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A B S T R A C T

The rapid spread of African swine fever (ASF) in recent years has once again raised awareness of the need
to improve our preparedness in preventing and managing outbreaks, for which modelling-based forecasts can
play an important role. This is even more important in the case of a disease such as ASF, involving several
types of hosts, characterised by a high case-fatality rate and for which there is currently no treatment or
vaccine. Within the framework of the ASF challenge, we proposed a modelling approach based on a stochastic
mechanistic model and an inference procedure to estimate key transmission parameters from provided data
(incomplete and noisy) and generate forecasts for unobserved time horizons. The model is partly data driven
and composed of two modules, corresponding to epidemic and demographic dynamics in domestic pig and
wild boar (WB) populations, interconnected through the networks of animal trade and/or spatial proximity.
The inference consists in an iterative procedure, alternating between the two models and based on a criterion
optimisation. Estimates of transmission and detection parameters appeared to be of similar magnitude for each
of the three periods of the challenge, except for the transmission rates in WB population through contact with
infectious individuals and carcasses, higher during the first period. The predicted number of infected domestic
pig farms was in overall agreement with the data. The proportion of positive tested WB was overestimated, but
with a trend close to that observed in the data. Comparison of the spatial simulated and observed distributions
of detected cases also showed an overestimation of the spread of the pathogen within WB metapopulation.
Beyond the quantitative results and the inherent difficulties of real-time forecasting, we built a modelling
framework that is flexible enough to accommodate changes in transmission processes and control measures
that may occur during an epidemic emergency.
1. Introduction

Epidemic modelling and forecasting will play a key role in our
preparedness to face the next emerging infectious disease outbreaks
(Heesterbeek et al., 2015). Indeed, they have received particular at-
tention during the recent public health emergencies. Whether it was
the Ebola outbreak, influenza or the Covid-19 pandemic, these events
highlighted the significant value of infectious disease forecasts in im-
proving our understanding of spread dynamics and supporting decision
making (Chretien et al., 2015; Moghadas et al., 2009; Brooks-Pollock
et al., 2021). A reliable and timely assessment of an infectious dis-
ease outbreak, particularly in the early stages of the spread, enables
decision-makers to make rapid and appropriate decisions needed to
ensure epidemic control (Chowell et al., 2016; Kucharski et al., 2020;
James et al., 2021). The same applies to animal epidemiology, where
modelling has been widely used to develop herd management protocols
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and assess surveillance and control strategies (Brooks-Pollock et al.,
2021; Ezanno et al., 2020).

The rapid spread of the African swine fever (ASF) in recent years
(Vergne et al., 2017) has once again raised awareness of the need
to improve our preparedness to prevent and manage the spread in a
given area of a pathogen already known but not yet present in the
area, as well as the emergence of a new pathogen. It is therefore
crucial to identify the critical points that could hamper our ability
to respond quickly to an infectious disease outbreak in farm animals.
This is all the more important in the case of a disease such as ASF,
which is characterised by a high case-fatality rate and for which there is
currently no treatment or vaccine (Dixon et al., 2019). Furthermore, the
involvement of wild boar, themselves clinically affected by this disease,
in the introduction and spread of the ASF virus between farms, further
complicates the picture.

While epidemiological models are now recognised as a valuable
tool to inform decision-making (Alahmadi et al., 2020), the use of
vailable online 13 January 2023
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model predictions is often challenging. This is partly due to the fact
that the quality of the predictions is highly dependent on the model
parameterisation, which in turn requires prior knowledge and sufficient
available data of fairly good quality to be integrated. Indeed, data on
the dynamics of infectious diseases are often scarce and incomplete due
to the nature of the epidemic processes partially observed.

Epidemiological modelling has benefited from recent advances in
computational power on the one hand and inference methods on the
other (Sisson et al., 2018), allowing the development and calibration
of large-scale disease spread models (Brooks-Pollock et al., 2014), and
to perform a large number of simulations in a short time. However,
progress remains to be made for model-based forecasting to become a
fully operational tool. Partial lack of knowledge related in particular
to limited data availability (Moran et al., 2016) is one of the potential
factors that could hamper the effectiveness of model-based forecasting.
Another would be related to the time inherent in research for the
development of relevant models, which is sometimes insufficient in
view of the responsiveness that decision-making authorities need to
show to deal with health emergency or crisis.

The ASF modelling challenge (Picault et al., 2022) allowed teams
of modellers to improve their readiness in terms of developing and
calibrating models in a limited time frame when facing emerging
infectious threats, and to assess their ability to advise policy makers
in a timely manner. Specifically, for our team, the motivations for
participating in this challenge were: (i) to test our ability to propose
a relevant propagation model during the emergence of a new pathogen
(as none of us had worked on ASF before), (ii) to improve our ability
to handle new data on an outbreak and use it to calibrate models, and
(iii) to evaluate how our experience in modelling infectious diseases of
livestock helped us in the analysis of a different host-pathogen system.

Here, we present the modelling framework, model fits and forecasts
that we generated as part of the blinded forecasting ASF challenge
conducted in 2020. The challenge was based on three periods, each
providing new synthetic data generated with a simulation model de-
scribing an ASF epidemic spreading among populations of domestic
pigs and wild boar, on an island with 25 administrative units, and
its own set of questions. We mainly focus on the methodological
framework we developed and the results obtained. We also highlight
some lessons learned from this experience.

2. Methods

The approach we considered is based on a stochastic mechanistic
model consisting of two parts, hereafter referred to as modules (one
for pigs and the other for wild boar related processes). The main
reasons for splitting the model into two modules were: (i) to be able
to use only one given the question and available information, (ii)
to separate the computer implementation and therefore speed up the
coding step and debugging, (iii) to provide the possibility of using
separate inference methods for each module to implement procedures
specific to the context and available data, and (iv) to provide a failure
tolerant approach that allows predictions using only one of the two
modules.

The developed approach is partly data-driven. This choice was
mainly motivated by the lack of information to implement and calibrate
some processes with a mechanistic approach.

In the following, we first describe the structures of the two modules,
the domestic pig farms and wild boar metapopulations (Section 2.1),
and how they are linked. Then, we present the modelling framework
and its practical implementation (Section 2.2), followed by the infer-
ence procedure (Section 2.3) and prediction (Section 2.4). Finally, we
give a brief description of the changes we made to our approach during
the challenge.
2

Fig. 1. Visualisation of the contact network through trade movements between
domestic pig farms.

2.1. Metapopulation structure

Epidemic and demographic dynamics in the study area are de-
scribed as a set of two metapopulations of epidemiological units, corre-
sponding to domestic pig (DP) farms and wild-boar (WB) populations,
respectively. Different levels of interactions are represented, some of
which are specific to the units of the same metapopulation, and others
that connect the units of both metapopulations.

The representation of each of the metapopulations are based on
the data provided. These data are (i) the farm characteristics and the
history of trade movements for the domestic pig farms, and (ii) the
description of the land use (as urban, agricultural or forest) and the
census of the numbers of animals hunted (hunting bag).

2.1.1. Domestic pig farms
The underlying connection structure of the metapopulation of do-

mestic pig farms is naturally defined as the network of trade movements
between farms (see Fig. 1). Within this metapopulation, each of the
4540 epidemiological units (node) corresponds to a farm with specific
characteristics, which allow us to assign transmission routes through
which it can get infected or infect other nodes. Thus, each farm: is
either a breeder farm or a finisher farm or a breeder-finisher farm;
has an activity listed as commercial or backyard farm; and it is known
whether its animals have access to the outside or not.

2.1.2. Wild boar populations
The only information available regarding the wild boar population

on the island is the hunting bag for the 25 administrative units, and the
fact that during the hunting season about 50% of the wild boar are shot
(𝑝𝑟𝑜𝑝. 𝑊 𝐵 𝑠ℎ𝑜𝑡). The administrative units cover far too large areas to be
suitable as epidemiological units of interest. It was therefore necessary
to further subdivide the landscape in order to define the granularity
of the wild boar metapopulation. We then used a hexagonal grid to
discretise the landscape. The size of the tiles used varied according to
the period of the challenge: the diameter of the circumscribed circle
of the tile was 15,500 m for the first period, while the diameter of
the inscribed circle was 15,000 m for the second and third periods,
corresponding to 1045 and 854 tiles respectively.

Then, in order to allocate the wild boar to the epidemiological
units (defined by the tiles) thus created, we used the available land-
use data combined with the information provided by the challenge
organisers. We then assumed that the spatial distribution of the wild
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Fig. 2. Visualisation of the spatial density of wild boar using a hexagonal grid to
delineate populations: distribution of forest landcover (top left), hunting bag (number of
wild boar shot) by the administrative unit (top right), and the layout shown corresponds
to the one used in periods 2 and 3, which consisted of 854 hexagonal tiles with an
inscribed circle diameter of 15,000 m (bottom).

boar population was directly related to the proportion of forest within
a tile, relative to the area of forest in the administrative unit to which
the tile belongs (Supported by organiser data : WB spend 80% of their
time in forest area). Thus, for a tile 𝑖 located in the administrative unit
𝑢, the wild boar population size 𝑀𝑖 is calibrated as: 𝑀𝑖 ∼ 𝑓𝑜𝑟𝑒𝑠𝑡𝑖

𝑓𝑜𝑟𝑒𝑠𝑡𝑢
×

𝐻𝑢𝑛𝑡𝑖𝑛𝑔𝐵𝑎𝑔𝑢 × 𝑝𝑟𝑜𝑝. 𝑊 𝐵 𝑠ℎ𝑜𝑡, where 𝑓𝑜𝑟𝑒𝑠𝑡𝑖 and 𝑓𝑜𝑟𝑒𝑠𝑡𝑢 are the forest
areas in tile 𝑖 and administrative unit 𝑢 respectively, 𝐻𝑢𝑛𝑡𝑖𝑛𝑔𝐵𝑎𝑔𝑢 the
number of wild boar shot during the previous year in the administrative
unit 𝑢, and 𝑝𝑟𝑜𝑝. 𝑊 𝐵 𝑠ℎ𝑜𝑡 the estimated proportion of wild boar shot
during the hunting season (equal to 0.5). The resulting distribution of
wild boar population in the tiles is shown in Fig. 2.

2.1.3. Contact network
The transmission routes between populations of domestic pigs and

wild boar were described using a multi-layer network. This allows the
description of several types of interactions, representing each transmis-
sion route as a network layer (the different interactions are illustrated
in Fig. 3).

We considered two different types of potential transmission routes
between the epidemiological units of the domestic pig metapopulation:
through commercial movements and neighbourhood interactions. The
data provided on trade movements can be naturally described as a
temporal directed weighted network. The period covered starts 59 days
before the detection of the first case until the end of each specific
period of the challenge, which corresponds to a duration of 170 days
for the last period. The neighbourhood network is defined by the spatial
proximity: a link exists between two epidemiological units when the
distance between them is less than or equal to 4 km, a value chosen to
be of the same order of magnitude as the buffer defining the protection
zone.

Concerning the wild boar metapopulation, only one potential trans-
mission route was considered, defined by the spatial proximity between
the epidemiological units: a link between two tiles exists as soon as they
3

Fig. 3. Illustration of the interactions between populations of domestic pigs and wild
boar, with (a) a focus on a domestic pig farm and (b) a focus on a wild boar population.

share a common border, therefore animals from one tile can come in
contact with animals from directly adjacent tiles.

Regarding the contacts between the different epidemiological units
of the metapopulations of domestic pigs on one hand and wild boar on
the other, they are defined by two additional layers. For domestic pig
farms, if the animals had access to the outside, contacts with wild boar
were assumed possible in the tile where the farm is located and in the
directly adjacent tiles, and thus corresponding links were generated.
This hypothesis has been symmetrised for wild boar populations.

2.2. Model description

Our modelling approach is based on the combination of two stochas-
tic mechanistic compartmental models, under a metapopulation frame-
work. A brief description of the two models is given below.

2.2.1. Dynamics of domestic pig farms
Domestic pig farms are modelled by considering discretised health

status, without explicitly describing intra-farm dynamics. The tempo-
ral evolution of farm health statuses includes 5 different states, 𝑆
(Susceptible), 𝐸 (Exposed), 𝐼𝑠 (subclinically Infectious), 𝐼𝑐 (clinically
Infectious) and 𝑅 (Removed), and transitions between these states
(whose associated parameters are presented in Table 1).
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Table 1
Transitions between the health states for the domestic pig model.

Processus Rate

Infection (𝑆 → 𝑆 − 1, 𝐸 → 𝐸 + 1) 𝜆𝐷
Become infectious (𝐸 → 𝐸 − 1, 𝐼𝑠 → 𝐼𝑠 + 1) 𝛿𝐷
Onset of clinical signs (𝐼𝑠 → 𝐼𝑠 − 1, 𝐼𝑐 → 𝐼𝑐 + 1) 𝛾𝐷
Cullinga (𝑋 → 𝑋 − 1, 𝑅 → 𝑅 + 1) 𝜂𝐷
Repopulationa (𝑅 → 𝑅 − 1, 𝑆 → 𝑆 + 1) 𝜏𝐷

Note: X means any of the health statuses.
aDeterministic transitions.

During the first and second periods of the challenge, apart from the
infection which was implemented stochastically, all transitions were as-
sumed deterministic. In the third (last) challenge period, only the culling
nd repopulation transitions were implemented deterministically. In the
ase of stochastic transitions, exponentially distributed durations were
ssumed. The average times spent in the 𝐸, 𝐼𝑠 and 𝑅 compartments,
qual to 1∕𝛿𝐷, 1∕𝛾𝐷 and 1∕𝜏𝐷 respectively, are based on the information
rovided during the challenge.Culling events can occur under different
onditions: upon detection of an infected farm and then occur 4 days
fter the farm has become 𝐼𝑐, or due to the application of control
easures, and then occur the next day if the farm meets the regulations

urrently in place.
Regarding the infection, the force of infection for a domestic pig farm

is expressed as follows:

𝐷(𝑖, 𝑡) = 𝜆𝑡𝐷
∑

𝑘∈𝐾𝑖(𝑡)
𝜔𝑖
𝑘

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑡𝑟𝑎𝑑𝑒

+ 𝜆𝑛𝐷𝑁𝑖
∑

𝑙∈𝐿𝑑𝑝
𝑖

1linf𝑁𝑙

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑

+ 𝛼𝑖𝜆
𝑤𝑏
𝐷 𝑁𝑖

∑

𝑗∈𝐽𝑑𝑝
𝑖

𝐼𝑠𝑗 (𝑡) + 𝐼𝑐𝑗 (𝑡)
𝑀𝑗 (𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑤𝑖𝑡ℎ 𝑤𝑖𝑙𝑑 𝑏𝑜𝑎𝑟

where 𝜆𝑡𝐷, 𝜆𝑛𝐷 and 𝜆𝑤𝑏
𝐷 are the transmission rates through trade, neigh-

bourhood and contact with wild boar populations respectively, 𝜔𝑖
𝑘 is

the number of animals sold by farm 𝑘 to farm 𝑖 and 𝑁𝑖, 𝑁𝑙 the sizes
of farms 𝑖 and 𝑙. 1linf is an indicator function equal to 1 when farm
𝑙 is infected, 0 otherwise, 𝛼𝑖 a boolean equal to 1 if animals of farm 𝑖
ave access to the outside, otherwise 0. 𝐼𝑠𝑗 and 𝐼𝑐𝑗 are the numbers of

subclinical and clinical infectious animals in wild boar population 𝑗 and
𝑀𝑗 is the size of wild boar population 𝑗. 𝐾𝑖(𝑡) and 𝐿𝑑𝑝

𝑖 represent the sets
of infected domestic pig farms that exchange animals with domestic pig
farm 𝑖 or are located in its neighbourhood, respectively, and 𝐽 𝑑𝑝

𝑖 is the
set of wild boar population in contact with herd 𝑖.

The status of domestic pig farms is data driven. A farm that is
reported as infected will have its evolution set according to the reported
infection date and following the status transitions described in Table 1.
A farm that is not reported as infected, will have its status set to S until
the final observation date minus the time spent in 𝐸 and 𝐼𝑠. The status
of farms not reported as infected will then be simulated according to
the previously defined model.

2.2.2. Dynamics of wild boar populations
For wild boar populations, the within-population epidemic dynam-

ics as well as the main components of the demographic dynamics are
taken into account. The evolution of the health status of wild boar
includes 6 different states: 𝑆 (Susceptible), 𝐸 (Exposed), 𝐼𝑠 (subclini-
cally Infectious), 𝐼𝑐 (clinically Infectious), 𝐷 (Dead) and 𝑅 (Removed).
The transitions between these states and the associated parameters are
presented in Table 2.

All transitions are stochastic, assuming exponentially distributed
duration, with a particularity for the carcasses discovery through passive
and active search events, and hunting, which are partly data-driven
4

when data available and simulated otherwise. Over the period for
Table 2
Transitions between the health states for the wild boar model.

Processus Rate

Infection (𝑆 → 𝑆 − 1, 𝐸 → 𝐸 + 1) 𝜆𝑊
Become infectious (𝐸 → 𝐸 − 1, 𝐼𝑠 → 𝐼𝑠 + 1) 𝛿𝑊
Onset of clinical signs (𝐼𝑠 → 𝐼𝑠 − 1, 𝐼𝑐 → 𝐼𝑐 + 1) 𝛾𝑊
Death (𝐼𝑐 → 𝐼𝑐 − 1, 𝐷 → 𝐷 + 1) 𝜇𝑊
Carcasses no more infectious (𝐷 → 𝐷 − 1, 𝑅 → 𝑅 + 1) 𝜈𝑊
Carcasses discoverya (𝐷 → 𝐷 − 1, 𝑅 → 𝑅 + 1) 𝜌𝑊
Huntinga (𝑋 → 𝑋 − 1, 𝑅 → 𝑅 + 1) 𝜂𝑊

aData-driven if data available and simulated otherwise.

which data are available, the number of carcasses found and animals
hunted are calibrated on the data. In the latter case, the health status of
the animals are randomly drawn according to the population composi-
tion. The values for the average time spent in 𝐸, 𝐼𝑠, 𝐼𝑐 and 𝐷 (if not
iscovered) compartments, 1∕𝛿𝑊 , 1∕𝛾𝑊 , 1∕𝜇𝑊 and 1∕𝜈𝑊 respectively,
re based on the information provided during the challenge. The force
f infection for wild boar in population 𝑖 is expressed as follows:

𝑊 (𝑖, 𝑡) = 𝜆𝐼𝑖𝑛𝑡𝑊
𝐼𝑠𝑖(𝑡) + 𝐼𝑐𝑖(𝑡)

𝑀𝑖(𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑝. 𝐼𝑠+𝐼𝑐

+ 𝜆𝐼𝑒𝑥𝑡𝑊

∑

𝑙∈𝐿𝑖

𝐼𝑠𝑙(𝑡) + 𝐼𝑐𝑙(𝑡)
𝑀𝑙(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝐼𝑠+𝐼𝑐

+ 𝜆𝐷𝑖𝑛𝑡
𝑊 𝐷𝑖(𝑡)

⏟⏞⏞⏟⏞⏞⏟
𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑝. 𝐷

+ 𝜆𝐷𝑒𝑥𝑡
𝑊

∑

𝑙∈𝐿𝑤𝑏
𝑖

𝐷𝑙(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝐷

+ 𝜆𝑑𝑝𝑊
∑

𝑗∈𝐽𝑤𝑏
𝑖

1jinf

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑤𝑖𝑡ℎ
𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐 𝑝𝑖𝑔𝑠

where 𝜆𝐼𝑖𝑛𝑡𝑊 , 𝜆𝐼𝑒𝑥𝑡𝑊 , 𝜆𝐷𝑖𝑛𝑡
𝑊 , 𝜆𝐷𝑒𝑥𝑡

𝑊 and 𝜆𝑑𝑝𝑊 are the transmission rates through
contacts with infectious wild boar and carcasses within and outside the
population and through contacts with infected domestic pig farms in
the neighbourhood. 𝑀𝑥 is the total size and 𝐼𝑠𝑥, 𝐼𝑐𝑥 and 𝐷𝑥 are the
numbers of subclinical and clinical infectious animals and carcasses in
wild boar population 𝑥 (𝑀𝑥 = 𝑆𝑥+𝐸𝑥+𝐼𝑠𝑥+𝐼𝑐𝑥). 1jinf is an indicator
function equal to 1 when domestic pig farm 𝑗 is infected, 0 otherwise.
𝐿𝑤𝑏
𝑖 and 𝐽𝑤𝑏

𝑖 are the sets of wild boar populations and domestic pig
farms in the neighbourhood of wild boar population 𝑖.

By the second period, the control measures to be assessed involved
the location of wild boar carcasses found by active and/or passive
searches, as well as those of hunted animals that tested positive. We
then implemented a random generation of geographical coordinates
to simulate the spatial positions of the relevant animals within the
perimeter of the tiles.

2.2.3. Control measures
Throughout the challenge, different modalities of control measures

had to be tested. Around infected domestic pig farms, regulated zones
were defined: ‘‘protection zone’’ as 3 km around an infected farm for
40 days, and ‘‘surveillance’’ as 10 km around an infected farm for 30
days.

During the first period, we had to assess the efficacy of implement-
ing fences around the forest nearby the primary case, combined or not
with overhunting.

For the second period, we had to assess the efficacy of new alter-
native measures: the culling of pig farms located less than 3 km from
a detected pig farm, the culling of pig farms traced as having had
contact with a detected pig farm less than 3 weeks before detection, the
extension of the surveillance zone from 10 to 15 km, and the increase
of the area of active search around detected wild boar carcasses from
1 to 2 km.

The culling of pig farms located less than 3 km from a wild boar
carcass detected as infected was not tested during the second period
but implemented during the third period.

The different layers of the contact network (defined in Section 2.1)
can be altered by the implementation of the control measures. For
example, fencing off the initial outbreak in wild boar resulted in the
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removal of links between the epidemiological units inside and outside
the area. The establishment of regulated zones around infected farms
(protection and surveillance zones) led to movement bans.

2.2.4. Implementations
Both modules have been implemented independently, in C++ for

computational efficiency reasons. In the case of the domestic pig mod-
ule, in discrete time, the stochastic events follow a random sampling
using binomial or exponential distributions. For the wild boar module,
the tau-leap algorithm was used and continuous simulated trajectories
were further discretised in time, with a daily time step, as for the
domestic pig module, for synchronisation reasons. Due to time con-
straints, scheduling and task sharing were important considerations
in order to provide timely forecasts. That is one of the reasons why
this modelling framework has been designed this way, allowing si-
multaneous implementation of both modules, combined in a second
step. Thus, the two modules can be used jointly through an interface
linking them, or alone. The source code of the model can be found on
the following git repository: https://forgemia.inra.fr/gaelbeaunee/asf-
challenge-inrae-team.

2.3. Parameters inference

The inference approach implemented aimed to estimate the values
of the different transmission rates to be further used for providing
forecasts over four weeks following the end of the current period.

It is and iterative procedure alternating between the two models
(Fig. 4). The first run of this inference procedure starts with an es-
timation of the transmission parameters of the wild boar epidemic
dynamics, based on a predefined scenario of the epidemic dynamics of
domestic pig farms, and which corresponds to the observed trajectories
in the provided data. Based on the estimated values, it is then possible
to define a scenario of the epidemic dynamics of wild boar populations
using the model, which is then freezed for the estimation of the
transmission parameters of the domestic pig epidemic dynamics. It is
then possible to simulate, using the newly estimated parameters, a new
predefined scenario of the epidemic dynamics of domestic pig farms,
which can be used to re-estimate the transmission parameters of the
epidemic dynamics of wild boar populations.

A predefined scenario is a complete description of epidemiolog-
ical units status over time. This corresponds to the hidden state of
the system. It is therefore assumed in the first run that we have a
comprehensive observation of the health status of domestic pig farms.
Thus, the initial state of the model is defined by the data provided
and corresponds to the first detection of an infected domestic pig farm
observed in the data.

Depending on the period, different estimation methods were used,
all based on a common principle, i.e. optimising a simulation-based cri-
terion. In this section, we briefly describe the different methodologies
that were part of our calibration procedure.

2.3.1. Estimation of transmission rates for domestic pig farms
The data on the number of farms detected over time was used to

estimate the specific transmission rates of infection of domestic pig
farms: 𝜆𝑡𝐷, 𝜆𝑛𝐷 and 𝜆𝑤𝑏

𝐷 .
Due to the continuous evolution of the information available on do-

estic pig farms during the challenge, an adaptive inference approach
as preferred, in order to adapt the method used to the data provided

or each period.
In the first period, due to the design of the model, the data available

ere deemed insufficient for estimating a non-zero between-farm trans-
ission and did not allow for an estimate of the overall transmission

ate. Only the transmission rate due to contact with wild boar popula-
ions (𝜆𝑤𝑏

𝐷 ) could be estimated, the other two specific transmission rates
through neighbourhood and trade movements) assumed to be null.
ndeed, the data provided included only three infected farms between
5

t

Fig. 4. Illustration of the whole inference procedure, as an iterative process alternating
between estimation for each model, domestic pigs (DM) or wild boar (WB), using a
predefined dynamic based on data or simulation for the other module (WB or DM,
respectively).

which there were no links on the trade and neighbourhood layers
of the contact network. The selected method was the minimisation
(golden-search + interpolation) of a likelihood on the probability to
be infected.

For the second period of the challenge, the provided data prevented
the estimation of the transmission rates using the method designed for
the first period. The time constraints did not allow us to undertake
the implementation of a new estimation method, the transmission rates
were then manually calibrated, based on estimation results obtained
using data from the first period.

During the last period of the challenge, in order to overcome
the problems encountered during the second period, we used a new
estimation method, based on the minimisation, using the simplex algo-
rithm (Nelder and Mead, 1965), of a least squares criterion (based on
the total number of infected pig farms).

2.3.2. Estimation of transmission rates for wild boar populations
The wild boar model was fit to the data provided including inci-

dence of carcasses found and the number of hunted wild boar testing
positive. The five transmission rates, 𝜆𝐼𝑖𝑛𝑡𝑊 , 𝜆𝐼𝑒𝑥𝑡𝑊 , 𝜆𝐷𝑖𝑛𝑡

𝑊 , 𝜆𝐷𝑒𝑥𝑡
𝑊 and 𝜆𝑑𝑝𝑊 ,

were estimated for each period of the challenge.
Irrespective of the period, we used the same estimation method:

the minimisation of a least squares criterion using an adapted simplex
algorithm, but adjusting the design of the criterion used.

For the first period, the criterion was defined by combining nor-
malised observations of the number of carcasses found and of the
number of hunted wild boar testing positive, per five-day time window,
differentiated according to three distinct zones. The zoning was defined
on the basis of the observations as (i) all tiles where infected boars
or domestic pigs were observed, (ii) all tiles adjacent to the previous
ones, and (iii) all remaining tiles. Thus, the criterion (𝐶1

𝑊 ) corresponds
to the sum of squared differences between the observed and simulated
number of infected carcasses found (𝑦𝑐 and �̃�𝑐 , respectively) and the
differences between the observed and simulated proportion of hunted
wild boar testing positive (𝑦ℎ and �̃�ℎ, respectively), per time window
(𝑘) and zones (𝑧), computed as:

𝐶1
𝑊 =

∑

𝑘,𝑧

(𝑦𝑐𝑘,𝑧 − �̃�𝑐𝑘,𝑧)
2

�̂�2(𝑐),𝑧
+

(𝑦ℎ𝑘,𝑧 − �̃�ℎ𝑘,𝑧)
2

�̂�2(ℎ),𝑧

where �̂�2(𝑐),𝑧 is the variance of the observed infected carcasses found
and �̂�2(ℎ),𝑧 the variance of the observed proportion of hunted wild boar
esting positive, over all time windows for the zone 𝑧.

For the second and third periods, the criterion formula has been
pdated by splitting the data into two time periods: before and after
he fence installation. Thus, the criterion (𝐶23) corresponds to the sum
𝑊

https://forgemia.inra.fr/gaelbeaunee/asf-challenge-inrae-team
https://forgemia.inra.fr/gaelbeaunee/asf-challenge-inrae-team
https://forgemia.inra.fr/gaelbeaunee/asf-challenge-inrae-team
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of squared of differences per time window (𝑘), zones (𝑧) and fencing
periods (𝑝).

𝐶23
𝑊 =

∑

𝑘,𝑧,𝑝

(𝑦𝑐𝑘,𝑧,𝑝 − �̃�𝑐𝑘,𝑧,𝑝)
2

�̂�2(𝑐),𝑧,𝑝
+

(𝑦ℎ𝑘,𝑧,𝑝 − �̃�ℎ𝑘,𝑧,𝑝)
2

�̂�2(ℎ),𝑧,𝑝

here �̂�2(𝑐),𝑧,𝑝 is the variance of the observed infected carcasses found
nd �̂�2(ℎ),𝑧,𝑝 the variance of the observed proportion of hunted wild boar
esting positive, over all time windows for the zone 𝑧 and fencing period
𝑝.

To account for the stochasticity of the model in the evaluation of
our criterion, the Nelder–Mead algorithm (Nelder and Mead, 1965) has
been adapted according to the guidelines proposed by Barton and Ivey
(1991). In short, it consists in re-evaluating the criterion at all points of
the simplex after a shrink step, to select a small amplitude for the shrink
step (coefficient of 0.9 instead of 0.5), and restarting several times the
algorithm by constructing a fresh simplex centred on the current best
point.

Carcasses discovery rates through passive search inside or outside
the fenced area and through active search event (𝜌𝑊 = {𝜌𝑖𝑛𝑊 , 𝜌𝑜𝑢𝑡𝑊 , 𝜌𝑎𝑊 })

ere estimated during the first period of the challenge and determined
eparately via a calibration step according to the available data on
assive search inside/outside the fenced area and active search events.

.4. Model forecasts

The two models are coupled in order to simulate the epidemic
ynamics of the whole system (domestic pig farms and wild boar
opulations) at the same time. For this purpose, each time step is
ivided into two parts. The first consists of the computation of the
pidemic dynamics of the different epidemiological units, each with
heir dedicated module. The second part is the synchronisation of the
elevant information between the two modules for use during the next
ime step computation.

For the period where data are available, some processes (hunting,
arcass discovery rates) are data-driven (as for the inference part), then
fter this period the processes are fully simulated, using calibrated
nd estimated parameter values. Except transmission rates and pas-
ive/active search event discovery rates, parameters were set according
o the information provided by the organisers.

Six outputs were chosen to describe the infection dynamics across
oth types of epidemiological units. Four of them match the observed
ata: (i) the observed health status of domestic pig farms, (ii) the
umber of positive tested hunted wild boar, (iii) the number of pos-
tive tested carcasses, through active and passive search, and (iv) the
ocation of infected wild boar, detected through hunting or carcasses
iscovery through active/passive search, all of them for each time step
nd epidemiological unit. The last two outputs represent the hidden
unobserved) state of the system and are: (v) the health status of domes-
ic pig farms over time, and (vi) the comprehensive dynamics of wild
oar populations (headcounts + events) over time. The information
n trade movements of domestic pigs for the forecasted time horizon
ere obtained as sampling from the observed movements, by taking
dvantage of their periodicity.

. Results

During the challenge, the varying conditions between the periods
nd the relatively short deadlines led us to provide different results
n terms of quality and quantity for the different periods. Indeed, the
nvisaged inference methods could not be carried out for each period,
eading sometimes to partial results, and code errors could be corrected
uring or after the challenge. Here we briefly present the results of the
arameter estimates and predictions obtained during the challenge. We
lso include a second set of results, obtained using the modelling and
nference framework we arrived at by the end of the challenge, in order
o evaluate the relevance of the approach finally developed.
6

Table 3
Estimated and calibrated parameter values for the three different periods (P1, P2, P3) of
the challenge using the different version of the modelling framework produced during
the challenge. These three periods cover, respectively, 50, 80 and 110 days since the
first detection of an infected domestic pig farm (at 𝑡 = 0).
𝜃 P1 P2 P3

Estimated parameters
𝜆𝐼𝑖𝑛𝑡𝑊 0.22 0.16 0.19
𝜆𝐷𝑖𝑛𝑡
𝑊 2.1e−04 9.8e−05 2.4e−06

𝜆𝑑𝑝𝑊 0.06 0.06 0.05
𝜆𝐼𝑒𝑥𝑡𝑊 3.2e−04 2.0e−07 2.8e−05
𝜆𝐷𝑒𝑥𝑡
𝑊 1e−04 6.3e−17 5.5e−17

𝜆𝑡𝐷 NA – 4.6e−06
𝜆𝑛𝐷 NA – 3.4e−05
𝜆𝑤𝑏
𝐷 NA – 3.0e−05

𝜌𝑖𝑛𝑊 – – –
𝜌𝑜𝑢𝑡𝑊 1.4e−03 – –
𝜌𝑎𝑊 0.08 – –

Calibrated parameters
𝜌𝑖𝑛𝑊 – 8.9e−04 1.5e−03
𝜌𝑜𝑢𝑡𝑊 – 4.9e−06 1.5e−06
𝜌𝑎𝑊 – 0.49 0.56

Fixed parameters
𝜆𝑡𝐷 – 1e−3 –
𝜆𝑛𝐷 – 1e−4 –
𝜆𝑤𝑏
𝐷 – 2e−5 –

Note: 𝜌𝑖𝑛𝑊 is equal to 𝜌𝑜𝑢𝑡𝑊 before the fence is in place.

.1. Challenge results

During the challenge, it was not possible to estimate the transmis-
ion parameters for domestic farms for periods 1 and 2 within the
ime frame available. Therefore, we were not able to produce forecasts
n the domestic pig farms for period 1. For period 2, the provided
orecasts were made on the basis of parameter values fixed through
anual calibration, based on estimates using data from the first period,

btained at the beginning of the second period.
The estimated parameter values for the different periods show

imilar orders of magnitude (Table 3). The transmission rate through
ontact with infected individuals is, for all periods, higher than the
ransmission rates through contact with carcasses. The same is true
or the transmission rate through contact with a domestic pig farm,
stimated to be between 0.049 and 0.060 depending on the period
onsidered. The estimates suggest a likely more important role of live
nfected individuals on the epidemic dynamics.

Due to the unavailability of transmission parameter estimates for
omestic pig farms during the first period and the use of a data-driven
pproach for periods 2 and 3, only the epidemic dynamics of wild
oar over time are presented here (Fig. 5) . In order to compare the
ynamics for scenarios similar to the data, the simulations shown in
igs. 5 and 6 cover the time horizons for which the data were available.
ndeed, the predictions we made during the challenge (Fig. 7) did not
ecessarily incorporate the right control measures or in a different way
han expected because of a misunderstanding on how to implement
hem.

The visual comparison between the observed data and the simula-
ions for wild boar populations (Fig. 5) shows a likely overestimation
f the pathogen transmission, leading to a larger proportion of positive
est results. This can also be seen spatially, with a different distribution
f detected cases and a much or slightly wider spread, respectively for
eriod 1 and periods 2 and 3 (Fig. 6). The predictions made during the
hallenge for periods 2 and 3 (Fig. 7) suggested a significant extension
f the pathogen to the west of the fenced area. The predictions at
= 110 made with the parameters estimated for period 2 (Fig. 7A)

how a wider spread than the observed data (Fig. 6G), but whose
ncertainty was deemed high given the estimation issues encountered
nd the parameter values used.

A more detailed comparison including the forecasts carried out
uring the challenge is presented in Ezanno et al. (2022).
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Fig. 5. Epidemic dynamic in wild boar populations over time. Data in black and simulations based on parameter values estimated during the challenge for period 1 (yellow), 2
blue) and 3 (green) with time horizon of respectively 50, 80 and 110 days after first detection. Mean dynamic (dark line) and credibility intervals (50%, 90%, lower and upper
ounds, represented by the shaded areas), aggregated over a 5 days time window (as for the computation of the criterion used in the inference part). Results based on 10 runs
or the first period and 50 runs for the second and third periods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
his article.)
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.2. Post-challenge model fitting and forecasts

The second set of results, outlined below, corresponds to the adjust-
ents and predictions using the final framework that we produced at

he end of the challenge.
An important difference with the results obtained during the chal-

enge lies in the inference part which could not be provided in the first
nd second periods.

The estimates and calibrations of parameters carried out after the
hallenge led to different parameter values for the wild boar part
or periods 1 and 2, and quite similar for period 3, compared to the
esults obtained during the challenge. Thus, for periods 1 and 2, we
bserve values more than twice as high for the rate of transmission by
ontact with infected individuals from the same population. The rate of
ransmission through contact with domestic pig farms is almost twice
s small. The estimated value of transmission parameters for domestic
ig farms are similar across the periods (Table 4). By comparing with
he values estimated for period 3 during the challenge, we observe that
he transmission rate by contact with wild boar is of the same order
f magnitude, while the other transmission rates are slightly lower.
he calibration of the wild boar carcass discovery rates leads to similar
alues for the different periods. The values estimated during and after
he challenge are also close to each other, except for the active search,
here the values are lower. This can be explained by a correction made

o avoid overestimating this parameter. Over the course of the chal-
enge, improvements were made to the modelling framework, including
ome code fixes. This may partly explain the differences between the
stimates produced during and after the challenge.

The comparison between observed and simulated data, over the
pecific time horizons for which data were available for each period,
ighlights the same pattern as during the challenge. An overestimation
f the pathogen spread among wild boar, through a larger proportion
f positive tested wild boar, is noted (Fig. 9). Spatial spread seems to be
ore consistent in period 1, compared to the results obtained during

he challenge, with a higher concentration of cases in the same tiles.
or periods 2 and 3 the results obtained during and after the challenge
ere similar. As an exception, cases north of the fenced area around an

nfected farm in the data did not appear in the predictions made during
he challenge.

One of the motivations for carrying out these post-challenge es-
imates and forecasts was the opportunity to assess the reliability of
he predictions. The results presented in Figs. 8 and 9, as well as the
aps in Figs. 10 and 11, allow for a comparison of observed and
7

p

Table 4
Estimated and calibrated parameter values for the three different periods (P1, P2, P3)
of the challenge using the modelling framework produced at the end of the challenge.
These three periods cover, respectively, 50, 80 and 110 days since the first detection
of an infected domestic pig farm (at 𝑡 = 0).
𝜃 P1 P2 P3

Estimated parameters
𝜆𝐼𝑖𝑛𝑡𝑊 0.52 0.50 0.24
𝜆𝐷𝑖𝑛𝑡
𝑊 7.4e−04 3.2e−06 3.8e−07

𝜆𝑑𝑝𝑊 0.02 0.03 0.04
𝜆𝐼𝑒𝑥𝑡𝑊 1.1e−03 2.3e−08 1.6e−06
𝜆𝐷𝑒𝑥𝑡
𝑊 3.7e−07 2.4e−22 1.9e−20

𝜆𝑡𝐷 – 6.4e−07 9.4e−07
𝜆𝑛𝐷 – 9.7e−08 2.9e−08
𝜆𝑤𝑏
𝐷 2.6e−05 6.5e−05 5.3e−05

Calibrated parameters
𝜌𝑖𝑛𝑊 – 1.4e−03 1.2e−03
𝜌𝑜𝑢𝑡𝑊 1.1e−05 1.9e−06 3.6e−06
𝜌𝑎𝑊 0.143 0.11 0.13

Note: 𝜌𝑖𝑛𝑊 is equal to 𝜌𝑜𝑢𝑡𝑊 before the fence is in place.

imulated data beyond the time sequences that were used for estimation
or periods 1 and 2. The predicted number of infected domestic pig
arms appears to be in agreement with the data, with a slightly different
ynamic over time for the second period. The proportion of positive
ested wild boar remains overestimated, but with a trend close to that
bserved in the data. While the dynamics of the number of infected
arcasses discovered is quite close to the observed data for the first
eriod, it is largely overestimated for the second period.

Comparison of the spatial simulated and observed distributions
f detected cases spanning over similar time periods (until day 80 -
ig. 11 A with Fig. 10 D and until day 110 - Fig. 11 C with Fig. 10 G)
ighlights an overestimation of the spread of the pathogen between
ild boar populations. In particular, there is an apparent spread of the
athogen among domestic pig farms and wild boar in the northern area
hat is not apparent in the data. Contrary to the predictions made for
eriod 2 during the challenge, no cases were found in the southeast.
his difference can be explained by the change in the method used to
ugment the farm-to-farm movement data, and a lower value for the
ransmission rate through trade movements.

. Discussion

The main objective of this work was to develop, in a relatively short
eriod of time and in a predefined context in terms of mechanisms to
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Fig. 6. Spatial distribution of infection in domestic pig farms (circles and stars) and wild boar populations (hexagonal tiles): observed real situation (left column), mean observed
simulated situation (centre column) and probability to observe infected animals (right column) based on 10 runs for the first period and 50 runs for the second and third periods.
Simulations are based on parameter values estimated during the challenge (Table 3) for period 1 (yellow A, B, C), 2 (blue D, E, F) and 3 (green G, H, I) with time horizon of
respectively 50, 80 and 110 days after first detection. For the first period, due to the unavailability of transmission parameter estimates for domestic pigs farms, only the epidemic
dynamics of wild boar was simulated and is therefore shown, domestic pig farms epidemic dynamic being only based on data. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
be considered and constrained concerning the data, a ‘good’ model,
which can be defined by an appropriate balance between accuracy,
transparency and flexibility (Keeling and Rohani, 2011). Accuracy is es-
sential and can be defined as the ability to produce reliable predictions.
Transparency represents the ability to understand how the different
elements of a model influence the infection dynamics. As the number
of elements in a model increases, it becomes more difficult to assess the
role of each element and their possible interactions. Transparency can
therefore be in direct opposition to accuracy. Flexibility represents the
ability of the model to be adapted to new situations, which is essential if
it is intended for the evaluation of control strategies to support decision
making.
8

We have chosen to use a relatively simple modelling framework,
neglecting the demographic dynamics within the epidemiological units.
This choice avoids the potential hurdles arising from the calibration
of a complex model in the context of limited data, which can lead
to parameter identifiability issues. A suitable approach to address this
issue would be to perform a numerical identifiability analysis or a thor-
ough sensitivity analysis of the model and calibrate only the influential
parameters. Given the evolving nature of the challenge and the effort
that this type of analysis may involve, we have instead preferred to
have a limited number of parameters to estimate, while keeping open
the possibility of increasing the complexity of the model should the
need arise.
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Fig. 7. Spatial distribution of infection in domestic pig farms (circles and stars) and wild boar populations (hexagonal tiles): mean observed simulated situation (left column)
and probability to have infected animals (hidden situation) (right column) based on 50 repetitions. Simulations are based on parameter values estimated during the challenge for
period 2 (blue A, B) and 3 (green C, D) with time horizon of respectively 110 and 200 days after first detection. The results presented are the same as those provided during the
challenge, therefore period 1 is not included here as the results produced did not allow for the quantification of these outputs. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Epidemic dynamics in domestic pig farms over time. Data in black and simulations based on parameter values estimated using the final modelling framework, for period 1
(magenta), 2 (purple) and 3 (green), with time horizon of respectively 80, 110 and 200 days after first detection. Mean dynamic (dark line) and credibility intervals (50%, 90%,
lower and upper bounds, represented by the shaded areas) calculated on 100 runs. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)



Epidemics 42 (2023) 100665G. Beaunée et al.

1
c
i

o
s
t
o
b
s
p
l
t
t
i
i

d
d
r
m
a
f
l
T
r
s
t
o
t
c
d
c
c
a

i
d
e
a
f
o
t
p
l
b

h

Fig. 9. Epidemic dynamics in wild boar populations over time. Data in black and simulations based on parameter values estimated using the final modelling framework, for period
(magenta), 2 (purple) and 3 (green), with time horizon of respectively 80, 110 and 200 days after first detection and calculated on 100 runs. Mean dynamic (dark line) and

redibility intervals (50%, 90%, lower and upper bounds, represented by the shaded areas), aggregated over a 5 days time window (as for the computation of the criterion used
n the inference part). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
s

Determining the initial state is key to understanding the dynamics
f an epidemic. Here, we make the assumption that the outbreak
tarted on a domestic pig farm at the time of first detection, assuming
hat the pathogen was introduced to the island via the importation
f an infected domestic pig, and that there were no infected wild
oars at that time. This simplifying assumption implies a known initial
tate, and thus contributes to reduce the complexity of the inference
rocedure. Estimating the date, host type for the first infection and
ocation (possibly several locations) was too complex to be achieved in
he time available for the challenge. However, if the epidemic started in
he wild boar population and before the first detection, this assumption
ntroduced a bias in the epidemic dynamics that could have had an
mpact on the parameter estimates, and thus on the predictions.

As for the other modelling choices made during the challenge, the
iscretisation of the wild boar population spatial distribution into epi-
emiological units using a hexagonal grid implies a trade-off between
ealism and parsimony. The selected tile size is relatively large and
ay not be suitable to reflect the living/dispersal patterns of wild boar

nd/or to capture landscape features. However, the size chosen allows
or a limited number of tiles and minimises the computation time, thus
eaving more time for inference, predictions and analysis of the results.
he same applies to the modelling of the neighbourhood transmission
oute for domestic pig farms, defined by a set of farms that are potential
ources of infection using a buffer around each farm. This choice has
he advantage of being simple, easy to implement and fast in terms
f computing time. However, this implementation might be too simple
o represent the neighbourhood interactions accurately enough. The
onditions of the challenge did not allow us to reconsider this choice
uring the challenge. We preferred a modelling approach that adds
omplexity as we go along, which seemed the most relevant in the
ontext of the challenge, wanting to keep the model as parsimonious
s possible given the time constraints and forces involved.

Our modelling framework is flexible enough to accommodate change
n transmission processes and control measures that may have occurred
uring the challenge. This is particularly useful when dealing with
pidemic control in real-time, where a combination of changing avail-
ble information and evolving control strategies requires the modelling
ramework to be adjusted continuously during the outbreak. The design
f our modelling framework makes it possible, for example, to replace
he epidemic dynamics for one of the two host population with a
redefined scenarios or a completely different model at any time, as
ong as the information to be exchanged between the two modules can
e generated.

A better understanding of the demographic dynamics of potential
ost populations is key to improve our preparedness. This modelling
10
challenge has highlighted that the quality of the available data is a
significant concern. The lack of accurate data on the demography of the
wild boar population was an important source of uncertainty, which
has to be filled by assumptions and approximations. In order to use
robust modelling approaches as a decision support tool when facing the
emergence of new pathogens, it appears essential to have access to both
qualitative and quantitative information on the demography of species
of interest. Such databases already exist for livestock at different scales
of detail (Gilbert et al., 2018; Nöremark et al., 2011; Vernon, 2011;
Dutta et al., 2014), and need to be established for relevant wildlife
species as well (Bengis et al., 2004).

The ability to react quickly to the emergence of a pathogen partly
relies on our capacity to re-use and/or implement previous work. Over
the last few decades, the development of modelling in epidemiology
has led to the production of a large number of models, of vary-
ing complexity, for a wide variety of pathosystems and at different
scales (Thompson and Brooks-Pollock, 2019). Recent efforts by the
scientific community to make their work available on an open access
basis aim to facilitate the reproduction and reuse of these models (open-
access publishing, use of public code repositories). Thus, when a similar
study is to be carried out or a model is to be used to answer the
same question for which it was designed, it is usually relatively easy
to reuse existing work. However, when investigating a new question,
or studying a new or (slightly) different pathosystem, it is clear that it
remains relatively difficult to quickly reuse existing models, which were
moreover developed by another research team. Indeed, it can quickly
become more time-consuming to reuse a model (effort required to
understand someone else’s code and to update it, to solve compatibility
problems and computer dependencies), especially when it is necessary
to continuously adapt the modelling framework to the epidemiological
situation (scenario proposed during the challenge). There are initiatives
to make model reuse and sharing easier (Sandve et al., 2013; List et al.,
2017; Lee, 2018), such as tools that allow to focus on the conceptual
part rather than on the programming part (Broeck et al., 2011; Bui
et al., 2019; Picault et al., 2019). These types of approaches obviously
provide solutions that can help us to improve our responsiveness to the
emergence of new pathogens. However, these frameworks still have
some weaknesses (such as the use of a dedicated language, or their
computational inefficiency) that can make their use potentially difficult
in a health crisis response situation.

In addition to these methodological considerations, the relevance
of the context is paramount. Many previous studies have focused on
developing models of ASF spread in order to answer a wide range of
questions (Hayes et al., 2021). However, at the time of the challenge,
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Fig. 10. Spatial distribution of infection in domestic pig farms (circles and stars) and wild boar populations (hexagonal tiles): observed real situation (left column), mean observed
simulated situation (centre column) and probability to observe infected animals (right column), calculated on 100 runs. Simulations based on parameter values estimated using the
final modelling framework for period 1 (magenta A, B, C), 2 (purple D, E, F) and 3 (green G, H, I) with time horizon of respectively 50, 80 and 110 days after first detection.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
no model considered the complete transmission between domestic pigs
and wild boars, only one study (Taylor et al., 2021) came close,
neglecting the transmission from domestic pigs to wild boars. Thus
the specific context of the challenge required the development of an
original model. The context of the challenge also makes it difficult to
compare our results with the literature. Indeed, the data provided by
the organisers correspond to a particular synthetic trajectory, chosen
according to different criteria, corresponding in part to constraints
linked to the challenge narrative, giving little meaning to a comparison
with previous studies on real data.

Besides the design of the model, the major difficulty of this chal-
lenge laid in the parameter estimation. Changes in the proposed sce-
narios and available data during the different periods of the challenge
11
required the adaptation of the inference methods used to meet the
increasing complexity of the model. During the first period of the
challenge, the choices of model design and inference procedure did
not allow us to estimate all the parameters, highlighting the impor-
tance of the possible constraints associated with the modelling choices
and/or the inference methods. The characteristics of the models and
the data have thus oriented the choice of methods towards likelihood-
free procedures. Recent advances in likelihood-free inference methods
and increasing computing power allow for the fitting of complex large-
scale models. However, difficulties arise when it comes to selecting
the information that best represents the processes to be estimated,
to be used for comparing observations and simulations. Proposing
appropriate summary statistics (i.e. containing enough information to
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Fig. 11. Spatial distribution of infection in domestic pig farms (circles and stars) and wild boar populations (hexagonal tiles): mean observed simulated situation (left column) and
probability to have infected animals (hidden situation) (right column) calculated on 100 repetitions. Simulations based on parameter values estimated using the final modelling
framework for period 1 (magenta A, B), 2 (purple C, D) and 3 (green E, F) with time horizon of respectively 80, 110 and 200 days after first detection. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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be a discriminating criterion) is a key step, which can impact on the
inference results. There is limited work on how to select the most useful
information in the data when working with these methods (Sisson et al.,
2018; Joyce and Marjoram, 2008; Nunes and Balding, 2010; Barnes
et al., 2012). Furthermore, they require a large number of simula-
tions and therefore potentially prohibitive computation times when
it comes to providing a rapid response on the spread of a pathogen
on a large scale. Therefore, there is a need for prospective work on
existing data and synthetic scenarios in order to be able to narrow
down more quickly the choice of criteria to be used, depending on the
characteristics of the system (types of hosts and pathogens) and the
data available.

As highlighted by this challenge, and others before it (Ajelli et al.,
2018; Valle et al., 2018), real-time forecasting can be particularly diffi-
cult, as it involves producing accurate trends while properly accounting
for the uncertainties surrounding both the data and the epidemic dy-
namics of the pathogen, in a relatively short period of time. Under the
conditions imposed by the challenge, mirroring an epidemic emergency
situation, the amount of time available becomes a very important factor
and brings an additional constraint. In addition, data availability and
robust inference remains a key issue in our ability to provide robust
forecasts and guidance. There is no doubt that lessons learned during
this ASF modelling challenge will help to strengthen our preparedness
to face emerging threats.
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