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Abstract: The development of techniques for the rapid, inexpensive, and accurate determination of
the phosphorus (P) availability and sorption index (PSI) in soils is important for P management in
highly weathered tropical soils. The applicability of near- and mid-infrared reflectance spectroscopy
(NIR and MIR) as tools for estimating P availability and PSI was assessed over a wide range of highly
weathered soils in Madagascar. The predictions were based on chemometric methods using multi-
variate calibration models with partial least squares (PLS) regressions, and pedotransfer functions
(PTFs). Chemometric methods failed to predict available P (Presin). However, a P sorption index,
determined as the P remaining in solution (Prem), was estimated with acceptable accuracy with both
NIR and MIR (R2

cv = 0.70 − 0.73; R2
v = 0.65 − 0.77; SEP(c) = 5.5 − 4.6 mg kg−1). The PTFs showed

that the PSI was well explained by iron oxide, gibbsite, and sand contents, all of these compounds
being well predicted by NIR or MIR (R2

v > 0.70). These results indicate that NIR and MIR can be
helpful for a rapid estimate of PSI of highly weathered ferralitic soils.

Keywords: diffuse reflectance spectroscopy; chemometrics; pedotransfer functions; phosphorus
sorption; soil mineral composition; highly weathered tropical soils

1. Introduction

Phosphorus (P) is one of the main growth-limiting nutrients for plants. The lack of
adequate levels of available P in soils is one of the major constraints for crop production in
tropical soils, e.g., in Madagascar [1]. Consequently, crop yields remain low and far below
their potential. Soil P deficiency may be due to the low P-status of the parent material,
soil weathering, mismanagement through imbalance between nutrient input and export
by harvested products and loss of P, e.g., through soil erosion. Moreover, many tropical
soils are marked by a high P-fixing capacity. These soils have a predominance of 1:1 clay
minerals, such as kaolinite, iron (Fe), and aluminum (Al) oxides. These minerals have
a particularly strong affinity for the phosphate ion [2,3]. Whereas the demand for P is
predicted to increase by 50–100% by 2050 to meet increasing nutritional demand, phosphate
reserves will be depleted in 50–100 years [4]. Although this pessimistic view is not shared
by all [5], corrective fertilization of soils with large amounts of phosphate fertilizers is not
feasible in most African countries. Thus, improving P use efficiency in highly weathered
P-sorbing tropical soils is of great concern.

There are a number of standard chemical methods for the determination of available
soil P (e.g., Bray, Mehlich, Olsen; see [6], and references cited therein). Depending on soil
types or previous fertilization history, these indexes often fail to satisfactorily predict P
availability [7]. In fact, these chemical methods dissolve P-forms not readily available for
plants in proportions that vary with the nature and duration of the extraction, the type of
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soil, and the history of fertilization [8]. However, in many countries, recommendations
for fertilizer P application are based on such P availability index. Phosphorus sorption or
desorption methods have also been used for measuring fast and reversible P sorption [9].
As the soil solution only contains about 1% of the uptake by the crop, this means that 99%
of the P is replenished from the solid constituents of the soil. So, according to Barrow [10],
the measurement of adsorption/desorption is also useful to predict the amount of fertilizer
needed for plant growth. In acidic soils, the Al and Fe minerals are key constituents of
sorption processes. Desorption of soil P by anion-exchange resins mimics the process of P
uptake by plant roots, which makes this method one of the most applied methods to assess
plant-available P [9]. The P sorption in soils has traditionally been evaluated by the P buffer
capacity (PBC; [11]), i.e., determined as the slope of the P sorption curve, which provides
a useful tool for improved management of P in agricultural systems [12,13]. A simple,
single-addition P-sorption index (PSI) was successfully developed as a surrogate of PBC in
Australian and Brazilian soils [14,15].

For a few years, near- and mid-infrared spectrometry (NIR, in the wavelength range
1100–2500 nm, and MIR, in the wavelength range 2500–25,000 nm) have been used exten-
sively for the prediction of various soil properties [16–18]. Various studies focus on the
determination of the potentially available P fractions or on the ability of soil to bind P
(P sorption). With a few exceptions of soil sets representing special or unusual conditions,
most predictions of extractable P in soils resulted either in low R2 values (0.5–0.7) for
calibration or were considered to be completely unreliable (R2 < 0.50) [18,19]. However,
some successful models for South African and Australian soils were reported for PBI by
using NIR or MIR spectroscopy, with prediction R2 values ranging from 0.69 to 0.87 for cal-
ibration (see [20]). Recent results also showed the potential of MIR spectrometry to predict
PSI for temperate soils [21]. Success in predictions of P sorption by infrared spectroscopy
may be attributed to the response of the infrared spectra to the soil components in the soil
matrix that present a great affinity for phosphate anions (i.e., some minerals such as Al-
and Fe-oxyhydroxides and carbonates, SOM/Al complexes) [18].

According to Minasny et al. [22], P adsorption capacity can be predicted from clay
content, pH, and soil color, using pedotransfer function (PTF), i.e., a relationship between
soil parameters and the easier measurable properties usually available from routine soil
analysis. Aluminum and iron oxide fractions, such as oxalate-extractable aluminum and
iron and dithionite-extractable iron [23], have also been found to be useful predictors. As
the predictions of soil minerals using spectral methods have been found to be effective in
highly weathered tropical soils [24,25], NIR and MIR spectrometry can be useful tools to
predict some of the mineralogical properties of the soils and use them in PTF.

The main objective of this study was to investigate the use of NIR and MIR spec-
troscopy to predict the desorption of soil P, using anion-exchange resins (Presin), and
sorption of soil P, using single-addition P-sorption index (PSI), over a wide range of highly
weathered soils in Madagascar. We also built pedotransfer functions for predicting PSI and
compared the usefulness of applying spectrally predicted soil parameters in the PTFs, that
could be used as a complementary tool to standard chemical methods.

2. Materials and Methods
2.1. Soil Sampling and Analysis

A set of Malagasy soils, described in a previous study [25], was used for this study.
Briefly, highly weathered soils, classified as Ferralsols, Cambisols, and Nitisols [26], were
collected at 120 sites in Madagascar (Figure 1). At each site, composite samples were taken
at 0–0.1, 0.1–0.2, 0.2–0.3, 0.5–0.6, and 0.8–0.9 m depth, resulting in 600 soil samples.
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Figure 1. Sampling site location in Madagascar.

The spectra of the 600 samples were acquired, and 148 of those were selected from all
the five soil horizons, according to their NIR spectral representativeness, and analyzed by
reference methods.

For Presin extraction, one 6 cm2 strip of anion exchange membrane in bicarbonate form
(Product 55164 2S; BDH Laboratory Supplies, Poole, England, anion exchange capacity:
0.037 cmolc cm−2) was shaken with 2 g of soil and 30 mL of deionized water on an end-
over-end shaker at 25 ◦C for 16 h. The resin strip was removed and washed. The phosphate
extracted by the resin was eluted by shaking for 30 min with 30 mL 0.1 M NaCl/0.1 M
HCl. The PSI was determined after a single addition of 60 mg P L−1 (as KH2PO4) in
0.01M CaCl2 added at a 1:10 soil:solution ratio [27]. The suspensions were equilibrated
by shaking in an end-over-end shaker at 25 ◦C for 16 h. After equilibrium, P remaining in
solution (Prem) was determined. Total soil P (Ptotal) was determined after digestion of 0.1 g
of soil with 2 mL HClO4 at 205 ◦C for 2 h. The extracted orthophosphate was determined
spectrophotometrically using the blue molybdate-ascorbic acid method.

Total C was analyzed by dry combustion in a LECO model CHN 600 (Leco Corp.,
St Joseph, MI, USA). The soil pH was measured in distilled water (pHwater) using a 1:2.5
(mass) soil:solution ratio. The particle size distribution was determined with the pipette
method after dispersing with 1 M NaOH.

Iron oxides were dissolved using the citrate-bicarbonate-dithionite (CBD) deferrifica-
tion method of Mehra and Jackson [28]. The Fe2O3cbd content represents the amount of
free iron oxide components of soils. The kaolinite (Kt), gibbsite (Gb), goethite (Gt), and
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hematite (Hm) contents were computed according to the methodology of Reatto et al. [29]
after digestion with sulphuric acid (SA) (1:1 distilled water/conc. H2SO4 volume ratio)
(see [24,25,29], for details).

2.2. NIR and MIR Spectrometry

The reflectance of the soil samples was determined in the near-infrared region us-
ing a Foss NIRSystems 5000 spectrophotometer (Silver Spring, MD, USA) and in the
mid-infrared region using a Nicolet 6700 spectrophotometer (Thermo Fisher Scientific
Instruments, Madison, WI, USA). For NIR spectrometry, approximately 5 g of finely
ground soil (<200 µm), packed into a 5 cm diameter ring cup with a quartz window,
was scanned in the 1100 to 2498 nm range with a resolution of 2 nm. MIR analyses were
subsequently performed on the same samples. The reflectance was measured over the
range of 400–4000 cm−1 (2500–25,000 nm) with a spectral resolution of 3.86 cm−1. Each
sample spectrum was averaged from 15 spectra for NIR and 25 for MIR. Data were analyzed
using the WinISI III–V 1.63e software (Foss NIR Systems/TecatorInfrasoft International,
LLC, Silver Spring, MD, USA).

Among the 148 representative samples, we used PCAs (principal component analysis)
to look for the best cluster of data and to select independently the sets of calibration
and validation for NIR and MIR. The best PCAs were calculated using SNVD 2441 for
NIR and SNVD 0441 for MIR. This resulted in different calibration and validation sets
for NIR and MIR, with, respectively, 104 and 42 samples (2 outliers) for calibration and
validation sets for NIR, and 104 and 41 samples (3 outliers) for calibration and validation
sets for MIR. NIR and MIR multivariate calibration models were performed as described
previously [25], using modified partial least squares regression (mPLS). The spectral pre-
processing techniques used included no pre-processing (NONE), multiplicative scatter
correction (MSC), standard normal variate (SNV), detrending (DETREND), and SNV with
detrending (SNVD). The four successive numbers corresponded to the derivatives (0, 1,
and 2: no derivation, first and second derivatives, respectively), the number of point gaps
(0, 4, 5, 10), the number of points for first smoothing (1, 4, 5, 10), and the number of points
for second smoothing (always 1). The mPLS regression was achieved using 15 and 25 mPLS
factors for NIR and MIR, respectively. The numbers of mPLS factors were determined by
minimizing the standard error of cross-validation over the calibration sets.

The performance of the calibration model was assessed using the coefficient of de-
termination of cross-validation (R2

cv) and the ratio of performance to deviation (RPDcv),
which is the ratio of standard deviation to the standard error of cross-validation (SECV),
and was considered acceptable for RPDcv > 2, and R2

cv > 0.75 [30,31]. The prediction
accuracy of the model was evaluated on the validation subset (which had not been used
for model development), using the validation R2

v and RPDv.
We analyzed the kaolinite and gibbsite by specific diagnostic absorption peaks in the

NIR range at around 2205 nm for kaolinite and 2265 nm for gibbsite [25,32]. Data processing
was performed by R software with packages xlsx, car, FacToMineR, lattice, Mass, leaps,
Hmisc et ade4 [25].

2.3. Calibration of Pedotransfer Functions

Pedotransfer functions were built for the prediction of Presin and Prem as a function
of mineralogical and physico-chemical soil properties. Stepwise multiple linear regres-
sion analysis was carried out with the R software with packages xlsx, car, FacToMineR,
lattice, Mass, leaps, Hmisc et ade4 for establishing a function in which Presin or Prem were
dependent variables on the other determined soil properties as independent variables. PTF
models were built to relate Presin and Prem (i) to the chemically measured mineralogical (Kt,
Gb, Fe2O3cbd) and physico-chemical (pHwater, C, clay, silt, sand) covariates and (ii) to the
mineralogical and physico-chemical covariates predicted by NIR or MIR spectrometry (all
except pHwater).
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3. Results
3.1. Reference Soil Analysis

The mean values, standard deviation, and variation range are shown in Table 1 for
mineralogical characteristics, particle size distribution, and chemical characteristics of the
soils. A large variability was observed in the studied soils. Kaolinite was the dominant
mineral of the clay fraction (305 ± 148 g kg−1) followed by gibbsite (110 ± 117 g kg−1)
(Table 1). Crystalline iron oxides, estimated by CBD extraction (Fe2O3cbd), amounted to
42 ± 31 g kg−1. The most common textural classes among all soil samples were coarse-loam
to clay. The clay content ranged from 1 to 766 g kg−1 with a mean of 332 ± 151 g kg−1. The
silt and sand means were 216 ± 122 and 451 ± 199 g kg−1, respectively. These values are
quite similar to those of Grinand et al. [33] who found 300, 161, and 517 g kg−1 for clay, silt,
and sand, respectively, for a large database (618 samples) of soils from Madagascar. The total
C content of the soils varied from 1.2 to 85.5 g kg−1, with mean values of 14.0 ± 12.9 g kg−1,
also very close to those of Grinand et al. [33], i.e., 11.8 ± 7.2 g kg−1. The soils were generally
acidic, with a mean pHwater of 5.5 ± 0.6.

Table 1. Summary statistics for constituents and physico-chemical properties of the ferrallitic
soils studied.

Constituent Unit Min Max Mean SD Median

Kt 1 g kg−1 13.3 676.3 304.7 147.9 288.3
Gb 2 g kg−1 0.0 456.2 109.9 116.9 83.8

Fe2O3cbd
3 g kg−1 0.0 181.4 42.4 30.5 37.2

Clay g kg−1 1.4 766.1 332.1 151.0 342
Silt g kg−1 20.2 566.0 216.3 122 188

Sand g kg−1 42.6 901.6 451.6 199.1 442.8
C 4 g kg−1 1.2 85.5 14.0 12.9 10.2

pHwater 2.4 7.1 5.5 0.6 5.5
Ptot

5 mg kg−1 12.7 1955.4 374.3 318.5 259.6
Presin

6 mg kg−1 0.0 4.4 0.8 0.9 0.4
Prem

7 mg kg−1 1.2 47.4 23.1 9.5 22.8
1 Kaolinite; 2 gibbsite; 3 amount of Fe determined by the CBD method; 4 carbon; 5 phosphorus total; 6 phosphorus
available; 7 phosphorus remaining in solution.

The total (Ptotal), available (Presin), and remaining (Prem) P contents varied considerably
among samples (Table 1), with ranges of 13–1955, 0–4.4, and 1.2–47.4 g kg−1, respectively.
The means for Ptot, Presin, and Prem were 374 ± 319, 0.8 ± 0.9, and 23.1 ± 9.5 mg kg−1,
respectively. The low availability of P (Presin) is similar to that observed in other soils [1] and
explains the P deficiencies generally observed in soils of the Highlands in Madagascar [34].

3.2. NIR and MIR Prediction of Soil Variables through Chemometric Approach

Prediction of soil phosphorus using both NIR and MIR spectrometry based on mul-
tivariate regression through principal components and partial least squares approaches
were poorly effective (Table 2). Only Prem was satisfactorily calibrated, according to the
classification of Chang et al. [30] and Malley et al. [31], with R2

cv = 0.70 and 0.73, and
RPDcv = 1.8 and 1.9, respectively, for NIR and MIR spectrometry. The R2

v were similar
(0.65–0.77), with SEP(c) = 5.5–4.6) making it usable for prediction. The predictions of Presin
and Ptot were unsatisfactory (R2

v < 0.40).
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Table 2. Calibration and validation statistics of soil phosphorus properties, using NIR and MIR.

Calibration Set

Constituent Unit Preprocessing N 6 Out 7 n1 8 Mean SD 9 SECV 10 R2
cv

11 RPDc
12

NIR
Ptot

1 mg kg−1 None 4 2441 * 104 4 100 318.8 230.8 193.5 0.30 1.2
Presin

2 mg kg−1 None 1441 * 104 5 99 0.8 0.9 0.6 0.56 1.5
Prem

3 mg kg−1 None 1441 104 4 100 24.0 9.1 5.0 0.70 1.8
MIR
Ptot

1 mg kg−1 None 1441 104 6 98 352.3 256.4 167.0 0.57 1.5
Presin

2 mg kg−1 Snvd 5 1441 104 8 96 0.7 0.8 0.6 0.43 1.3
Prem

3 mg kg−1 Snvd 0011 * 104 3 101 23.3 9.5 5.0 0.73 1.9

Validation Set

Constituent Unit Preprocessing n2 13 Mean SD SEP(c) 14 Bias Slope R2v 15 RPDv 16

NIR
Ptot

1 mg kg−1 None 2441 42 321.2 136.2 261.9 34.5 1.1 0.26 1.2
Presin

2 mg kg−1 None 1441 42 0.8 0.8 3.8 0.4 0.5 0.01 1.0
Prem

3 mg kg−1 None 1441 42 24.0 8.0 5.5 −0.4 0.9 0.65 1.7
MIR
Ptot

1 mg kg−1 None 1441 41 366.84 255.5 210.1 23.3 1.0 0.60 1.6
Presin

2 mg kg−1 Snv 1441 41 0.7 0.8 7.1 1.0 1.0 0.0.1 1.0
Prem

3 mg kg−1 Snvd 0011 41 23.2 8.5 4.6 −0.1 1.0 0.77 2.1

1 Total phosphorus; 2 phosphorus available; 3 phosphorus remaining in solution; 4 no preprocessing; 5 standard
normal variate and detrend; * the numbers indicate the derivatives (0, 1, and 2: no derivation, first and second
derivatives, respectively)—number of point gap (0, 4)—number of points for first smoothing (1, 4) and number
of points for second smoothing (1); 6 total number of sample; 7 number of outliers; 8 number of samples in the
calibration set (N—out); 9 standard deviation; 10 standard error of cross-validation; 11 coefficient of determination
of cross-validation that corresponds to the percent of variation described in the data; 12 ratio performance deviation
of cross-validation (SD/SECV); 13 number of samples in the validation set; 14 standard error of prediction corrected;
15 coefficient of determination of SEP; 16 1/[racine (1 − R2)].

Calibration and validation statistics of physico-chemical and mineralogical soil prop-
erties, using mPLS methods on NIR and MIR spectra, were presented in Table 3. The
accuracies of the prediction of the carbon content of the soils were considered successful
using NIR (R2

cv = 0.79 and RPDcv = 2.1) and excellent using MIR (R2
cv = 0.85 and RPDcv

= 2.6). For mineralogy and texture, most of the predictions resulted in lower R2 values
(0.5–0.7), for both NIR and MIR. The best predictions were obtained for Fe2O3cbd with
NIR (R2

cv = 0.80 and RPDcv = 2.2) and sand (R2
cv = 0.66 and RPDcv = 1.7) with MIR. The

prediction of the main minerals of the soils, i.e., kaolinite and gibbsite, had R2
c values

between 0.5–0.6 and R2
v still lower. However, in a previous paper on the same soils [25], we

got satisfactory coefficients of determination for gibbsite and kaolinite, with adjusted R2
cv

= 0.71 and 0.69, respectively, and similar results for the calibration set, using the height of
the second derivative of NIR specific spectral peaks situated at nearly 2205 nm for kaolinite
and 2265 nm for gibbsite. The pHwater predictions were completely unreliable (R2

cv < 0.40)
(Table 3).
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Table 3. Calibration and validation statistics of physico-chemical and mineralogical soil properties,
using NIR and MIR.

Calibration Set

Constituent Unit Preprocessing N 10 Out 11 n1 12 Mean SD 13 SECV 14 R2
cv

15 RPDcv
16

NIR
Kt 1 g kg−1 None 5 2441 * 104 5 99 309.3 147.8 95.0 0.60 1.6
Gb 2 g kg−1 None 0011 * 104 34 70 138.4 107.07 67.8 0.60 1.6

Fe2O3cbd
3 g kg−1 Msc 6 2551 * 104 9 95 36.9 26.0 11.8 0.80 2.2

C 4 g kg−1 None 1441 * 104 4 100 1.3 1.1 0.5 0.79 2.1
Clay g kg−1 None 0011 * 104 4 100 311.4 136.4 97.7 0.49 1.4
Silt g kg−1 Snv 7 1441 * 104 3 101 211.0 127.2 99.0 0.39 1.3

Sand g kg−1 Snv 1441 104 4 100 480.1 196.3 127.9 0.58 1.5
pHwater Snv 2441 * 104 4 100 5.46 0.4 0.3 0.37 1.3

MIR
Kt g kg−1 None 0011 104 6 98 298.9 140.1 90.3 0.59 1..6
Gb g kg−1 None 0011 104 25 79 149.4 116.2 78.4 0.54 1.5

Fe2O3cbd g kg−1 Detrend 8 1441 104 6 98 40.9 25.6 16.7 0.57 1.5
C g kg−1 Snvd 9 1441 104 7 97 1.1 0.9 0.3 0.85 2.6

Clay g kg−1 Snv 210101 * 104 6 98 349.4 131.1 87.3 0.56 1.5
Silt g kg−1 Snv 2551 104 4 100 218.2 116.6 76.5 0.58 1.5

Sand g kg−1 Snv 0011 104 2 102 441.2 186.9 110.0 0.66 1.7
pHwater Snvd 0011 104 7 97 5.5 0.4 0.4 0.24 1.1

Validation Set

Constituent Unit Preprocessing n2 17 Mean SD SEP(c) 18 Bias Slope R2
v

19 RPDv
20

NIR
Kt g kg−1 None 2441 42 301.2 127.1 125.5 −28.0 0.7 0.37 1.3
Gb g kg−1 None 0011 42 184.3 92.9 83.5 10.5 0.9 0.51 1.4

Fe2O3cbd g kg−1 Msc 2551 42 52.3 27.2 21.3 1.4 1.0 0.63 1.6
C g kg−1 none 1441 42 1.5 0.8 0.4 −0.2 0.9 0.81 2.3

Clay g kg−1 None 0011 42 348.4 74.6 114.6 49.3 1.1 0.33 1.2
Silt g kg−1 Snv 1441 42 226.8 99.9 132.4 −18.8 0.1 0.02 1.0

Sand g kg−1 Snv 1441 42 431.6 133.1 143.7 −37.3 0.9 0.40 1.3
pHwater snv 2441 42 5.5 0.3 0.7 0.2 1.5 0.27 1.2

MIR
Kt g kg−1 None 0011 41 312.3 93.1 126.4 8.5 0.9 0.30 1.2
Gb g kg−1 None 0011 41 121.5 78.0 67.8 11.9 0.8 0.45 1.3

Fe2O3cbd g kg−1 Detrend 1441 41 38.9 24.6 22.5 5.7 1.4 0.72 1.9
C g kg−1 Snvd 1441 41 1.4 0.9 0.4 0.0 1.0 0.87 2.8

Clay g kg−1 Snv 210101 41 328.2 105.6 117.5 6.2 1.2 0.55 1.5
Silt g kg−1 Snv 2551 41 232.5 119.4 107.4 −39.6 0.5 0.32 1.2

Sand g kg−1 Snv 0011 41 442.4 177.5 115.4 30.3 1.0 0.76 2.0
pHwater Snvd 0011 41 5.4 0.3 0.5 0.1 1.2 0.38 1.3

1 Kaolinite; 2 gibbsite; 3 amount of Fe determined by the CBD method; 4 carbon; 5 no preprocessing; 6 multiplicative
scatter correction; 7 standard normal variate; 8 removes of linear and quadratic curvature of each spectrum;
9 standard normal variate and detrend; * the numbers indicate the derivatives (0, 1, and 2: no derivation, first
and second derivatives, respectively)—number of point gaps (0, 4, 5, 10)—number of points for first smoothing
(1, 4, 5, 10) and number of points for second smoothing (1); 10 total number of sample; 11 number of outliers;
12 number of samples in the calibration set (N—out); 13 standard deviation; 14 standard error of cross-validation;
15 coefficient of determination of cross-validation that corresponds to the percent of variation described in the
data; 16 ratio performance deviation of cross-validation (SD/SECV); 17 number of samples in the validation set;
18 standard error of prediction corrected; 19 coefficient of determination of SEP; 20 1/[racine (1 − R2)].
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3.3. Development of a PTF for Soil Phosphorus Using other Soil Variables Prediction through
Chemometric Approach

Simple regression statistics (Table 4) indicated a significant linear relationship between
Prem and C, clay, silt, sand, Fe2O3cbd, and Gb, whereas pHwater and Kt were not significantly
related to Prem. Among the different soil properties, gibbsite content was the most closely
and significantly correlated with Prem (r = −0.59). The amount of crystallized oxides was
also significantly correlated with Prem (r = −0.49), however, the relationship with gibbsite
was better than with iron oxides. Strong relationships between Prem and the clay (r = −0.53)
and sand (r = 0.51) contents were observed, with a negative coefficient for the former
and a positive one for the latter. The clay fraction was highly correlated to gibbsite and
iron oxide contents (r = 0.35 and 0.54, respectively) which also had significant negative
correlations with Prem. The sand fraction behaved opposite to the clay fraction. The C
content was negatively correlated with Prem, which was a surprising result, because organic
matter is supposed to reduce phosphorus retention [35], and thus increase Prem. Soil
minerals (kaolinite, gibbsite, iron oxides) play a key role in the stabilization of organic
matter [36] and thus explain the significant correlation between C and Gb (r = 0.24). The
chemical reaction of the soil (pHwater) does not seem to contribute much to the sorption of
P, in line with the review paper of Gérard [3], explaining that the binding capacity of Fe/Al
oxides varies moderately in the pH range of Madagascar soils. Regression between Presin
and soil properties showed that pHwater, silt, and sand contents were the only significant
variables (Table 4).

Table 4. Pearson coefficients and significance levels for correlation between physico-chemical and
mineralogical soil properties and Prem or Presin of the ferrallitic soils studied.

Prem
5 (mg L−1) Presin

6 (mg L−1)

Variables Unit Coefficient Significance Level Coefficient Significance Level

Kt 1 g kg−1 0.0277 0.7380 −0.050 0.5450
Gb 2 g kg−1 −0.586 0.0000 −0.019 0.8230

Fe2O3cbd
3 g kg−1 −0.488 0.0000 −0.097 0.2430

pHwater 0.120 0.1470 0.482 0.0000
Clay g kg−1 −0.533 0.0000 0.010 0.9080
Silt g kg−1 −0.167 0.0423 0.260 0.0014

Sand g kg−1 0.507 0.0000 −0.167 0.0431
C 4 g kg−1 −0.284 0.0005 −0.025 0.7600

1 Kaolinite; 2 gibbsite; 3 amount of Fe determined by the CBD method; 4 carbon; 5 phosphorus remaining in
solution; 6 phosphorus available.

The multiple regression analyses developed are presented in Table 5, and illustrated
graphically in Figure 2 for Prem. For chemically analyzed variables, the strongest multiple
regression (p < 0.0001) for Prem included five factors (each significant at p-value = 0.05),
representing pHwater, texture, and mineralogy variables (Equation (1); Figure 2a). As
expected, given their P sorption capacity, Fe/Al oxides (i.e., Gb and Fe2O3cbd) had a major
effect on Prem. The sand content (i.e., quartz), known for not having significant sorption
capacity for P, counteracted the effects of Fe/Al oxides and was useful for the accurate
prediction of Prem. The pHwater, which was not correlated with Prem (Table 4), was removed
without a substantial reduction of the model efficiency (Equation (2)). The C content had
significant contributions (Equation (1)); however, its inclusion in the model improved only
the explanation of variability marginally (Equation (3); Figure 2b), presumably, because
of the collinearity of C with Al oxides (r = 0.24). The root-mean-square error (RMSE) was
between 6.5 and 6.9 mg L−1, depending on the models. A multiple regression equation
was also obtained for Presin (R2 = 0.42, Equation (4)) using the same five factors as for Prem,
but the efficiency of the model was greatly reduced after removing pHwater and C content
(R2 = 0.05, Equation (5)). The goodness of fit of multiple regressions was lower for Presin
than for Prem (Table 5).
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Table 5. Best-fit multiple regression analyses for Prem or Presin of the ferrallitic soils studied using
chemically analyzed or values predicted using spectrometry (except pH).

Variables Multiple Regression Equation R2
c RMSE

Chemically analyzed variables
Prem Prem = 22.32 + 1.55 pHwater − 0.127 C − 0.009 Kt − 0.039 Gb − 0.065 Fe2O3cbd + 0.008 S (1) 0.52 6.49

Prem = 25.78 − 0.13 C − 0.031 Gb − 0.062 Fe2O3cbd + 0.012 S (2) 0.49 6.69
Prem = 25.61 − 0.035 Gb − 0.072 Fe2O3cbd + 0.010 S (3) 0.46 6.89

Presin Pres = −0.208 + 0.053 C − 0.001 Gb + 0.001 S (4) 0.42 0.70
Pres = 0.284 + 0.001 S (5) 0.05 0.90

Spectrally predicted variables
Prem Prem = 20.79 + 1.285 pHwater − 0.290 C − 0.007 Kt − 0.029 Gbcbd − 0.105 Fe2O3cbd + 0.020 S (6) 0.50 6.61

Prem = 24.897 − 0.261 C − 0.027 Gb − 0.099 Fe2O3cbd + 0.019 S (7) 0.49 6.72
Prem = 24.160 − 0.030 Gb − 0.111 Fe2O3cbd + 0.015 S (8) 0.43 7.09

Presin Pres = 0.847 + 0.058 C − 0.001 Kt − 0.001 Gb − 0.007 Fe2O3cbd (9) 0.41 0.71
Pres = 1.777 − 0.002 Kt − 0.002 Gb − 0.007 Fe2O3cbd (10) 0.20 0.84

Prem: phosphorus remaining in solution; Presin: phosphorus available; C: carbon; Kt: kaolinite estimated after
extraction with sulfuric acid; Gb: gibbsite estimated after extraction with sulfuric acid; Fe2O3cbd: amount of
Fe determined by the CBD method; S: sand; R2

c: coefficient of determination of calibration; RMSE: root mean
square error.
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Figure 2. Relationships between the measured and predicted data, corresponding to the whole data
set (148 samples), i.e., both the calibration and validation sets, using the best-fit pedotransfert function
(Equation (1), (a)), a simplified function without C and pH (Equation (3), (b)), a simplified function
without C and pH (Equation (8), (c)). Spectrally predicted variables were predicted by NIR/mPLS
for Fe2O3cbd, MIR/mPLS for C and S, and by NIR according to Ramaroson et al. [24] for Kt and Gb.
Large and narrow dashed lines are the confidence and prediction intervals, respectively; the circles
and crosses are the points inside and outside the confidence interval.

We tested the same multiple regression analyses using the variables predicted with
the PLS methods (carbon, Fe2O3cbd, sand) and with the NIR models proposed by Ramaro-
son et al. [25] for kaolinite and gibbsite. For pHwater, we used measured values as it could
not be predicted with spectral methods. For Prem, the multiple regression equations were
approximately of the same quality as those obtained with only the measured variables
(Equations (7) and (8) in Table 5; Figure 2c). Moreover, the relationship between Prem
predicted using chemically measured data (Equation (3)) and Prem predicted with PTF
using spectrally predicted data (Equation (8)) was good (slope = 0.83; R2 = 0.74) (Figure 3).
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4. Discussion
4.1. Use of Infrared Spectroscopy to Develop P Availability Indices with Chemometric Methods

Phosphorus is an essential nutrient required by crops in large amounts. Soil testing
is one of the most cost-effective nutrient management tools available to farmers and crop
advisers. Soil tests provide an index of the labile plant-available P by extracting a fraction
of the P that is related to the yield response of crops [37]. However, these indexes often fail
to satisfactorily predict P availability [6,7].

Soriano-Disla et al. [18] have reviewed the performance of visible, near-, and mid-
infrared reflectance spectroscopy for the prediction of soil physical, chemical, and biological
properties using multivariate chemometric regression modeling. For P availability indices,
with few exceptions of soil sets representing special or unusual conditions, most predictions
of extractable P in soils resulted either in low R2

v values (0.5–0.7) or were considered to
be completely unreliable (R2 < 0.50). At regional or country scales, most of the results
are unreliable with both NIR [24,30] and MIR [20,22,38]. An exception was reported by
Morón and Cozzolino [39] who found low accuracy prediction, using NIR, for resin and
Bray extractable P (R2

v = 0.61 and 0.58, respectively) for soils from Uruguay. Our results,
presenting even lower coefficients (R2

v = 0.06 for NIR and 0.36 for MIR), are comparable to
the majority of studies conducted on a similar scale.

Sorption of P in the soil controls its chemical mobility and bioavailability [40]. The
ability of soil to bind phosphorus (P sorption) can be also a useful index of P availability.
Good predictions were reported in the study of Soriano-Disla et al. [18] for P sorption
with MIR (moderately successful predictions, median R2

v = 0.83). However, the number
of studies and geographic area studied (i.e., west Australia) are very limited [20,22,41].
Dunne et al. [21] also showed moderately successful predictions (R2

v up to 0.67) using dif-
ferent sorption models, i.e., single point sorption index, Langmuir sorption isotherm, and
Freundlich sorption isotherm, the P sorption index determined as the P remaining in solu-
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tion being the most successful. Studies using vis-NIR were less successful (R2
v = 0.69) [42].

Our results showed nearly the same accuracy of prediction, with R2
v = 0.65 and 0.77 for

NIR and MIR, respectively, as the reported studies. However, these predictions could be
used as acceptable soil quality indices for evaluating soil quality or fertility by African
farmers who have no access to soil analysis due to high prices.

4.2. Use of PTF to Relate P Availability Indices to Soil Properties

The extent to which a soil adsorbs P (sorption capacity) differs widely among different
soils. Factors controlling phosphate binding in soils have been the focus of research efforts
in recent decades (e.g., [3,43]). P sorption tends to be high in soils with a high proportion
of small-size particles such as clay and, hence, high specific surface area [43]. Aluminum
and iron oxides are considered the main phosphate adsorbents in soils ([3] and references
therein). Accordingly, close relationships were found between the amounts of adsorbed
phosphate and certain aluminum and iron forms (crystalline and amorphous), which lead
to the creation of pedotransfer functions for predicting adsorbed phosphate [23]. Crys-
talline Fe and Al oxides generally provide a large part of the P sorption capacity of highly
weathered soils [44], while amorphous Fe and Al oxides contribute to the sorption of P by
less weathered soils [23]. However, the amount of amorphous oxides is low with regards to
crystalline ones, and, to our knowledge, it is not possible to quantify them independently
by NIR or MIR. A substantial contribution of kaolinite to phosphate sorption has been also
demonstrated recently [3]. The effect of pH and organic matter on phosphate sorption by
clay minerals and Fe/Al oxides has been also extensively studied [35,45]. Briefly, soluble
humic molecules and organic acids can be sorbed to Al and Fe oxide surfaces consequently
blocking P adsorption sites, then decreasing P sorption and increasing P availability.

Chemical properties that are related to the mineral and organic components can be
predicted spectrometrically because of the interaction between the soil properties and
the active soil components: organic matter, clay minerals, and oxides [46]. Therefore,
adsorption-desorption reactions, such as P availability or P sorption, can be predicted if
quantitative mineralogy and chemical analysis of various properties are available. However,
detailed mineralogical measurements and some specific analyses are expensive and rarely
made in soil surveys. There exist a few PTFs that relate P sorption to aluminum and iron
oxide contents [23]. Our results showed that, in addition to Fe/Al oxides, sand and carbon
content are key parameters. These compounds have been predicted with a relatively good
accuracy [18]. Demattê et al. [47] and Vendrame et al. [24] demonstrated the use of NIR
spectroscopy for identifying major soil mineralogy in tropical soils from Brazil. Numerous
studies have reported accurate predictions of soil total C and N content (e.g., [16,48,49]).
Accurate calibration for sand using MIR or combined vis-NIR has been found, with R2

v
between 0.70 and 0.99 [24,30,38,50,51].

Our results are in the range of most published results with reliable spectroscopy-based
soil analysis for soil compounds used in our PTF, with R2

v of 0.87 for C (with MIR and PLS
calibration); 0.76 for sand (MIR-PLS); 0.72 for Fe2O3cbd (MIR-PLS); and 0.75 for gibbsite
(NIR, height of the first derivative of specific peak at 2265 nm) (Table 3 and Figure 2.). The fit
of multiple regression analyses for Prem or Presin, using data obtained by chemical analyses
and predicted values through spectrometry, were similar (Table 5), and a good relationship
between the PTFs obtained by the two approaches was shown for Prem (Figure 3).

5. Conclusions

Highly weathered soils cover large areas in the tropics. The reactive minerals, i.e., clay
minerals (kaolinite) and Al/Fe oxides (gibbsite, goethite, hematite), play a key role, together
with organic matter, in the physico-chemical functioning of these soils, especially on P
sorption. To overcome the widespread P deficiency in the agricultural soils of Sub-Saharan
Africa and promote adequate soil P management, rapid and low-cost soil testing for P
availability or P sorption capacity is needed. While numerous studies have been conducted
to quantify the soil organic matter with infrared spectral methods (see [18]), research on



Land 2023, 12, 196 12 of 14

the prediction of P sorption capacity or P availability in soils using this approach is still
scarce. Although these methods are ineffective in predicting available P (Presin), we showed
that reliable spectroscopy-based analyses of a P sorption index (Prem) can be obtained with
both NIR and MIR spectrometry using mPLS. The development of pedotransfer functions
(PTFs) based on carbon content, texture, and mineralogical properties of soils predicted
with chemometric methods is also useful for predicting Prem and through that in the
understanding of the effects of the most important soil components controlling P sorption.
Therefore, the P sorption capacity of the soil can be predicted based on the amounts of
aluminum and iron oxides (gibbsite and Fe2O3cbd), which both increase P sorption, and
the amount of sand, that counteract the effects of Fe/Al oxides. These soil components
are fairly well predicted by IR-spectrometry, and a rapid and low-cost procedure for the
estimation of P sorption capacity can be proposed. As farmers generally do not have access
to soil testing in less developed countries (e.g., Madagascar), due to their cost and to the
lack of routine laboratories, indices related to the P sorption potential of soils could be
linked to cartographic data of the soils (i.e., mineralogy, C content) to improve fertilizers
management. The hereby presented models represent encouraging results and foresee the
need for similar studies on tropical soils in different environments to improve the method.
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