1 under condition (5.1). The fixed point Y ?a is thus hy-420

perbolic repulsive. In a similar way, Y ?b is an hyperbolic repulsive fixed point under421

condition (5.2). This implies that Y ?a and Y ?a are isolated fixed points of P .422

For Y0 = 0, the solution of (5.5) is identically null and one has423

M(t) =

[
µi?a(sin)− u(t) 0

0 µi?b (sin)− u(t)

]
.424

The characteristics multipliers are thus exp
∫ T
0
µi?a(sin) − y(t) dt, exp

∫ T
0
µi?b (sin) −425

y(t) dt which are larger than one under Assumption 3.5. The zero solution is thus426

repulsive.427

Along any positive solution ya(·), yb(·), note that one has b(t) < 0 and c(t) < 0428

at any t ∈ [0, T ]. Then, one has Ẏ1 > 0 for Y1 = 0 and Y2 < 0, and Ẏ2 < 0 for Y1 > 0429

and Y2 = 0. Therefore, the second and fourth quadrant are invariant by the linear430

dynamics Ẏ = M(t)Y , which implies that the matrix P ′(Y0) has strictly positive431

diagonal elements and strictly negative off-diagonal elements for a positive Y0 ∈ S.432

Let S ′ = {Y ∈ S; sl(0, Y ) ∈ (s, sin]}. By Lemma 2.3, S ′ is invariant by P and any433

fixed point of P belongs to S ′, including Y ?a and Y ?b . Following the arguments given in434

[2], the positive fixed points of P lie on a continuous curve Γ in S ′, which connects the435

fixed points Y ?a , Y ?b . Under Assumption 5.1, x(·) is analytic and the functions ri(·) as436

well. Therefore, the map P is analytic on S ′. Then, the curve Γ is also analytic (see437

[2, 4]). If there were an infinite number of fixed points of P in S then all the points438

of the curve Γ will be fixed points by analyticity, which contradicts the fact that Y ?a439

and Y ?b are isolated fixed points.440
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Finally, as P has a finite number of fixed points on S, we can apply the results441

about asymptotically autonomous discrete dynamical systems (Theorem 2.4 in [19]),442

from which one gets443

lim
k→+∞

(xi?a(t+ kT ), xi?b (t+ kT )) = Y (T, Y ?), t ∈ [0, T ].444

where Y ? is a fixed point of P in S. As the fixed points on the axes 0, Y ?a and Y ?b are445

all repulsive, we conclude that Y ? is positive, and that x(·) converges asymptotically446

to the periodic solution xp(·) given by447

xpi (t) =


ri(t)

αiya(t, Y ?)
αi
αi?a > 0, i ∈ I?a ,

ri(t)
αiyb(t, Y

?)
αi
αi?
b > 0, i ∈ I?b ,

0, i /∈ I?a t I?b ,

448

for t ∈ [0, T ].449

When I?a is not reduced to a singleton, take i†a 6= i?a in I?a and consider perturba-450

tions xε(·) of the solution x(·), as solutions of (2.3) for the initial condition451

(5.6) xεi(0) =

{
xi(0), i 6= i†a,

(ri†a(0) + ε)
a
i
†
axi?a(0)

αi
αi?a , i = i†a,

452

with ε > 0. By continuity of solutions of (2.1) with respect to the initial condition,453

there exists ε̄ > 0 such that for any ε ∈ (0, ε̄) xε(0) belongs to ∆ and conditions454

(5.1), (5.2) are fulfilled for this new initial condition. As before, we deduce that xε(·)455

converges asymptotically to a periodic solution xε,p(·) for which all species in I?a and456

I?b are present.457

Let ρεij be the ratio functions for the initial condition xεi(0). Note from (5.6) that458

one has ρε
i†ai?a

(0) = ρi†ai?a
(0) + ε. One gets from (3.4)459

ρε
i†ai?a

(t) = ρε
i†ai?a

(0) exp

∫ t

0

(ū− u(τ)
(
α−1
i†a
− α−1i?a

)
dτ

= ρi†ai?a
(t) + ε exp

∫ t

0

(ū− u(τ)
(
α−1
i†a
− α−1i?a

)
dτ, t ≥ 0.

460

Therefore, the orbits γ+(ρε
i†ai?a

) for ε ∈ (0, ε̄) are all distinct and we deduce, as in461

the proof of Proposition 4.1 that the orbits of the periodic solutions γ+(xε,p) are all462

distinct.463

Remark 5.3. Conditions (5.1), (5.2) are independent of the choice of i ∈ I?a , I?b .464

Indeed, let s̄a = λi(ū) which is identical for any i ∈ I?a , and one has465

〈µi(spb)〉T − ū = αi〈ϕa(spb)〉T + βi − ū
= αi〈ϕa(spb)− ϕa(s̄a)〉T + αiϕa(s̄a) + βi − ū
= αi〈ϕa(spb)− ϕa(s̄a)〉T

466

(using the property ū = µi(s̄a) = αiϕa(s̄a)+βi for i ∈ I?a). The sign of 〈µi(spb)〉T−ū is467

thus independent of i ∈ I?a , the numbers αi being positive. One obtains symmetrically468

the same property for the sign of 〈µi(spa)〉T − ū with i ∈ I?b .469
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Similarly to Proposition 4.1, Proposition 5.2 generalizes known results providing470

a continuum of neutrally stable periodic solutions of system (2.3). Indeed, when each471

taxon contains only one species, we recover exactly the results in [15]. However, thanks472

to our taxonomic assumptions, we are able to extend it from two species to two taxa,473

under very similar conditions. Then, we are also able to establish the existence of an474

infinite number of periodic coexistence solutions, generalizing the result of Proposition475

4.1 from one to two taxa.476

6. Numerical illustrations. In this section, we illustrate numerically our re-477

sults with the class of Hill functions [8]478

µ(s) =
µmaxs

p

Kp + sp
479

that are parameterized by the three positive numbers µmax, K and p. This class of480

increasing growth functions is quite popular in microbiology, pharmacology or bio-481

chemistry for its flexibility and effectiveness in fitting experimental data, and also482

because it enlarges the well known class of Monod functions483

µ(s) =
µmaxs

K + s
484

as the particular case of p equal to 1. The parameter p measures in some way a485

distance from the Monod model. Quite often, practitioners conduct experiments first486

with large values of s to estimate the maximal growth rate µmax = lims→+∞ µ(s) and487

then look for the value of s for which the growth rate is equal to µmax/2. One can488

straightforwardly check taht this value is equal to the affinity constant K (sometimes489

also called the half-saturation constant), whatever is p. This is enough to identify the490

Monod growth function, but without additional data, different candidates of growth491

functions in the class of Hill functions could also suit, depending on the parameter p.492

To obtain a variety of different situations, we have considered three generating493

functions with p equal to 2 or 4494

ϕa(s) =
mas

2

K2
a + s2

, ϕb(s) =
mbs

4

K4
b + s4

, ϕc(s) =
mcs

2

K2
c + s2

.(6.1)495
496

with parameters given in Table 6.1, so that one of them (ϕb) has a significantly497

different shape. Graphs of the functions ϕa, ϕb, ϕc are depicted on Figure 6.1. For498

p > 1, the graphs of theses functions are convex up to K and then concave for larger499

values. The larger is p, the more the convexity/concavity is pronounced, as one can500

see on Figure 6.1. Mixing species from taxa a and b or from taxa a and c allows501

then to generate contrasted situations. Imposing the same constant K is a way to502

consider species having similar affinity for the resource and to focus on the impact of503

the different shapes of the growth functions away from this point. We have generated504

nine growth functions within these three taxa with characteristic numbers given in505

Table 6.2 and s = 0.5. Let us denote the sets of indices of species belonging to a506

same taxon Ia = {1, 2, 3}, Ib = {4, 5, 6}, Ic = {7, 8, 9}. The graphs of these functions507

are depicted in Figure 6.2, where we have considered for each of these nine growth508

functions a C1 extension for s ≤ s as a polynomial increasing on [0, s] and null at509

0. Clearly, Assumptions 2.1, 2.2, 3.5, 5.1 are satisfied. Within a taxon, each species510

i is characterized by the parameters αi and βi following Equation (3.1). Since αi511

multiplies the generating growth function, it affects more the behavior of the species512

for large values of the growth rates, hence for larger values of s (the larger is αi,513
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the higher is the maximal growth rate). Since βi is added to the generating growth514

function, its impact is greater for smaller values of the growth rates hence at small515

values of s (the lower is βi, the smaller is the growth function). These effects can be516

seen on Table 6.2 and Figure 6.2.517

The operating conditions have been chosen as follows518

sin = 4, ū = 0.8, T = 10519

where the periodic removal rate is520

(6.2) u(t) = ū+ 0.2 sin

(
2πt

T

)
521

For these values, we have checked in all our simulations that the solutions remain in522

the set ∆ with s = 0.5. For the chosen value of ū, numbers s̄ and γi defined in (3.2)523

and (3.3) are given in Table 6.3 for each taxon. Note that we do not impose the value524

s̄ to be the same for each taxon. Accordingly to Remark 3.2, the fittest species within525

each taxon are given by the subsets of indices I?a = {1, 2}, I?b = {4, 5}, I?c = {8, 9}.

i a b c

mi 2 2.95 1.8

Ki

√
3
√

3
√

3

Table 6.1: Parameters defining the generating functions ϕa, ϕb, ϕc

i 1 2 3 4 5 6 7 8 9

ϕ ϕa ϕb ϕc
αi 0.9 1.15 0.85 0.8 1.05 0.6 0.9 1.1 0.7
βi 0.161 −0.0165 0.1455 0.232 0.0545 0.326 0.161 0.019 0.261

Table 6.2: Characteristic numbers of the nine growth functions with respect to their
taxon

species 1 2 3 4 5 6 7 8 9

ϕ ϕa ϕb ϕc
s̄ 1.28 1.30 1.40
γi 0.09 0.09 0.03 0.09 0.09 0.01 0.09 0.09 0.03

Table 6.3: For each taxon, numbers s̄ and γi (with ū = 0.8)

526
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0

u
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c

Fig. 6.1: Graphs of the generating growth functions: ϕa and ϕc are close to each other
with ϕa slightly above ϕc, while ϕb has a different shape.
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0 sin
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0 sin

0
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(c) taxon Ic

Fig. 6.2: Graphs of the growth functions within each taxon. The orange and blue
growth functions reach the value ū for lower values of s than the green one, implying
that the species associated with the latter is expected to be washed-out by the two
other ones.

6.1. Simulations with species of a single taxon. To illustrate Proposition527

4.1, we have run simulations with all the three species in each taxon. For various528

initial conditions, we found the same asymptotic orbits with the same initial ratios529

of species, as expected. We observed that species that are not the fittest within their530

taxon i.e. that do not belong to I?a , I?b or I?c are washed-out in presence of all the531

species in Ia, Ib or Ic respectively. On the opposite, species with the largest values of532

γi coexist, that are 1 and 2 for taxon a, 4 and 5 for taxon b, and 7, 8 for taxon c (see533

Table 6.3). To illustrate trajectories over time, we have chosen for simplicity uniform534

initial distribution between species. Figure 6.3 shows how the green species 3, 6 or 9535

are washed-out within their taxon, while trajectories of the orange and blue species536

which coexist are more or less close to each other depending on the taxon. This is537

related to the distance of their graphs (see Figure 6.2) or how close are the values538

of αi (see Table 6.2). Additionally, Figure 6.4 represents the solutions in the phase539

portrait for different initial distributions. It shows the multiplicity of periodic orbits540

with coexistence of two species, which is the main result of the present work. For541

different initial distributions, we obtained qualitatively the same behaviors but with542
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orbits that are more or less elongated. This is explained by the fact that proportions543

are periodically conserved since initial time (but not the total biomass). One can also544

observe on Figure 6.4 that the size of the orbits depends on the taxon. This is related545

to the amplitude of the periodic solutions: the more similar the species are (i.e. the546

closer their graphs are ), the largest amplitudes are. This is why orbits with taxon b547

are smaller than for the two other taxa.548

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5
x1
x2
x3

(a) i ∈ Ia

0 20 40 60 80 100
t
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x6

(b) i ∈ Ib
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x7
x8
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(c) i ∈ Ic

Fig. 6.3: Simulations with species of the same taxon, with xi(0) = 0.5 for each i.
One species is washed-out by the two others. The curves for taxa a and c look alike,
related to the similarity between ϕa and ϕc.
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(b) orbits in the (x4, x5)
plane when species in I?b

only are present
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Fig. 6.4: Multiplicity of periodic orbits among a single taxon. The shape of the
periodic solutions varies according to the taxon.

6.2. Simulations with species of two different taxa. In this section, we549

have simulated species from two different pairs of taxa. As explained formerly, we550

have considered two contrasted situations: significantly different taxa (a and b) and551

taxa relatively close to each other (a and c). Initial conditions have been chosen with552

uniform distribution between the six species (three from each taxon), for simplicity.553

We have first computed numerically numbers λba, λab defined in (5.1), (5.2):554

λba = 0.012576 > 0, λab = 0.006272 > 0555

According to Proposition 5.2, inter-taxa coexistence is thus possible as these two556

numbers are positive for the periodic function (6.2). On Figure 6.5, one can see that557

species that were washed-out when together with species of the same taxon (species558

3 and 6, see Section 6.1) are also washed-out here, as expected. We have now four559
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species from I?a ∪ I?b that coexist. Additional information about the transients are560

revealed. One can observe that species from taxon b (4 and 5) are initially raising561

faster than those of taxon a (1 and 2). This is due to the fact that the initial level s of562

the resource is relatively large, which favors species from the taxon b as their growth563

functions take larger values (see Figure 6.2). One can also observe that the time to564

reach a quasi-periodic regime is much slower than in the previous simulations with a565

single taxon. Note that there are twice as many species that coexist than before, and566

that the transient dynamics is governed by a scalar dynamics (4.1) for the single taxon567

case while it is now ruled by a two dimensional one (5.4) for which the transients can568

be slower.569
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Fig. 6.5: Simulations with xi(0) = 0.5, for i ∈ Ia ∪ Ib. Species 5 and 6 are washed-out
while the others (which do not belong to the same taxon) are able to coexist together.

We have then considered species of Ia in presence with those of Ic (Figure 6.6).570

In this case, we computed the numbers571

λca = 0.071 > 0, λac = −0.0639 < 0.572

According to Proposition 5.2, inter-taxa coexistence is now no longer guaranteed.573

However, as the number λca is positive, we deduce that taxon a can settle. However,574

although taxon c seems closer from taxon a than b if one looks at their growth curves575

only (Figure 6.2), any species from taxon c looses the competition with taxon a. here,576

one needs to explicitly compute the sign of numbers λba and λcc to predict the issue577

of the competition. Finally, only species 1 and 2 are asymptotically present, with a578

transient speed similar to the simulations with the single taxon a (cf Figure 6.3a).579
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Fig. 6.6: Simulations with xi(0) = 0.5, for i ∈ Ia ∪ Ic. Species 1 and 2 from the taxon
a coexist but wash-out all the other species.
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6.3. Simulations under approximate taxon condition. The conditions for580

species to belong to a same taxon, and that some of them have identical numbers581

γi, are not generic among all increasing growth functions. In the spirit of former582

works [12, 3] for constant removal rate, we investigate here numerically cases where583

the condition (3.1) is only approximately satisfied.584

For this purpose, we considered an additional species labeled 2′ whose growth585

function µ2′ is closed to µ2 but that does not belong to the taxon Ia. For the illus-586

tration, we have simply taken µ2′ = µ2 + εη, where η is a smooth function null at 0587

with η(λ2(ū)) > 0 that is not proportionate to ϕa, and ε is a small number.588

Remark 6.1. In the particular case where the perturbation is such that µ2′ still589

satisfies the taxonomic assumption with α2′ = α2 and γ2′ = γ2−ε (recall that γ2 = γ1),590

it is possible to study how the perturbation propagates over time. Indeed, we have591

from Proposition 3.3 that592

ρ̇12′ =
(
ε+ (ū− u(t))(α−11 − α

−1
2 )
)
ρ12′ .593

If x2(0) = x2′(0) and the other initial conditions are the same, we can integrate this594

dynamics over k ∈ N periods from t = 0 and obtain the following comparison result:595

ρ12′(kT ) = ρ12(kT )ekεT .596

For the numerical illustration, we have taken η(s) = s
1+s and first run simulations597

with species 1, 2 and 2′. For ε < 0, the species 2′ is asymptotically conducted to wash-598

out. However, as one can see on Figure 6.7, the transients can be very long when µ2′ is599

very close to µ2 so that the three species coexist in an almost periodic manner during600

a long time horizon. On the opposite, for ε > 0, the species 2′ is the final winner of601

the competition (Figure 6.8). However, it can take a long time for the other species602

to decline, so that here also the three species coexist in an almost periodic manner603

during a long time period.604
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Fig. 6.7: Simulations with species 1, 2, 2′ together when ε < 0. Species 2′ is washed-
out after a transient regime whose length depend on ε.
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Fig. 6.8: Simulations with species 1, 2, 2′ together when ε > 0. Species 1 and 2 are
both washed-out after a transient regime whose length depend on ε.

Then, we have considered species of taxa Ia and Ib together, as before (Figure 6.5),605

but where species 2 is replaced by species 2′. Figures 6.9, 6.10 show that depending606

on the sign of ε, species 2′ belongs to the the final composition of the ecosystem or607

not, and that the time necessary to distinguish this issue can be very long, even for608

values of ε not extremely small. Note that coexistence of several species is maintained609

in both cases. A message here is that the analysis of non generic situations, as we610

do here, could be of some interest when facing cases likely to be closed from the non-611

generic case, and we believe that this could be even more likely when considering a612

large number of species.613
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Fig. 6.9: Simulations with species 1, 2′, 3, 4, 5, 6 together when ε = −10−3. Species
2′ does not belong to I?a and is washed-out after a long transient regime.
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Fig. 6.10: Simulations with species 1, 2′, 3, 4, 5, 6 together when ε = 10−3. Now I?a
is reduced to species 2′, which is the only species of taxon a to persist.

7. Conclusion. In this work, we have proposed a taxonomic condition on growth614

functions, that allows the coexistence under periodic removal rate of two or more615

species with the same break-even concentrations within a single taxon. This gener-616

alizes the neutral condition of identical break-even concentrations in the chemostat617

with constant removal rate, which ensures coexistence at steady state.618

Our condition is defined relatively to a generating growth function that charac-619

terizes a taxon, independently of the period and the shape of the periodic signal.620

This makes the coexistence result robust with this respect, as well as the extinction621

of species in the taxon with larger break-even concentrations. Relying on the theory622

of asymptotic periodic semi-flows, we have shown that when persistence of a taxon is623

guaranteed, then any solution converges to a periodic orbit, and moreover that there624

exists an infinite number of distinct periodic orbits depending on the initial propor-625

tions of the species (within the taxon). There exists then a continuum of neutrally626

stable periodic orbits. In addition, we have generalized the existing results about627

coexistence of two species in the periodic chemostat model to the case of two taxa in628

competition, leading to a double infinity of periodic orbits with species of both taxon.629

The condition of belonging to a taxon is non-generic and gives non-hyperbolic630

periodic orbits, but we believe that it could guide future constructions of sufficient631

conditions for the uniqueness of hyperbolic periodic orbits in the chemostat model632

with periodic removal rate, an open problem for general classes of growth functions.633

Finally, we have shown with the help of numerical simulations that when these634

non-generic conditions are just ”almost” fulfilled, what is likely to happen among a635

huge number of species, then one can observe many almost periodic solutions with636

coexistence on a long time window, justifying a posteriori the present analysis of637

neutrally stable periodic solutions.638

REFERENCES639

[1] G.J. Butler, S.B. Hsu and P.E. Waltman, A mathematical model of the chemostat with640
periodic washout rate, SIAM Journal of Applied Mathematics, 45, 435–449, 1985.641

[2] P. De Mottoni and A. Schiaffino, Competition systems with periodic coefficients: a geometric642
approach, Journal of Mathematical Biology, 11, 319–335, 1981.643

[3] M. El Hajji and A. Rapaport, Practical coexistence of two species in the chemostat - a slow-644
fast characterization -, Mathematical Biosciences, 218(1), 33–39, 2009.645

[4] J.K. Hale and A.S. Somolinos, Competition for fluctuating nutrient, Journal of Mathematical646
Biology, 18, 255–280, 1983647

[5] J. Harmand, C. Lobry, A. Rapaport, T. Sari, The chemostat, mathematical theory of con-648
tinuous culture of micro-organisms, ISTE Press, London, 2017.649

21

This manuscript is for review purposes only.



[6] S.B. Hsu, A Competition Model for a Seasonally Fluctuating Nutrient Journal of Mathematical650
Biology, 9, 115–132, 1980.651

[7] P. Lenas and S. Pavlou, Coexistence of three competing microbial populations in a chemostat652
with periodically varying dilution rate, Mathematical Biosciences 129, 111–142, 1995.653

[8] H. Moser, The dynamics of bacterial populations maintained in the chemostat, Carnegie Insti-654
tution of Washington Publication, 1958.655

[9] S. Nakaoka and Y. Takeuchi, How can three species coexist in a periodic chemostat? Mathe-656
matical and Numerical Study, Proceedings of the 9th International Conference “Difference657
Equations and Discrete Dynamical Systems”, L. Allen, B. Aulbach, S. Elaydi, R. Sacker658
(Editors), Los-Angeles (USA), 2–7 Aug. 2004, World Scientific, 121–133, 2005.659

[10] S. Nowack andI. Klapper, Exclusion in a Temporally Varying Chemostat System: Dependence660
on Trade-Offs, SIAM Journal on Applied Mathematics 78(5), 2819–2839, 2018.661

[11] Q.-L. Peng and H.I.Freedman, Global Attractivity in a Periodic Chemostat with General662
Uptake Functions, Journal of Mathematical Analysis and Applications, 249(2), 300–323,663
2000.664

[12] A. Rapaport, D. Dochain and J. Harmand, Long run coexistence in the chemostat with665
multiple species, Journal of Theoretical Biology, 257(2), 252–259, 2009.666

[13] P.L. Silverson, R.R. Hudgins, Periodic Operations of Bioreactors, Elsevier, 2013.667
[14] H. L. Smith, Competitive coexistence in an oscillating chemostat, SIAM Journal on Applied668

Mathematics, 40, 498–522, 1981.669
[15] H. Smith, P. Waltman, The theory of chemostat, dynamics of microbial competition, Cam-670

bridge Studies in Mathematical Biology, Cambridge University Press, 1995.671
[16] G. Stephanopoulos, A. Frederickson, R. Aris, The growth of competing microbial popula-672

tions in a cstr with periodically varying inputs, AIChE Journal, 25(5), 863–872, 1979.673
[17] F. Wang and G. Pang, Competition in a chemostat with Beddington DeAngelis growth rates674

and periodic pulsed nutrient, Journal of Mathematical Chemistry, 44(3), 691–710, 2008.675
[18] G. Wolkowicz and X.-Q. Zhao, N-species competition in a periodic chemostat, Differential676

Integral Equations 11, 465–491, 1998.677
[19] X.-Q. Zhao, Asymptotic behavior for asymptotic periodic semiflows with applications, Commu-678

nications on Applied Nonlinear Analysis, 3(4), 43–66, 1996.679

22

This manuscript is for review purposes only.


	Introduction
	The setting
	A taxonomic assumption and its consequences
	Multiplicity of periodic solutions within a single taxon
	Multiplicity of periodic solutions with more than one taxon
	Numerical illustrations
	Simulations with species of a single taxon
	Simulations with species of two different taxa
	Simulations under approximate taxon condition

	Conclusion
	References

