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The current research work attempted to investigate, for the first time, the

impact of biochar addition, on anaerobic digestion of olive mill wastewater with

different initial chemical oxygen demand loads in batch cultures (10 g/L, 15 g/L,

and 20 g/L). Methane yields were compared by applying one-way analysis of

variance (ANOVA) followed by post-hoc Tukey’s analysis. The results

demonstrated that adding at 5 g/L biochar to olive mill wastewater with an

initial chemical oxygen demand load of 20 g/L increased methane yield by

97.8% and mitigated volatile fatty acid accumulation compared to the control

batch. According to the results of microbial community succession revealed by

the Illumina amplicon sequencing, biochar supplementation significantly

increased diversity of the microbial community and improved the

abundance of potential genera involved in direct interspecies electron

transfer, including Methanothrix and Methanosarcina. Consequently, biochar

can be a promising alternative in terms of the recovery of metabolic activity

during anaerobic digestion of olive mill wastewater at a large scale.

KEYWORDS
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1 Introduction

Cultivation of olive trees and oil production are vital activities, mainly in

Mediterranean countries. However, uncontrolled olive mill wastewater (OMW)

discharge into the environment may beget serious problems owing to its high

pollution degree, acidic pH and polyphenols compounds generating antimicrobial

effects which involve the inhibition of natural biodegradability of organic load in
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natural water bodies (Sayadi et al., 2000). Among the numerous

processes proposed for the effluent detoxification, biological

treatments were considered less expensive and environmental

friendly (McNamara et al., 2008). It has been reported that

anaerobic digestion (AD) is more efficient than aerobic

processes referring basically to the plausibility to treat

effluents with high organic load and energy potential like

OMW (Gelegenis et al., 2007). In addition, it displays several

merits like operational economy, reduction in energy

consumption, generation of biogaz and use of the stabilized

digestate as a fertilizer (Dareioti et al., 2009).

However, AD effectiveness is limited by the slow metabolism

between syntrophs and archaea (Zhao et al., 2016). In fact, some

reactor operational modifications may cause volatile fatty acids

(VFAs) or hydrogen (H2) accumulation that might be toxic to

methanogens and acetogenic bacteria respectively, which triggers

souring of anaerobic reactors and leads as a matter of fact to the

process failure.

Particularly, for OMW, AD was affected chiefly by inhibitory

substances such as phenolic compounds as well as long chain

fatty acids (Beccari et al., 1999) as they inhibit anaerobic

microorganisms. For these reasons, many researchers have

been particularly oriented towards improving OMW AD

efficiency through dilution, physico-chemical pretreatments,

co-digestion or integrated treatments (Khoufi et al., 2015;

Vavouraki et al., 2020). Khoufi et al. (2007) proved that

OMW pretreatment with electrocoagulation followed by

sedimentation led to removal of 76.2% of phenolic

compounds and a chemical oxygen demand COD reduction

of 43%. After this pretreatment, anaerobic biomethanization was

conducted with high methane yield at a loading rate of 6 g COD

L−1 day−1 compared to raw OMW which was toxic to

microorganisms. The working mode for syntrophic

metabolism during anaerobic methanogenesis was commonly

reported as interspecies hydrogen transfer (IHT) (Boone et al.,

1999), where H2 acts as a diffusive electron shuttle to mediate

electron transfer from secondary fermenting bacteria to

methanogens. However, the production of hydrogen catalysed

by secondary fermenting bacteria is thermodynamically feasible

(i.e., ΔG < 0) uniquely if hydrogen concentrations are quite low

(H2 < 10–4 atm (Logan et al., 2002)). Since this condition is

accomplished through the consumption of hydrogen by

hydrogenotrophic methanogens, the syntrophic metabolism

between oxidizing bacteria and archaea is crucial (Mcinerney

et al., 2010). Yet, H2 diffusion between H2 producers and H2-

consuming methanogens is slow (Stams et al., 2006), which

reduces the methane formation rate during AD. Therefore,

this syntrophic metabolism network has been confirmed to be

metabolically low-efficient.

Over the last years, a new electron transfer pathway, referred

to direct interspecies electron transfer (DIET), has been set

forward as an alternative network which is more efficient than

IHT (Xu et al., 2019). DIET may occur through biological

electrical connections such as pili and outer surface c-type

cytochromes (Xu et al., 2019). Moreover, several electrically

conductive materials, such as graphene (Zhang and Tremblay,

2020) and carbon cloth (Zhao et al., 2016), served as additives for

DIET enhancement between syntrophic microorganisms.

However, excessive costs as well as the environmental risks of

these materials like graphene might limit their use (Kang et al.,

2007). Thus, recently, various researchers have investigated

biochar as an effective additive to enhance AD. Biochar is an

amorphous and a porous carbon-rich material produced by

pyrolysis of biomass varieties in the absence or presence of a

little amount of oxygen (Cantrell et al., 2012). It is reported that

during AD, biochar increases buffering capacity (Zhang et al., 2014),

immobilizes microbial cell and improves the methane production

rate (Cai et al., 2016). Recently,Wang et al. (2020) have asserted that

biochar derived from biowaste promoted DIET to accelerate

syntrophic phenol oxidation during AD. The authors suggested a

probable shift of syntrophic phenol metabolism from indirect

transfer via H2 to direct interspecies electron transfer.

This work corresponds to a pioneering research that

focuses on the impact of the biochar supplementation on

AD of OMW. The chief objective of this research work

was: Firstly, to examine the impact of different biochar

concentrations on biochemical methane potential assays of

OMW at different increasing COD loads: 10 g/L, 15 g/L and

20 g/L. Secondly, the prokaryotic community structure, both

in the suspended solution and those integrated with biochar

surface, were investigated by Illumina to explore their

potential implication in DIET.

This work would provide new findings on the effect of

biochar supplementation upon the production of methane

from OMW which has an important implication for potential

application at large scales.

2 Materials and methods

2.1 Substrates and inoculum

Raw OMW invested in this study was produced by a

continuous olive oil mill situated in Sfax (Tunisia). In

order to separate suspended solids before use, the samples

of OMW were centrifuged by Universal 320 R at 6,000 rpm

for10 min. The microbial inoculum was supplied by a semi-

pilot anaerobic bioreactor treating OMW and operating in a

mesophilic regime.

The used biochar was derived from olive mill wastewater

sludge from evaporation ponds in Sfax (Tunisia) and was

produced via pyrolysis at a temperature of 450 °C. The

parameters of the pyrolysis were recently described by Abid

et al. (2022). The physico-chemical characteristics of the biochar

were: pH = 10.8 ± 0.05; EC = 11 mS/cm; BET surface area (m2/

g) = 2.77; element contents (oven dry basis): C = 45% +/2.8; N =
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2.45% ± 0.13; H = 2.26% ± 0.05; S = 1.23% ± 0.32; O =

19.47% ± 0.3.

2.2 Experimental design

The study centered around the impact of the biochar

concentration on the AD of OMW at different COD

concentrations: 10 g/L, 15 g/L and 20 g/L. Based on previous

studies (Luo et al., 2014; Altamirano-Corona et al., 2021), two

biochar concentrations were used (5 g/L and 10 g/L).

Batch anaerobic digestion tests were performed in 100 ml

batches with a working volume of 60 ml. The inoculum was

mixed with a substrate, keeping a volatile solids (VS) ratio (VS

substrate to VS inocula) at 1:1(Khoufi et al., 2015). Batches

containing inoculum were conducted as blanks to subtract the

background gas production. The pH of each batch was adjusted

to approximately pH = 7.2 with NaOH (5 M) or HCl (5 M) after

which nitrogen gaz was used to purge the system for 3 min so as

to remove excess of O2 and thus ensure anaerobic conditions.

Subsequently, the batches were placed in mesophilic conditions

at 37°C.

The volume of methane is measured with a gas trapping

device. This device consists of a syringe inserted into the batch

through the septum and connected by a flexible tube, to an

inverted vial containing a solution of NaOH (3 M) to fix CO2.

The tests were set up in triplicate and conducted during an

incubation period. The mean values of methane production

were calculated. The methane yield was expressed as mL CH4/

g COD introduced and computed through dividing the

cumulative volume of methane produced by the mass of

COD introduced into the batch at the start–up. At the end

of the incubations, the digestates were separated from the

biochars for subsequent analyzes.

2.3 Analytical methods

Characterization of OMW as well as the digestates included

the following parameters: Total solids content (TS), VS., electrical

conductivity (EC), pH, biological oxygen demand (BOD5), COD,

total polyphenols, and VFAs. pH and EC were measured

respectively with a pH meter type Néo Met/Ph- 220 L and a

conductivimeter type WTW. TS was measured after oven drying

at 105°C by weighing the sample before and after. Afterwards, the

retained residues were dried at 105°C. VS. were analyzed by loss

on ignition at 550°C for 2 h. COD was determined referring the

standard procedure following the American Public Health

Association (APHA, 2012). BOD5 was specified using the

manometric method. Total polyphenols were determined

using the Folin-Ciocalteu assay, as reported by Aliakbarian

et al. (2015). VFAs were measured by HPLC according to the

protocol described by Mechichi and Sayadi (2005).

The physico-chemical characteristics of OMW were pH = 4.9;

EC = 14.7 mS/cm; TS = 42.6± 0.46 g/L; VS = 30.3± 0.5 g/L; COD =

47.4± 2.8 g/L; BOD5 = 1.75± 0.07 g/L; total polyphenols = 3.4±

0.12 g/L.

2.4 Sampling and DNA extraction

Sampling of microbes in the batches was undertaken at the

end of methanization according to the method used by (Luo

et al., 2014). To investigate the prokaryotic communities in the

bottles, three fractions were distinguished as follows: suspended

solution, loosely combined with biochar and tightly integrated

with biochar surface. Total DNA from all fractions were

extracted using DNeasy Power Soil Kit (QIAGEN).

2.5 16 S rRNA sequencing analysis

The mixtures of 16 S rRNA gene amplicons (bTEFAP®) were
generated through the use of a 515F/806R primer set, as

previously reported by Dowd et al. (2008) and were

sequenced with the MiSeq Illumina (paired-end 2 × 150 bp)

platform of the Molecular Research Laboratory (Texas, USA).

QIIME 1.9.1 was used to analyze raw data as described by

Caporaso et al. (2010). In short, the raw reads were checked

for adapter, chimera and low quality sequences. The trimmed

reads were clustered into operational taxonomic units (OTUs)

using a 97% sequence identity threshold with UCLUST (Edgar,

2010). The Green genes 13.8 database was used to perform

taxonomic assignments. Relative abundance of archeal genus

were calculated from all archeal sequences. Sequences from all

archael OTUs and selected bacterial dominant OTUs (>1% of

total sequences) were compared with related sequences retrieved

from NCBI databases using BLAST algorithm (Altschul et al.,

1990). QIIME software (version 1.9.1) was used to determine the

Shannon and Simpson’s diversity indices, the observed species,

the Chao1 richness estimator and the phylogenetic diversity

index. Venn diagrams were constructed using the VENN

DIAGRAM PLOTTER program (http://omics.pnl.gov/

software/VennDiagramPlotter.php). The heat map was

constructed by the ‘aheatmap’ function in the ‘NMF’ package

of R (http://nmf.r-forge.r-project.org/aheatmap.html.

2.6 Nucleotide sequence accession
numbers

16 S rRNA raw reads from biochar free group (R0) and 5 g/L

biochar supplemented group (R1), including suspended fraction

of R0 (S0) and R1 (S1), cells loosly (L1) and tightly cells bound to

biochar (T1), were deposited in the Short Read Archive of NCBI

under project no. PRJNA856838.
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2.7 Statistical analysis

The experimental values (n = 3) were presented in terms of

the means ± standard deviation (SD). To determine the

significant differences between the cumulative methane

productions and methane yields in the batches (n = 3), three

steps were undertaken. Firstly, the Shapiro-wilk test was used to

analyze the normality distribution of variables. Secondly, the

one-way ANOVA test was implemented. Thirdly, Tukey’s post

hoc test was adopted. The significant test was fixed at p < 0.05. All

statistical analyses were conducted with Statistical Package for

the Social Sciences (SPSS) V 20.

FIGURE 1
Cumulative methane production during AD of OMW at COD loads of (A) 10 g/L (B) 15 g/L and (C) 20 g/L.
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3 Results

3.1 Impact of biochar concentrations on
anaerobic digestion of OMW at different
increasing COD loads of 10g/L, 15 g/L and
20g/L

3.1.1 Impact on the methane production
This study purports to assess the influence of biochar

concentrations (5 g/L and 10 g/L) on anaerobic digestion of

OMW with different increasing COD loads (10 g/L, 15 g/L

and 20 g/L) over an incubation period of 56 days. Statistical

differences in methane production and methane yields were

specified using one-way ANOVA and post hoc Tukey’s test

analysis with a significance level of 0.05. Figure 1A depicts the

cumulative methane production during OMW methanisation at

a COD load of 10 g/L.

Over the first 9 days, similar trends in cumulative methane

production were observed in all the batches with a low CH4

production on day 3 followed by a plateau lasting 6 days which

corresponded to the lag time. Subsequently, after 32 days,

significant higher cumulative methane production was

achieved in batches with 5 g/L and 10 g/L biochar (p < 0.05)

compared to the control. However, the cumulative CH4

production for batches with 5 g/L biochar was significantly

higher than that for batches with 10 g/L biochar (p < 0.05).

At the end, the best significant methane yield (p < 0.05) was

recorded for the batches with 5 g/L biochar (261.1 ml CH4/g

COD introduced), with a yield improvement of 38.1% compared to

the control.

Figure 1B exhibits the cumulative methane production

during OMW methanization at a COD load of 15 g/L. As can

be inferred, CH4 production started after 9 days of lag time in all

the batches. Subsequently, the methane production was detected

from day 9 to day 18 for the control before it plateaued until day

32; then, it reincreased till the end. This can be assigned to the

slow syntrophic degradation during AD of OMW containing

slow biodegraded organics (Khoufi et al., 2006). However, on day

32, cumulative CH4 productions in cultures with 5 g/L and 10 g/L

biochar addition were significantly higher (p < 0.05) than the

control. However, no significant difference was detected between

them (p > 0.05). Yield improvements levels compared to the

control amounted to 34.6% and 36.9% respectively for batches

with 5 g/L and 10 g/L of biochar. From this point onward, a

higher increase of methane production was detected in batches

with 5 g/L biochar compared to those with 10 g/L till the end of

the fermentation. Eventually, after 56 days, a significant higher

methane yield was recorded in the batches with 5 g/L biochar (p <
0.05) (241.2 ml CH4/g COD introduced) compared to the control

(Table 1) with a yield improvement of 30%.

Figure 1C displays cumulative methane production during

AD of OMW with 20 g/L of COD load. As demonstrated, after a

similar lag time of 9 days, methane production increased in all

batches. Afterwards, it plateaued, after 25 and 42 days for the

control batch and batch with 10 g/L of biochar, respectively.

However, it continued to rise up to 56 days for batch with 5 g/L

biochar. After 32 days, biochar supplementation at

concentrations of 10 g/L and 5 g/L improved significantly (p <
0.05) the methane production compared to the control by 18.6%

and 51.9%, respectively. Moreover, cultures with 5 g/L biochar

presented significant higher methane production than those with

10 g/L biochar (p < 0.05). Likewise, significant yield

improvements of 42.7% and 97.8% (p < 0.05) were reached at

the end of digestion (56 days) for batches with 10 g/L and 5 g/L

TABLE 1 One-way ANOVA and post hoc Tukey’s test analysis on CH4 yields (mL/g COD introduced) at the end of anaerobic digestion of OMWwith initial COD
loads of 10 g/L, 15 g/L and 20 g/L.

Treatments Methane yield (mL/g COD introduced) Standard deviation p value

OMW10 189ab 7.2 <0.01

OMW10+5g/L Biochar 261.1d 5.6 <0.01

OMW10+10g/L Biochar 184.5a 4.3 <0.01

OMW15 185.6ab 5.1 <0.01

OMW15+5g/L Biochar 241.2cd 4.1 <0.01

OMW15+10g/L Biochar 180.5a 8.7 <0.01

OMW20 110.4e 2.8 <0.01

OMW20+5g/L Biochar 218.4bc 4.9 <0.01

OMW20+10g/L Biochar 157.6a 11.9 <0.01

OMW10:OMW with initial load of 10 g/L.

OMW15:OMW with initial load of 15 g/L.

OMW20:OMW with initial load of 20 g/L.

Different letters reveal a significant difference from post hoc Tukey’s test analysis.
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biochar respectively compared to the control. Consequently, a

significant (p < 0.05) higher yield (218.4 ml/g COD introduced) was

achieved in cultures with 5 g/L biochar compared to the control

and culture with 10 g/L biochar (Table 1). As expected, a low

yield of methane production was recorded during anaerobic

digestion in the control batch (110.4 ml CH4/g COD

introduced). This could be assigned to the high COD load and

polyphenols contents which entail toxicity leading to a decrease

in methane yield (Khoufi et al., 2007).

3.1.2 Variation of pH, VFAs, COD and
polyphenols removal

Variation of VFAs has been recognized as key indicators for

the unbalance process during AD of OMW (Mechichi and

Sayadi, 2005). Final VFAs as well as pH are highlighted in

Figure 2. It can be noticed that all treatments except OMW

with 20 g/L COD load (control), exhibited suitable pH values

between 7.6 and 7.9 and null VFAs accumulation, which reflected

the process stability during the methanization. However, in the

control cultures with the highest COD load (20 g/L), final acidic

pH of 5.92 along with high final accumulation of acetic acid

(9.4 g/L) revealed AD inhibition which coincided with the

observed lower methane yield of 110.4 ml/g COD introduced.

After 56 days, polyphenols removal ratios were 52%, 47.1%

and 19.5% in control cultures with COD loads of 10 g/L, 15 g/L

and 20 g/L, respectively. However, biochar supplementation

increased polyphenols removal efficiencies by 8, 8.6 and

27.5 percentage points, respectively (Figure 3).

Additionnally, COD removal efficiencies after 56 days in

control cultures with COD loads of 10 g/L, 15 g/L and 20 g/L

were 55.33%, 54.37% and 32.98%, respectively. Yet, they

increased by 21.6, 16.8 and 32.6 percentage points,

respectively compared to controls after 5 g/L biochar

supplementation. (Supplementary Figure S1).

FIGURE 2
pH and volatile fatty acids concentrations at the end of
anaerobic digestion of OMW at different COD loads.

FIGURE 3
Polyphenols removal efficiencies at the end of anaerobic
digestion of OMW at different COD loads.

FIGURE 4
Analysis ofmicrobial communities at the end of ADwith initial
COD load of 20 g/L in biochar free group (SO) and 5 g/L biochar
supplemented group (Sl, Ll, Tl) (A)OTUs-VENN diagrams based on
high-throughput sequencing analysis (B)Major phyla (relative
abundance> 1% of all sequences).
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3.2 Response of microbial community
structure to biochar supplementation

Microbial communities (bacteria and archaea) were analyzed

at the end of operation (56 days) in the cultures with an initial

COD load of 20 g/L based on the 16 S rRNA gene amplicon

sequencing using high-throughput sequency on an Illumina

Miseq platform. Microbial communities of biochar free group

(R0) and 5 g/L biochar supplemented group (R1), included

suspended fractions of R0 (S0) and R1 (S1), loosly cells (L1)

and tightly ones bound to biochar (T1).

As plotted in the venn diagram (Figure 4A), 557 OTUs were

shared among all samples.

A high number of unique OTUs was identified in the biochar

supplemented samples (S1, L1 and T1) (12 + 2+2 OTUs)

comparing to the biochar free group (S0) (4 OTUs).

Chao1, Shannon and Simpson indexes were performed to

compare the prokaryotic richness and diversity between the

biochar free (S0) and supplemented group (S1, L1 and T1).

The diversity and richness estimators obtained from the Next-

Generation Sequencing (NGS) data, are presented in Table 2. The

prokaryotic diversity based on Shannon and Simpson indexes of

the S0 group were about 5.258 and 0.936, respectively. However,

in the biochar supplemented group (S1, L1 and T1), an increase

in Shannon and Simpson indexes was recorded yielding an

average of 5.960 and 0.959, respectively. Moreover, the

R1 group showed higher Chao1 species richness estimator

index (626 average OTUs) compared to the S0 group

(587 OTUs). These findings indicated that microbial

community structure and diversity changed following biochar

addition.

The microbial community composition at phylum level is

portrayed in Figure 4B. All detected OTUs belong to

14 important phyla whose relative abundance > 0.1%. In the

suspended fraction of the biochar free group (S0), the major

detected phyla were: Bacteroidetes, Firmicutes, Thermotogae,

Proteobacteria, Chloroflexi, Synergistetes and Euryarchaeota

accounting for 30.55%, 18.29%, 16.29%, 14.83%, 10.73%,

5.74% and 1.82% respectively. Compared to the suspended

fraction, an increase in relative abundance of Proteobacteria

and Chloroflexi (14.83% and 10.73% respectively for S0) were

recorded in the biochar supplemented groups, amounting

respectively to 25.72% and 15.58% in the suspension (S1),

24.15% and 21.98% respectively in lously-bound biomasses

(L1) and 21.78% and 16.73% respectively in tightly-bound

cells (T1). However, a significant decrease in relative

abundance of Thermotogae was noticed in all biomass

fractions of biochar supplemented samples (S1 = 4.68%, L1 =

10.91%, T1 = 10.62%) compared to the biochar free groups (S0 =

16.29%).

The members of phyla Bacteroidetes and Firmicutes have

important roles during anaerobic digestion in the generation of

short chain fatty acids for methane production during hydrolysis

and acidogenesis (Pan et al., 2019). Proteobacteria are syntrophic

bacteria responsible for the cellulose and protein degradation and

are also involved in the degradation of organic acids (Ma et al.,

2019). The Chloroflexi phylum is a common fermenting group

described in AD reactors. Moreover, Chloroflexi is also known as

a phylum of electroactive bacteria (Hoareau et al., 2021). These

results suggest that biochar addition improved the rate of

hydrolytic as well as electroactive bacteria.

3.2.1 Analysis of bacterial communities
As for the bacterial community, taxa displaying a mean

proportion of 1% were considered as the most abundant. The

taxonomic classification at genus level (Figure 5) disclosed that

the most dominant groups in the suspended fraction of the

biochar-free group (S0), were Defluviitoga, Petrimonas,

Soehngenia, Leptolinea, Thiocapsa, Flavilitoribacter,

Fermentimonas, Methylocapsa, Pseudomonas, Aminobacterium,

Cloacibacillus and Saccharicrinis amounting respectively to

16.22%, 15.92%, 11.02%, 9.5%, 9.06%, 5.23%, 2.12%, 1.62%,

1.51%, 1.48%, 1.33% and 1.09% of the sequence reads. The

biochar supplemented groups demonstrated changes in the

community compositions.

Notably, the genus Bacteroides from Bacteroidaceae family

tended to be enriched in the suspended fraction in the biochar

supplemented reactor (3.37% for S1, 0.27% for L1, 0.65% for T1)

compared to the suspended fraction of R0 (S0 = 0.05%). Similar

pattern was observed for Clostridiacea with genus Natronincola,

which was exclusively enriched in the suspended fraction of the

biochar supplemented reactor (1.9% for S1, 0% for L1, 0% for T1)

while it was absent in the suspended fraction of R0 (S0 = 0%).

Likewise, Erysipelotrichaceae with the genus group of

Erysipelatoclostridium (Erysipelatoclostridium ramosum

species) (Supplementary Table S1) were enriched in the

TABLE 2 Diversity indexes of microbial community in biochar free group (S0) and biochar supplemented group (S1, L1, T1).

Sample Seqs/Sample Chao 1 Observed_OTUs Shannon Simpson

S0 223,689 595.724 587 5.258 0.936

S1 215,932 635.000 632 5.999 0.962

L1 196,277 628.429 622 5.954 0.958

T1 203,49 629.000 624 5.928 0.957
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suspended fraction of the biochar supplemented reactor (3.48%

for S1, 0.17% for L1, 0.13% for T1) compared to the suspended

fraction of R0 (S0 = 0.68%).

Proteinivoraceae with the genus of Anaerobranca were

exclusively enriched in the suspended fraction of the biochar

supplemented sample (1.3% for S1, 0% for L1, 0% for T1) while

being absent in the suspended fraction of R0 (S0 = 0%). It is well

known that it corresponds to be an acidogenic bacteria (Yin et al.,

2018). The abundance of Cloacibacillus from Synergistaceae

family increased by about 3.43 folds in the suspended fraction

of the biochar supplemented samples (4.58% for S1, 1.55% for L1,

1.07% for T1) compared to R0 (S0 = 1.33%). Anaerolineaceae

with the genus of Leptolinea was boosted in the biochar

supplemented samples (13.19% for S1, 17.94% for L1, 13.82%

for T1) compared to S0 (9.50%). More importanly, Rikenellaceae

family with the genus of Alistipes was distinctly more detected in

the fixed biomass (2.08% for L1, 1.46% for T1) while it was not

dominant in the suspended fractions (0.03% for S0 and 0.81% for

S1). In this respect, the abundance of Parabacteroides from

Tannerellaceae family increased exclusively in the loosly fixed

biomass by 7.8 folds and in the tightly fixed biomass by 35.6 folds

compared to S0 (0.05% for S0, 0.06% for S1, 0.4% for L1 and

1.79% for T1).

As illustrated in Figure 5, heterotrophic denitrifying bacteria

were distincly enriched in the fixed biomass. Indeed, the relative

percentage of Denitratisoma from Sterolibacteriaceae family

was higher in the biochar fixed biomass (6.35% for T1, 5.81%

for L1) while it was not dominant in the suspended fractions

(0.06% for S0 and 0.28% for S1). It seemed that biochar served

as a habitat for Denitratisoma which are heterotrophic

denitrifying bacteria participating in nitrogen removal. Lu

et al. (2021) reported that the relative abundance of

Denitratisoma increased in the granulated activated carbon

supplemented up-flow anaerobic sludge blanket reactors

compared to the control (without activated carbon). Within

this framework, the relative percentage of the genus of

Diaphorobacter from Comamonadaceae family which is a

facultative heterotrophic denitrifier was higher in the

biochar fixed biomass and particularly in the loosly–bound

fraction (S1 = 0.53%; L1 = 1.3%; T1 = 0.61%) than that in

suspended fraction of R0 (S0 = 0.1%). As it has been proven

that DIET is also involved in denitrification (Xie, 2006),

Denitratisoma oestradiolicum and Diaphorobacter

polyhydroxybutyrativorans (Supplementary Table S1) stand

for potential exoelectrogens.

3.2.2 Analysis of archaeal communities
As far as the archaeal community is concerned, the

taxonomic classification at genus level revealed that the most

groups detected in biochar-free group (S0) include

FIGURE 5
Heat map showing the relative abundance of dominant bacterial genera (> 1% of all sequences) related to the end of AD with initial COD load of
20 g/L in biochar free group. (S0) and 5 g/L biochar supplemented group (S1, L1, T1). The color intensityfor each panel corresponds to the genus
abundance; white (0%) indicates low relative abundance, through yellow ( >1%) to red (> 15%) indicate a high level of relative abundance.
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Methanomassiliicoccus, Methanoculleus, Methanobacterium and

Methanothrix (Figure 6).

Lower relative abundance of hydrogenetrophic methanogens

such asMethanoculleus and Methanomassiliicoccus in S1 (2.81%

and 9.24%, respectively) were detected compared to S0 (26.38%

and 57.68%, respectively). However, Methanobacterium genus

seemed to be enriched in the suspended fraction of biochar

treatment (6.83% in S0, 51.76% in S1). A more diverse archaeal

diversity was recorded in biochar supplemented groups

compared to the control. Basically, Methanosarcina barkeri

(Supplementary Table S2) was only identified in biochar

supplemented groups and was particularly tightly attached to

biochar (relative abundance of 7.36% in T1 compared to 4.92% in

L1 and 2.72 in S1). Similar pattern was observed with

Methanothrix which were enriched in biochar treatment

samples and particularly in the suspended fraction (relative

abundance of 29.84% in S1 compared to 6.26% in S0, 23.38%

in L1 and 15.12% in T1).

4 Discussion

In the current work, we attempt to assess the influence of

biochar concentrations (5 g/L and 10 g/L) on anaerobic digestion

of OMWwith different increasing COD loads (10 g/L, 15 g/L and

20 g/L) over an incubation period of 56 days. Statistical

differences in methane production and methane yields per

Gram of CODintroduced were determined. When examining the

final CH4 yield (mL/g COD introduced) for all the treatments,

ANOVA analysis revealed a significant difference among the

various COD loads treatments (Table 1). However, the Tukey’s

post hoc test highlighted these points: Firstly, a significant lower

yield was reached in raw OMW cultures with 20 g/L COD

compared to cultures with 10 g/L COD. However, after

methane production enhancement with 5 g/L biochar

addition, final yield became significantly higher than that

achieved in batch with 10 g/L COD load. Hence, we deduce

that biochar supplementation during AD of OMW may entail

promising results in terms of the recovery of metabolic activity

when operating at high organic load rate at large scale

applications. Furthemore, for all the treatments, 5 g/L biochar

addition improved significantly methane yield compared to the

control and treatments with 10 g/L biochar. These results

suggested that, for all initial loads of COD, the addition of

5 g/L of biochar was more effective than the 10 g/L dose in

increasing yield methane production.

Biochar supplementation may enhance methane production

by adsorbing polyphenols which inhibit methanogens. This

likelihood may be excluded since a higher concentration of

biochar is needed for polyphenols elimination (Abid et al.,

2022). It would be highly useful to analyze the microbial

communities (bacteria and archaea) at the end of operation

(56 days) in the cultures with initial COD load of 20 g/L to

get insights into the microbial community response during AD

with biochar supplementation. Microbial communities of

biochar free group (R0) and 5 g/L biochar supplemented

group (R1), involving suspended fraction of R0 (S0) and R1

(S1), loosly cells (L1) and tightly ones bound to biochar (T1) were

analyzed. Results from high-throughput sequencing revealed that

biochar supplementation improved the abundance of hydrolytic

bacteria, mainly in the suspended fraction, such as

Bacteroidaceae, as well as acidogenic bacteria such as

Clostridiacea, Proteinivoraceae and fermentative genus group

such as Erysipelatoclostridium. Bacteroidaceae play a key role in

organic matter depolymerisation during acidogenesis phase

thanks to several hydrolyzing enzymes (Wang et al., 2017).

They seemed to be part of bacterial key players during AD

exposed to high concentrations of phenol reaching 2 g/L

(Poirier et al., 2016). Consequently, they were involved in the

hydrolysis step to enhance polyphenols degradation. Our results

go in good consistency with those of Pytlak et al. (2020) who

asserted that biochar addition to a fermentation sludge

containing sugar beet pulp leads to an enrichment of

Bacteroidales. On the other side, it was emphasized that

Bacteroides are probably able for the extracellular electron

transfer since some species were enriched on the anode of a

bio-electrolysis cell system and were able to transfer electrons

directly to ferric iron (Wang et al., 2010). Clostridiaceae were

known not only as acidogenic bacteria (Yin et al., 2018) but also

as exoelectrogens. In particular, Natronincola peptidivorans was

reported as an interesting new potential electro-synthesizing

bacterium in the Clostridiaceae family capable of direct

electron transfer in a microbial electrolysis cell (Quéméner

et al., 2019). Erysipelatoclostridium were known for their

ability to ferment several carbohydrates such as acetate,

propionate and butyrate (Yutin and Galperin, 2013).

FIGURE 6
Relative abudance of archaeal community at genus level at
the end of AD with initial COD load of 20 g/L in biochar free group
(S0) and 5 g/L biochar supplemented group (S1, L1, T1).
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Stimulated CH4 after 5 g/L biochar addition to OMW with

initial COD load of 20 g/L may be explained by the bacterial and

archaeal communities shift with a significant enrichment of

microbes involved in DIET. In this line, our results

demonstrated the enrichement of Anaerolineaceae which were

known for their capacities for extracellular transfer of electrons

using fulvic acids as electron acceptors (Dang et al., 2016). These

results proved to be consistent with the findings of Wang et al.

(2018) who reported that biochar supplementation during AD of

complex organic wastes entailed the enrichment of

Anaerolineaceae. In this respect, Cloacibacillus species which

were enriched in the suspended fraction of biochar supplemented

group proved to be syntrophic amino-acid-oxydizing bacteria

(Zhao et al., 2017). Recently, Yang et al. (2021) have argued that

biochar addition during anaerobic digestion of swine manure

enriched Cloacibacillus which might participate in DIET with

Methanothrix.

More importantly, our results revealed that Rikenellaceae

and Parabacteroides were distinctly more enriched in the fixed

biomass of biochar. Recently, Rikenellaceae were identified as

potential syntrophic bacteria capable of establishing magnetite-

mediated direct electron transfer with methanogens to accelerate

VFAs degradation (Lee et al., 2019). Parabacteroides are

fermentative species. However, many researchers have recently

reported the abundant growth of Parabacteroides under DIET-

simulated conditions (Baek et al., 2019), which is suggestive that

this group may potentially be involved in electro-syntrophic

interactions during anaerobic digestion. Consequently, our

results go in good conformity with previous researchers’

findings indicating that these groups may possibly be involved

in electro-syntrophic interactions during anaerobic digestion.

Lower relative abundance of hydrogenetrophic methanogens

such as Methanoculleus and Methanomassiliicoccus in

S1 compared to S0 proved that IHT wan’t enhanced by

biochar. Methanoculleus emergence has been reported as an

early indicator which portends phenol inhibition towards

microbial community during AD exposed to phenol

concentrations between 1 and 2 g/L (Poirier et al., 2016).

Hence, the rigorous hydrogenotrophic Methanoculleus seemed

to play a key role to maintain AD via IHT in R0. However,

Methanobacterium seemed to be enriched in the suspended

fraction for the biochar treatment. Methanobacterium are

hydrogenotrophic methanogens, which had been broadly

detected in the AD of phenol culture (Na et al., 2016; Poirier

et al., 2016). Consequently, positive effects of biochar addition on

polyphenols alleviation can be attributed to Methanobacterium

enrichement. They were recognized also as syntrophic microbes

which participated to DIET and proved to be enriched in

anaerobic digestion of sewage sludge process with biochar

addition (Wu et al., 2019). Recently, they have been reported

to be able to change the primary working mode of the syntrophic

metabolism from IHT to DIET during anareobic digestion of

swine manure with biochar addition (Yang et al., 2021).

Additionally, the enrichment of genera of archaea like

Methanothrix and Methanosarcina is suggestive that DIET

would be accelerated in the biochar treatment samples.

Methanosarcina barkeri is known as a methanogen that is

able to participate to DIET (Rotaru et al., 2014). Methanothrix

can use both acetoclastic methanogenesis and DIET-CO2

reduction during AD with the addition of biochar (Wang C

et al., 2018). Thus, the stimulation of methane production rate

seems to be associated with the increase in abundance of these

genera with independence of the syntrophy between bacteria and

archaea via IHT. To sum up, several putative exoelectrogenic

microbes were enriched in biochar treatment samples and

particularly in suspended fractions such as Bacteroides,

Natronincola and Cloacibacillus. More importantly, since the

potential exoelectrogenic bacteria like Parabacteroides

Rikenellaceae and Anaerolineaceae were enriched exclusively on

the biochar, they could be directly interacting with archaea of

Methanothrix andMethanosarcina viaDIET. These archaea species

which were enriched on the biochar, proved to be responsible for

DIET. A Conceptual illustration of DIET possible mechanism in

anaerobic digestion of OMWwith biochar is described in Figure 7.

As a conductive material, biochar can serve as an electron

acceptor as well as a donor and allows DIET to take place (Park

et al., 2018). When compared to IHT, DIET has been suggested as

faster and energetically more effective than IHT (Xu et al., 2019)

since it does not require energy to produce H2. As electrical

conductivity plays an important role in terms of promoting DIET

(Zhao et al., 2017), the used biochar in our study, which was derived

from olive mill waste water sludge, would stand for a good candidate

as it possesses high electrical conductivity (11 m/cm).

The inhibition of OMW polypenols towards methanogens

begets the imbalance in the relationship between bacteria and

methanogens, which results in significant VFAs accumulation

and AD inhibition in the control cultures with the highest COD

load (20 g/L). Furthermore, biochar supplementation at 5 g/L to

OMW with initial COD load of 20 g/L mitigated VFAs

accumulation. Our findings go in good correlation with the

results of Wang G et al. (2018). These authors disclosed that

biochar derived from sawdust alleviated VFAs accumulation

during AD of complex organic wastes. Positive effects of

FIGURE 7
Conceptual illustration mechanism of enhancing anaerobic
digestion of OMW by biochar via DIET.
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biochar addition on the VFAs alleviation can be interpreted as

follows: Our study revealed that biochar enhanced the growth of

bacteria known for their ability to ferment several carbohydrates

like acetate, propionate and butyrate (Yutin and Galperin, 2013)

such as Erysipelatoclostridium. Consequently, enhanced

degradation of VFAs was probably ascribed to the improved

solubilization of OMW following the bacteria enrichement.

Besides, our study demonstrated that biochar addition

suppressed IHT and enabled DIET to take place. This

pathway enhances the electron transport rates when compared

to IHT. Hence, the H2 and formate concentrations are lower than

during IHT. Therfore, syntrophic VFAs oxydation becomes

thermodynamically feasible (Capson-Tojo et al., 2018) .

5 Conclusion

This study addresses the impact of biochar addition during

AD of OMW in batch at different COD increasing loads. AD of

OMW with initial COD load of 20 g/L led to process unbalance

owing to VFAs accumulation. However, biochar addition at 5 g/L

increased methane yield by 97.8%, mitigated VFAs accumulation

and enriched prokaryotic as well as methanogenic communities.

Results indicated that biochar displayed a great potential in

terms of enhancing VFAs degradation referring to the improved

solubilization of OMW through microbial hydrolysis with

increased abundance of hydrolytic bacteria such as

Bacteroidaceae, as well as acidogenic bacteria such as

Clostridiaceae, Proteinivoraceae. In addition, the enrichment

of genera like Methanothrix and Methanosarcina may indicate

the establishment of DIET in the biochar treatment samples.

This work provides new findings on the effect of biochar

supplementation upon the production of methane from OMW

which has an important implication for potential applications at

large scales.
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