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Abstract
Tree height and crown area are important predictors of aboveground biomass but di�cult to measure on the ground. Numerous allometric models have been
established to predict tree height from diameter (H–D) and crown area from diameter (CA–D). A major challenge is to select the most precise and accurate
allometric model among existing ones, depending on the species composition and forest type where the model is to be applied.

To propose a principle to select tree H–D and tree CA–D allometric models, we build a method based on k-fold cross-validation using a large dataset spanning
six forest types from central Africa. We then compared the errors and biases using 22 previously established H–D and CA–D allometric model forms via three
inter-comparable scenarios: locally derived for the forest type vs. regional vs. pantropical; regional (encompassing the forest type) vs. pantropical; regional
(not encompassing the forest type) vs. pantropical model.

H–D allometries were more variable across forest types in central Africa than CA–D allometries: (i) forest type explained 6% of the variance in H–D allometry
and 2% of the variance in CA–D allometry, while species explained 9% and 2% of the variance in H–D allometry and CA–D allometry, respectively; (ii) for H–D
allometry, the six forest types resulted in �ve best-�t models whereas, for CA–D allometry, four models provided the best �t for the six forest types. We
recommend using allometric models speci�c to the forest type, preferentially to regional ones. Regional models should in turn be preferred to pantropical
allometric models.

Introduction
African tropical forests play a key role in the global carbon cycle and climate change mitigation. Emerging evidence indicates that the carbon sink in live
aboveground biomass (AGB) has been stable for over three decades since 1985 1 despite the environmental changes linked to increasing greenhouse gas
concentrations 2. Although recognized as a single biome, African tropical rainforests differ substantially within and across regions. This heterogeneity also
implies variability of the response of forests to climate change. Pressure from human activities 3, deforestation 4 and degradation 5 also interplay with forest
type. Therefore, efforts to implement effective conservation measures for climate change regulation and monitoring carbon credits over time must rely on
accurate predictions of carbon stocks in the different forest types.

To reduce errors in the prediction of tropical tree AGB from tree diameter at breast height (D) and species wood density (ρ), it is strongly recommended to
include an estimate of tree height 6,7 and tree crown dimension 8,9. Consequently, tree heights have been predicted using African regional models that
accounted for environmental factors 10, or pantropical models that accounted either for biogeographical differences between continents 11 or for climate 12.
These models encompassed different forest types. However, Africa was underrepresented in the dataset used to �t pantropical models 10,11. Unveiling the
importance of this sampling bias, Kearsley et al.13 showed that pantropical height–diameter allometric models led to signi�cant overestimation of AGB in
central Congo Basin forest and were outperformed by site-speci�c models 14. Studies focusing on few �eld sites in central Africa revealed contrasted
performance of height–diameter models between sites 15, insinuating that tree height–diameter allometry may depend on the forest type 16 and species
composition.

One historical challenge to predict tree height from stem diameter has been the choice of the allometric functional form. This challenge has been exacerbated
by a plethora of proposed functional forms 17,18. However, there is now apparent convergence towards a few functional forms which are equally supported by
ecological theories. For instance, the power law function 19,20 is backed by the theory of simple allometry. The metabolic scaling theory further predicts a
speci�c value for the coe�cient of the power model: tree height scales with its stem diameter as D2/3 21–23. Also, the second order polynomial on the log-log
scale 12 is designed to mimic a saturation of tree height with diameter. Asymptotic models such as the Weibull 24,25 and the Michaelis-Menten 26 models are
easy to interpret because maximum height is one of the coe�cients of the model 10,24. The other coe�cient of the Michaelis-Menten model is also easy-to-
manipulate 27. All these functions have been used to compare height–diameter allometries between forest types in central Africa 14,28,29. The power model
often appeared to be the most pertinent among several mathematical functions in predicting tree height 30,31 and biomass 20,32.

Contrary to tree H–D allometry, the relationship between stem diameter and crown diameter has so far been overlooked in tropical rainforests (but see Loubota
Panzou et al. 33b). Yet, it is likely that large-stature species that realize faster height growth to reach crown exposure have relatively slender stems, and
consequently narrow crowns to compensate for wind loads 34,35. It is also possible that short trees develop large crowns under well illuminated and open
conditions 36–39. Another strategy can be to have a thicker stem made of lighter wood to ensure a tradeoff between the mechanical properties of the wood and
the amount of matter needed to ensure a given resistance to buckling or stem damage 40, while still ensuring other functions (water transport and storage,
etc.). Thus, tree height–crown allometry may change between species depending on the position of trees in the illumination gradient 41–43. Also, variation in
tree height and crown may re�ect the complex multi-layered structure of tropical forests. Therefore, incorporating crown dimension in tree height predictions
may improve the precision of these predictions, and consequently AGB estimation 8,42.

Consider a user with some forest inventory data that include tree diameter and wants to predict tree height or crown area (typically to predict biomass in a
second step). This user has to make a choice in an ensemble of available allometric models. The goal of this study is to propose a rigorous framework to
guide the choice of the height–diameter (H–D) and crown area–diameter (CA–D) allometric model depending on whether the data used to �t this model partly
come or not from a forest of the same type as the user’s forest. When the calibration data used to �t a model partly come from a forest of the same type as
the subject forest, we shall say that the model encompasses the subject forest type. For each allometric model, D was the predictor while H (for H–D
allometry) and CA (for CA–D allometry) were the dependent variables. We hypothesized that: (i) H–D and CA–D allometries differ between forest types and
that these differences are due to species composition; (ii) allometric models speci�c to a forest type are more accurate than regional and pantropical
allometric models; (iii) regional allometric models encompassing the subject forest type are more accurate than pantropical allometric models; (iv) regional
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allometric models not encompassing the subject forest type are less accurate than pantropical allometric model. Regional models presumably incorporate the
architectural properties of trees better than pantropical models. However, compared to regional models that do not encompass the subject forest type,
pantropical allometries may have the advantage to capture a wider range of forest properties and architecture. To address these hypotheses, we compared
allometric models derived for each forest type with published regional and pantropical allometric models through three scenarios: allometries derived for the
forest types against regional and pantropical allometric models (scenario 1); regional allometric model encompassing the subject forest type against
pantropical allometric model (scenario 2); regional allometric model not encompassing the subject forest type against pantropical allometric model (scenario
3). Finally, we discussed the choice among speci�c-to-the-forest-type, regional or pantropical models depending on whether the models encompass the subject
forest type or not.

Results
Effect of forest type and species composition on allometries. Respectively for the H–D and CA–D allometries, the regional model with the lowest BIC was the
log-normal model of the form: log(𝒳) = af + αs + b × log(D) + c × log(D)2, and the linearized-power model of the form: log(𝒳) = af + αs b × log(D) where 𝒳 was
tree height or crown area, af was a �xed effect depending on forest type f, αs was a random effect depending on species s, and b and c were �xed coe�cients.

The conditional R2 (�xed and random effects) was 80% for the H–D model and 72% for the CA–D model.

For the H–D model, the part of variance explained by tree diameter (that is log(D) + log(D)2) was 66%, by forest type 6%, and by species composition (random-
effect) 9%. When the forest type was not included in the H–D model, the proportion of variance explained by the species composition was 14%. Hence, the
part of variance explained by the forest type was taken from the variance explained by the species composition. Post-hoc analysis showed three signi�cant
groups of forest types: TSE-DRC and SFM-CON; TSS-CAR and EFL-RGE; EVF-GAB and SEF-CAM (Fig. 2A).

For the CA–D model, the part of variance explained by tree diameter was 65%, by forest type 2%, and by species composition (random-effect) 2%. When the
forest type was not included in the CA–D model, the proportion of variance explained by the species composition was still 5%. Hence, the variance explained
by the forest type was independent of the variance explained by the species composition. Post-hoc analysis showed two signi�cant groups of forest types:
EVF-GAB, SFM-CON and TSE-DRC; TSE-DRC, TSS-CAR, SEF-CAM and EFL-RGE (Fig. 2B).

Hence, the hypothesis that H–D and CA–D allometries differ between forest types is veri�ed. Moreover, for the H–D allometry, differences between forest types
are due to species composition.

Performance of H–D allometric models. Scenario 1. (models derived for the forest type vs. regional models vs. pantropical models): For three out of the six
forest types (viz. EVF-GAB, SEF-CAM and TSE-DRC), the locally �tted allometric model provided the best performance according to the RB and RMSE criteria.
These three forest-type speci�c models corresponded to two different mathematical functions, namely the linear function (for EVF-GAB and SEF-CAM) and the
power function (for TSE-DRC). The regional model of Feldpausch et al. (2012) for central Africa and the regional model of Banin et al. (2012) for tropical
Africa provided the best performance in two other forest types (viz. SFM-CON and TSS-CAR, respectively). The pantropical climate-based model of Chave et al.
(2014) provided the best performance in the remaining forest type EFL-RGE (Table 3; Fig. 3A-B; Supporting Information Table S3). Except for the central Congo
regional model of Kearsley et al. (2013) that had outstanding error of 5 m to 7 m and bias of − 18% to − 19% in tree height predictions (results not shown in
Fig. 3A-B), the errors generated by the other allometric models for each forest type were hardly greater than 2 m. These errors ranged from a minimum of
0.64–1.23 m to a maximum of 1.14–1.96 m across forest types (Supporting Information Table S3). Despite small errors, large ranges in bias were recorded by
the models. These biases ranged from a minimum of 0.002–0.43% to a maximum of 2.28–4.43% across forest types (Supporting Information Table S3).

Scenario 2. (regional models encompassing the subject forest type vs. pantropical models): The regional model �tted using the Meyer function provided the
best performance for one out of the �ve validation folds, while the model of Banin et al. (2012) for tropical Africa provided the best performance for the four
other folds (Table 3; Fig. 3C-D). The central Congo regional model of Kearsley et al. (2013) had again outstanding error of 31 m to 34 m and bias of − 92% to − 
93% for the �ve folds (result not shown in Fig. 3C-D). The error in predicted tree height by the other allometric models ranged from a minimum of 5.70–6.57 m
to a maximum of 7.29–8.24 m across validation folds (Supporting Information Table S4). With the exception of Kearsley et al.’s model, the bias ranged from a
minimum of 0.30–1.97% to a maximum of –(8.68–11.93)% across validation folds (Supporting Information Table S4).

Scenario 3. (regional models not encompassing the subject forest type vs. pantropical models): Best performances were obtained with three published
regional models (Table 3). The regional model of Feldpausch et al. (2011) for central Africa provided the best performance when the forest type TSE-DRC was
used as validation fold. The model of Banin et al. (2012) for tropical Africa provided the best performance when TSS-CAR or SFM-CON were used as
validation folds. The model of Lewis et al. (2009) for tropical Africa provided the best performance for the other three validation folds (viz. forest types EFL-
RGE, EVF-GAB and SEF-CAM). The central Congo regional model of Kearsley et al. (2013) had again outstanding error of 27 m to 37 m and bias of − 92% to − 
93% for the six folds (and was not shown in Fig. 3E-F). The errors produced by the other models ranged from a minimum of 4.50–7.08 m to a maximum of
27.24–37.38 m across validation folds (i.e. forest types) (Fig. 3E-F; Supporting Information Table S5). The bias recorded among the forest types ranged from
a minimum of 0.07–8.35% to a maximum of –(92.58–94.14)% across validation folds (Supporting Information Table S5).

Performance of CA–D allometric models. Scenario 1. Six locally �tted models using four different mathematical functions provided the best performance to
predict crown area for the six forest types (Table 3). The linear model had the lowest error and bias for SFM-CON and SEF-CAM. The linearized power model
had the lowest error and bias for TSE-DRC. The parabolic-log model had the lowest error and bias for TSS-CAR and EFL-RGE. The Michailoff model had the
lowest error and bias for EVF-GAB (Fig. 4A-B; Supporting Information Table S6). The errors and biases in predicted crown area for all allometric models ranged
from 11 to 572 m2 and from 0.29 to 685%, respectively. The ranges of errors and biases for each forest type are reported in Supporting Information Table S6.
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Scenario 2. Five �tted regional models using four different mathematical functions provided the best performance to predict crown area for the �ve validation
folds (Table 3). The Naslund model had the lowest error and bias for two validation folds, while the linear model, the parabolic model and the parabolic-log
model had the lowest error and bias for one fold each (Fig. 4C-D; Supporting Information Table S7). The errors and biases in predicted crown area ranged from
96 to 259 m2 and from 0.30 to − 11.93%, respectively. The ranges of errors and biases for each validation fold are reported in Supporting Information Table
S7.

Scenario 3. Five �tted regional models using four different mathematical functions and one published regional model provided the best performance to predict
crown area for the six validation folds corresponding to the six forest types (Table 3). The log-normal model had the lowest error and bias when the forest
types TSE-DRC or SEF-CAM were used as validation folds. The parabolic model, the parabolic-log model, the Korf model and the model by Blanchard et al.
(2016) for central Africa had the lowest error and bias when the forest type TSS-CAR, EFL-RGE, SFM-CON and EVF-GAB was used as validation fold,
respectively (Fig. 4E-F; Supporting Information Table S8). The errors and biases in predicted crown area ranged from 67 to 282 m2 and from 0.29 to 685%,
respectively. The ranges of errors and biases for each validation fold are presented in Supporting Information Table S8.

Discussion
Analysing the accuracy of various allometric models relating tree diameter to either total tree height or crown area is a major step towards precise prediction of
forest structural attributes such as biomass. To a greater extent, such analysis will facilitate the calibration of remote sensing products 58 and inform on
biogeographical processes driving forest communities 10,11. Despite a plethora of published allometric models to predict tree height (H) and crown area (CA)
from stem diameter at 1.3 m breast height (D), only a few are commonly used for the H–D relationship 10,11,14,31,59 (e.g. Feldpausch et al. 10,11; Banin et al. 14;
Ledo et al. 31; Kearsley et al. 59) or for the CA–D relationship 33,41,42,33,41,42b. Sometimes, these models are calibrated on some species 28, with or without using
the forest type as a predictor. One could expect that a single allometric model could have the best precision (small RMSE) and accuracy (small relative bias)
for different forest types but was not the case for this study. Thus, analysing the RMSE and relative bias of predictions from multiple allometric models can
help elucidate the dependence of allometry on forest type. Furthermore, our strategy of analysing both RMSE for precision and relative bias for accuracy may
be preferable for assessing the performance of allometric models, because most models may be precise with very small differences in RMSE but with large
differences in accuracy, i.e. relative bias.

In this study, we showed that the best model describing the allometric relationship between tree diameter and height (H–D) differed among forest types as
demonstrated in Madagascar 60. Four different mathematical functions underlined the six models provided the lowest RMSE and relative bias for the six
forest types in central Africa. The linear function outperformed the other functions in two forest types. Conversely, two asymptotic, one power and one log-
normal functions had the lowest RMSE and relative bias for the four other forest types. Such variations of functional forms were also reported by Loubota
Panzou et al. 42a,b. Nevertheless, a close examination of the model performances showed that very small differences in RMSE but large differences in relative
bias were recorded between the best performing allometric models and the other less performing models (see Supporting Information Tables 3–8). For
instance, low relative bias is crucial in AGB predictions where a bias in height prediction of the largest trees may induce signi�cant errors in AGB plot estimates
61. These results equally point to the plasticity of the H–D relationship to forest types, which could be controlled by abiotic and/or biotic factors. Indeed, a
substantial share of the variance of the linear mixed-effect model was explained by the joint effect of species composition and forest type, thus providing
support for biotic and abiotic effects (see hypothesis (i) in the Introduction). Similarly, H–D allometries have been reported to differ at various spatial scales: in
tropical lowland forests across continents, allometries are modulated by precipitation seasonality and solar radiation 11; in geographic regions within a
continent, they are modulated by environment and forest structure 31; among lowland evergreen and transition forests, they are modulated by stem density 28;
and in tropical montane forest, they are modulated by altitude 62.

For H–D allometry, we showed that the mathematical functions describing the allometric relationship between tree diameter and crown area (CA–D) also
change between forest types. Four models had lowest RMSE and relative bias across the six forest types, such variability was as also reported at pantropical
scale 33. Our results equally suggested that species composition and forest types may only partially explain the variability of CA–D allometry in conformity
with 41,63Antin et al. 41 and Shenkin et al. 63. Ecological factors such as convergence in tree architecture, and stochastic processes such as crown packing,
may have stronger in�uence on the relationship between diameter and crown dimension than abiotic factors. For instance, Iida et al. 64 suggested that
convergence in architectural differences due to lateral crown extension for light interception may facilitate overlap in crown dimensions across species
communities in Dipterocarp forests. However, some effects related to ontogeny or species regeneration guild may exist while being overshadowed by
competitive convergence and stochastic processes (but see Shenkin et al. 63). Therefore, more in depth studies are required to assess the latter hypothesis.

Another point to note from this study is that variation in allometry between the forest types in central Africa is much weaker for CA–D than for H–D. In
concordance, 42Blanchard et al. 42 highlighted that, across biogeographic areas, H–D allometry was characterized by inter-site heterogeneity and intra-site
homogeneity, whereas the reverse held for CA–D allometry (i.e. inter-site homogeneity and intra-site heterogeneity). As a consequence, regional crown area–
diameter models can be used to predict crown attributes (e.g. crown volume, width, depth, leaf area index, etc.) observed from remote sensing products 58,
whereas a general height–diameter allometric model will be less accurate for different forest types than site-speci�c models. Thus, site-speci�c height–
diameter allometric models incorporating local environmental factors are needed to accurately predict forest structural attributes (e.g. volume, biomass).

Limitations of the methods and correction. Strictly speaking, ordinary least squares (OLS) are not suitable to �t models on untransformed heteroscedastic
variables such as tree heights or crown dimensions. Models may then be biased. In addition, OLS with untransformed heteroscedastic data would favour large
diameter trees since they have more weight in the RMSE than trees with small diameters. To minimize such biases, we carefully built folds in the cross-
validation that preserved the regular distribution of trees across diameter classes that was designed by sampling in the full dataset. As alternative,
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untransformed models could have been �tted using weighted least squares (WLS), by making the variance of residuals dependent on diameter. However, WLS
would have penalized �tted models because the RMSE criterion used for model comparison would then have differed from the RMSE criterion used for �tting.

Cross-validation allowed us to fairly compare models from the literature to models �tted on the study data since the validation data were independent of the
calibration data. Models from the literature had �xed coe�cients for all folds, whereas �tted models had different estimated coe�cients for each calibration
fold. As a consequence, the error induced by the uncertainty on coe�cients was taken into account for �tted models, while it was not for published models. To
minimize this shortcoming, we averaged RMSE over the k validation folds. Moreover, in allometric models, the share of the prediction error due to the
uncertainty on coe�cients is very small compared to that induced by the choice of the model 65–67.

Recommendation for selecting height and crown area allometries. Locally derived allometric models were preferable over regional and pantropical climate-
based allometric models. Indeed, even if locally derived, regional and pantropical climate-based models had equivalent RMSE, locally derived allometric
models outperformed the other models in terms of relative bias.

Although our results support overall the use of local allometric models, situations will remain where no local height or crown area data are available at local
scales despite efforts to collate such data globally 68. In the absence of local models but presence of regional models, the recommended option will depend
on whether the calibration data used to �t these regional models encompassed or not the subject forest type. If regional models are encompassing the subject
forest type, we recommend their use. Pantropical climate-based allometric models are also the default option in the absence of regional models.

Materials And Methods
Study sites and forest types. As a benchmark to assess the three scenarios, we used a large central African regional database collected during the PREREDD + 
project 44 which equally acquired the relevant institutional, national, and international guidelines and legislation for the studies on plants. Destructive biomass
data were collected in logging concessions in Cameroon, Central African Republic, Republic of Congo, Democratic Republic of the Congo (DR Congo),
Equatorial Guinea and Gabon with the same standardized protocol, and using appropriate sampling (following the recommendations of Chave et al. 12). All
the six sites are located at low to mid altitude (52–663 m) within the equatorial climate zone where important variation has been recorded for annual mean
ranges of precipitation (1,400–2,500 mm) and temperature (20–30°C) 45. Bedrock materials of these sites are mainly of metamorphic or sedimentary origins.
Soils are ferralsols of different types (Table 1).

The six sites show contrasting �oristic and functional compositions across climates, soil types and anthropogenic gradients 46, in addition to their differences
in deciduousness (evergreen and semi-deciduous), hydrology, geological substrates and dominant tree species (Table 1; Supporting Information Table S1).
Hence, each site corresponded to a different forest type with a semi-deciduous forest in Cameroon (SEF-CAM), a transition between semi-deciduous and
evergreen forest on sandstone plateau in Central African Republic (TSS-CAR), a seasonally �ooded forest including monodominant Gilbertiodendron dewevrei
(De Wild.) J.Leonard species in the Republic of Congo (SFM-CON), a transition between semi-deciduous and evergreen forest in the DR Congo (TSE-DRC), an
evergreen forest of littoral type in Equatorial Guinea (EFL-RGE) and a mainland evergreen forest in Gabon (EVF-GAB) (Table 1; Supporting Information Table
S1).

Tree dataset. A total of 845 trees (52 species, 49 genera and 17 families) were sampled covering a wide range of diameter (10–208 cm), height (8–67 m) and
crown area (1.43–1,495 m2). Taxonomic identi�cation of species, stem diameter, maximum height and crown area were measured prior to logging (Table 1;
Supporting Information Table S1). Species taxonomic identi�cation was initially made by trained botanists from respective logging concessions and
con�rmation in the �eld by our experienced botanists (ML, BS, JL, JMK, AN, ODY). Stem diameter (D, in cm) was measured at 1.3 m breast height or 30 cm
away from any deformation using a diameter tape. Maximum tree height was measured using the sine method (sensu 47). That is, a Haglöf Transponder T3®
was placed on the tree at 1.3 m breast height and an observer carrying a Haglöf Vertex IV® was positioned at a relative horizontal distance from the tree that
permitted viewing the topmost canopy of the tree. From this position, the maximum tree height (H in m) (average of two tallest measurements) were
measured. Crown dimensions were measured as the horizontal distance from the trunk base to the projected edge of the canopy in the four cardinal directions
(N, S, W and E). Whenever one of the cardinal directions could not be measured, the alternative directions of the crown (NE, SW, SE and NW, respectively) were
considered. Using the values, the ellipsoidal crown area (CA in m2) was computed as CA , where  and  are
the average crown radii for the N–S and E–W directions, respectively.

Mathematical functions for H–D and CA–D relationships. We considered 22 existing mathematical functions from the literature and �tted these separately for
the H–D and for the CA–D relationships (see Supporting Information Table S2). The 22 mathematical functions possessed either 2 parameters (10 functions)
or 3 parameters (12 functions). They consisted of polynomials, asymptotic and power law functions. Most of these mathematical functions are incorporated
in the lmfor R-package 48. To ensure consistency with the performance criteria used (see section “Evaluating performance of the allometric models” below), all
models were �tted using ordinary least-squares (OLS) regression and assuming Gaussian errors. Some functions were log-transformed prior to calibration
(see Supporting Information Table S2) in order to easily use the Bayesian Information Criterion (BIC). In this case, no transformation was achieved but
lognormal errors were used. When log-transformation was used for calibration, a bias correction factor was used to back-transform model predictions 49,50.
For nonlinear functions, we �rst estimated their parameter starting values for the �tting algorithm following Huang et al.17 and Zeide 51.

Published H–D and CA–D models. In addition to the �tted models, seven published models were taken from the literature: �ve regional models for H–D
allometry, one pantropical model for H–D allometry, and one regional model for CA–D allometry (Table 2).

Statistical analysis. Allometry differences between forest types and species effects. To assess differences in the H–D and CA–D allometric models between
forest types due to species composition (hypothesis (i) of the Introduction), we �tted a linear mixed-effects model 52. Stem diameter and forest types were

= π × (NS
mean

× EWmean) NSmean EWmean



Page 6/16

used in the model as �xed effects while species as a random effect. All the 22 models were �tted using the entire tree data (Supporting Information Table S2).
The best regional model was selected among these 22 models using the BIC 53. Post-hoc pairwise signi�cant differences between the forest types were
assessed by Tukey HSD via least square means.

Comparing allometric models. To compare the performance of allometric models for predicting tree H and CA from D (hypotheses (ii)–(iv) of the Introduction),
we adopted a cross-validation scheme 54,55. Some models in the comparison were �tted to data while others were taken from the literature with �xed
coe�cients. In this latter case, the cross-validation scheme boils down to a simple validation scheme. In any case, cross-validation is appropriate to evaluate
the predictive power of models as it veri�es the behaviour of the models on data not used for their calibration. We performed k-fold cross-validation that
consisted of: �rst splitting the dataset into k folds; second, using k – 1 folds for the calibration of the models to be �tted and one fold for the validation of all
models (whether �tted or taken from the literature). The second step was repeated k times to ensure that all the folds were used for validation (Fig. 1).

To compare the models in the three scenarios (i.e. scenario 1: models derived for the forest type vs. regional models vs. pantropical models, scenario 2:
regional models encompassing the subject forest type vs. pantropical models, and scenario 3: regional models not encompassing the subject forest type vs.
pantropical models), we used two folding schemes based on the dataset of 845 trees from all forest types. We ensured similarity in diameter structure for
each of the schemes and within each fold by assigning trees into the following nine diameter classes [10–20[, [20–30[, [30–40[, [40–50[, [50–60[, [60–70[,
[70–100[, [100–150[, > 150 cm. We then built the k-fold by randomly splitting each diameter class into k folds (Figs. 1 and Supporting Information Figure S1).

For H–D allometries, we compared six models from the literature with the subject forest type models based on 22 mathematical functions and the regional
models based on the same 22 mathematical functions. Results were presented only for eight H–D allometric models; i.e. the best model for the subject forest
type, the best regional model, and the six models from the literature (Table 2).

For CA–D allometries, we compared one model from the literature with subject forest type models based on 22 mathematical functions and regional models
based on the same 22 mathematical functions. Results were presented only for three CA–D allometric models; i.e. the best model for the subject forest type,
the best regional model, and the model from the literature (Table 2).

For both H–D and CA–D allometries, literature models were not re-calibrated on the training dataset during the k fold comparison.

5-fold cross-validation for scenarios 1 and 2. We randomly split each forest type dataset into 5 folds (Fig. 1). We repeated the following steps �ve times by: (i)
combining 4 folds for calibration (80% of the dataset) and reserving 1 fold for validation (20% of the dataset); (ii) calibrating a local equation for each forest
type, for scenario 1; (iii) calibrating a regional equation using all 4 × 6 calibration folds from the 6 forest types combined, for scenario 2. Steps (i)-(iii) were
repeated 5 times so that each fold was used for validation (Fig. 1).

6-fold cross-validation for scenario 3. We split the whole tree dataset into 6 folds according to the six forest type (Supporting Information Figure S1). We
repeated the following steps six times by: (i) combining 5 folds for calibration and reserving 1 fold for validation; (ii) calibrating a regional model using the 5
calibration folds. Steps (i)-(ii) were repeated 6 times so that each fold (i.e. each forest type) was used for the validation (Supporting Information Figure S1).
Thus, the forest type of the validation fold is the one excluded from calibration.

Evaluating the performance of the allometric models. For each scenario, we evaluated the performance of the models from the literature, those of the subject
forest type, and those of the regional models by averaging, over the k-fold iterations, two criteria computed on the validation fold:

where  and  are respectively, the predicted and observed height (or crown area) and  represents the total number of trees.

For each k fold iterations in scenario 1, RB and RMSE of forest type, regional and pantropical models were computed using the validation fold of each forest
type separately. RB and RMSE were then averaged over the 5 iterations. For each k fold iterations in scenario 2, RB and RMSE of regional and pantropical
models were computed on each the validation fold. For each k fold iterations in scenario 3, RB and RMSE of regional and pantropical models were computed
on each the validation fold which corresponded to a forest type. Note that RMSE is always positive while the RB indicates whether the error was positive or
negative. To determine the most suitable allometric model among the locally-derived forest type, regional and pantropical models for H–D and CA–D
relationships, we compared their relative error (RMSE) and then relative bias (RB). We �rst selected the model with the lowest RMSE. Second, we selected other
models whose difference in RMSE with the lowest RMSE was less than 1 unit (error of 1 m tall tree or 1 m2 crown area seems meaningful for forest biometry).
Lastly among this selection, we retained the one with the lowest RB as the best model.

All statistical analyses were performed using version 4.1.2 of the R statistical software 56.
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Tables
Table 1 Summary characteristics of the forest types in six different sites. Countries and forest types are abbreviated as follows: semi-deciduous forest in
Cameroon (SEF-CAM), transition between semi-deciduous and evergreen forest on sandstone plateau in Central Africa Republic (TSS-CAR), seasonally �ooded
forest including monodominant Gilbertiodendron dewevrei (De Wild.) J.Leonard species in the Republic of Congo (SFM-CON), transition between semi-
deciduous and evergreen forest in the DR Congo (TSE-DRC), evergreen forest of Littoral type in Equatorial Guinea (EFL-RGE), and mainland evergreen forest in
Gabon (EVF-GAB). The geographical coordinates in latitude (Lat.) and longitude (Lon.), mean annual temperature range (MAT in °C), mean annual rainfall
range (MAR in mm), sampling intensity (number of trees, number of species and diameter range in cm) and logging companies are equally provided. 
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Country
(Country-
forest type
code)

Forest type

Logging
company

GPS
Coordinates
(Lat.; Lon.)

Geological
substrate

Seasons
(duration)

MAT
(°C)
min-
max. 

MAR
(mm)

Soil
(colour)

Sampling
intensity

Cameroon
(SEF-CAM)

Semi-deciduous Alpicam-
Grumcam

3°42' – 4°3'
N ;14°14' –
14°34' E

Granites &
Schistes

Dry (Jun–Aug &
Nov–Mar); Rain
(Apr–May &
Sep–Dec)

20–
25

1500–
2000

Ferralsols
(Reddish-
brown)

Trees =
132;
Species =
15;
Diameter
range =
[11.5-180
cm]

Central
African
Republic (TSS-
CAR)

Transition between
Evergreen & Semi-
deciduous on
sandstone plateau

SEFCA 3.919;16.896 Sedimentary,
Metamorphic,
igneous

Dry (Jun–Aug &
Nov–Mar); Rain
(Apr–May &
Sep–Dec)

23–
27

1400–
1600

Ferralsols
(Reddish-
brown)

Trees =
143;
Species =
16;
Diameter
range =
[10.5-173
cm]

Republic of
Congo (SFM-
CON)

Seasonally �ooded
including
monodominant species

CIB-
OLAM

2°13’–
2°14’N;
17°00’–
17°07’E

Quartzite Dry (Jun–Aug &
Dec–Feb); Rain
(Mar–May &
Sep–Nov)

24–
28

1400–
1700

Xanthic
Ferralsols

Trees =
141;
Species =
16;
Diameter
range =
[10.3-208
cm]

Democratic
Republic of
the Congo
(TSE-DRC)

Transition between
Semi-deciduous &
Evergreen

CFT 0°1'–0°8'
N;25°20'–
25°31’E

Sedimentary Dry (Jun–Sep &
Dec–Feb); Rain
(Mar–May &
Oct–Nov)

20–
26

1500–
2000

Ferralsols
(Yellowish-
red)

Trees =
142;
Species =
16;
Diameter
range =
[11.7-
160.5cm]

Gabon (EVF-
GAB)

Evergreen Rougier
Haut-
Abanga

0°15'–0°50'
N ;10°30’–
11°30' E

Metamorphic
or granites

Dry (Jun–Sep &
Dec–Jan); Rain
(Feb–May &
Oct–Nov)

24–
26

1800–
2000

Ferralsols Trees =
178;
Species =
16;
Diameter
range =
[12.3-
169.3
cm]

Equatorial
Guinea (EFL-
RGE)

Littoral Evergreen COMALI 1.316;9.537 Sedimentary Dry (Jul–Sep &
Dec–Feb); Rain
(Mar–Jun &
Oct–Nov)

23–
30

2000–
2500

Ferralsols
(yellow-
Sandy)

Trees =
109;
Species =
14;
Diameter
range =
[11-172
cm]

Table 2 H–D and CA–D allometric models compared in this study.
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Allometric models References

H–D allometry

Best �tted model for the subject forest type this study

Best �tted regional model for each fold this study

Pantropical climate-based model Chave et al., 2014

Central Congo regional equation for mixed forest type Kearsley et al., 2013

Tropical Africa regional model Banin et al., 2012

Tropical Africa regional model Lewis et al., 2009

Central Africa regional model Feldpausch et al., 2011

Central Africa regional model Feldpausch et al., 2012

CA–D allometry

Best �tted model for the subject forest type this study

Best �tted regional model for each fold this study

Central Africa regional model Blanchard et al., 2016

Table 3 Best performance height-diameter (H–D) and crown area-diameter (CA–D) allometric models for central African forest types. Forest types are
described in Table 1. The name of �tted models is given by the mathematical function used (as given in Table S2) followed by “_FT” if the model was �tted at
the forest type level or “_RG” if �tted at regional level. The values of coe�cients a, b, c then are the estimates resulting from the model �t. The name of the
models taken from the literature is after their author and date of publication. Coe�cient values are then the published values.
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Determination
coe�cients

Model coe�cients Starting values

Scenario Validation
fold

Model name Mathematical
function

RMSE
(m)

RB (%) a b c A B C

H–D Allometric models

Local forest
type

SEF Linear_FT 𝒳 = a + b × D 1.526 -0.003 18.657 0.298

EVF Linear_FT 𝒳 = a + b × D 1.326 -0.439 21.070 0.242

TSE Power_FT 𝒳 = a × Db 1.165 -0.065 9.418 0.271 6.161 0.360

SFM Feldpausch et
al. (2012)

𝒳 = a × (1-
exp(-b × Dc))

0.650 0.111 50.453 -0.047 0.812

TSS Banin et al.
(2012)

𝒳 = a - b
× exp(-c × D)

1.124 0.262 45.100 -42.800 0.025

EFL Chave et al.
(2014)

𝒳=exp(a-E +
b × D - c ×
D2)) 

1.290 0.085 0.893 0.760 0.034

Regional
encompassing
the subject
forest type

Region-
Fold1 to 4

Banin et al.
(2012)

𝒳 = a - b
× exp(-c × D)

6.140 -1.972 45.100 -42.800 0.025

Region-
Fold5

Meyer_RG 𝒳 = a × (1-
exp(-b × D))

6.150 0.305 46.125 0.028 85.475 0.007

Regional not
encompassing
the subject
forest type

SFM Banin et al.
(2012)

𝒳 = a - b
× exp(-c × D)

4.760 -0.076 45.100 -42.800 0.025

TSS Banin et al.
(2012)

𝒳 = a - b
× exp(-c × D)

4.606 -1.477 45.100 -42.800 0.025

EFL Lewis et al.
(2009)

𝒳 = a × (1-
exp(-b Dc))

5.064 -0.595 54.010 -0.053 0.759

SEF Lewis et al.
(2009)

𝒳 = a × (1-
exp(-b Dc))

6.950 -1.053 54.010 -0.053 0.759

EVF Lewis et al.
(2009)

𝒳 = a × (1-
exp(-b Dc))

6.045 0.331 54.010 -0.053 0.759

TSE Feldpausch et
al. (2011)

𝒳 = a + b
× log(D)

7.868 8.387 1.153 0.554

CA–D allometric models

Local forest
type

SEF Linear_FT 𝒳 = a + b × D 18.636 3.045 -94.516 4.807

SFM Linear_FT 𝒳 = a + b × D 15.960 7.403 -78.431 3.778

EVF Michailoff_FT 𝒳 = a × exp(-
b × D-1)

13.631 5.982 609.076 92.745 247.054 49.395

TSS Parabolic-
log_FT

𝒳 = a + b
× log(D) + c
× log(D)2

11.851 0.299 1151.943 -757.198 125.665

TSE Linearized-
power_FT

log(𝒳) = a +
b × log(D)

29.544 8.916 -1.681 1.609

EFL Parabolic-
log_FT

𝒳 = a + b
× log(D) + c
× log(D)2

12.429 3.844 653.583 -475.373 89.104

Regional
encompassing
the subject
forest type

Region-
Fold1

Linear_RG 𝒳 = a + b × D 97.337 -1.662 -67.517 3.874

Region-
Fold2

Parabolic-
log_RG

𝒳 = a + b
× log(D) + c
× log(D)2

100.412 50.662 1128.264 -738.262 122.809

Region-
Fold3

Naslund_RG 𝒳 = D2/(a + b
× D)2

101.337 45.072 3.654 0.019 4.609 0.017

Region-
Fold4

Naslund_RG 𝒳 = D2/(a + b
× D)2

131.422 64.542 3.585 0.020 4.517 0.018

Region-
Fold5

Parabolic_RG 𝒳 = a + b × D
+ c × D2

104.798 47.833 -46.120 3.162 0.004
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Regional not
encompassing
the subject
forest type

SEF Log-
normal_RG

log(𝒳) = a +
b × log(D) + c
× log(D)2

122.152 60.397 -0.285 0.981 0.062

SFM Korf_RG 𝒳 = a × exp(-
b × D-c)

89.763 81.147 10833.950 18.270 0.359 1941.531 22.983 0.540

EVF Blanchard et
al. (2016)

𝒳 = a + b
× log(D)

107.375 15.656 1.240 0.718

TSS Parabolic_RG 𝒳 = a + b × D
+ c × D2

67.439 26.898 -41.010 3.056 0.005

TSE Log-
normal_RG

log(𝒳) = a +
b × log(D) + c
× log(D)2

140.169 46.068 0.208 0.729 0.094

EFL Parabolic-
log_RG

𝒳 = a + b
× log(D) + c
× log(D)2

104.152 1.650 1219.950 -785.654 128.403

Figures

Figure 1

k-fold cross-validation schemes for the �rst and second scenarios. Green blocks represent training dataset and red blocks represent validation datasets. Green
arrows represent �tting and red arrows represent performance evaluation. SEF-CAM: semi-deciduous forest type in Cameroon; TSS-CAR: transition between
semi-deciduous and evergreen forest on sandstone plateau in Central Africa Republic; SFM-CON: seasonally �ooded forest including monodominant
Gilbertiodendron dewevrei (De Wild.) J.Leonard species in Republic of Congo; TSE-DRC: transition between semi-deciduous and evergreen forest in the
Democratic Republic of Congo; EFL-RGE: evergreen forest of Littoral type in Equatorial Guinea; and EVF-GAB: mainland evergreen forest in Gabon.
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Figure 2

Pairwise comparison of forest type effect on H–D allometric models (A) and CA–D allometric models (B). Forest types are de�ned in Figure 1. Error bars with
the same letters are not signi�cantly different.
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Figure 3

Performances in terms of RMSE (left column) and bias (right column) of the height-diameter allometric models compared for three scenarios. Each bar
corresponds to a model as identi�ed by its colour. The different group of bars on the x-axis correspond to the different validation folds used to assess model
performance. Some models were �tted: their name is given by the mathematical function used (as given in Table S2) followed by “_FT” if the model was �tted
at the forest type level or “_RG” if �tted at regional level. Some models were taken from the literature: their name is after their author and date of publication.
The model by Kearsley et al. (2013), although included in the model comparison, was not shown here due to its poor performance. Panels A and B: model
comparison for scenario 1 (models derived for the forest type vs. regional models vs. pantropical models); the different forest types on the x-axis also
correspond to those used for model calibration. Panels C and D: model comparison for scenario 2 (regional model encompassing the subject forest type vs.
pantropical models). Panels E and F: model comparison for scenario 3 (regional model not encompassing the subject forest type vs. pantropical models); the
different forest types on the x-axis also correspond to those excluded from model calibration. RMSE is relative mean squared error (A, C and D) and bias is
relative bias (B, D and F). Abbreviations for forest types are de�ned in Figure 1.
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Figure 4

Performances in terms of RMSE (left column) and bias (right column) of the crown area-diameter allometric models compared for three scenarios. Each bar
corresponds to a model as identi�ed by its colour. The different blocks of bars on the x-axis correspond to the different validation folds used to assess model
performance. Some models were �tted: their name is given by the mathematical function used (as given in Table S2) followed by “_FT” if the model was �tted
at the forest type level or “_RG” if �tted at regional level. One model, named Blanchard et al. (2016), was taken from the literature. Panels A and B: model
comparison for scenario 1 (models derived for the forest type vs. regional models vs. pantropical models); the different forest types on the x-axis also
correspond to those used for model calibration. Panels C and D: model comparison for scenario 2 (regional model encompassing the subject forest type vs.
pantropical models). Panels E and F: model comparison for scenario 3 (regional model not encompassing the subject forest type vs. pantropical models); the
different forest types on the x-axis also correspond to those excluded from model calibration. RMSE is relative mean squared error (A, C and D) and bias is
relative bias (B, D and F). Abbreviations for forest types are de�ned in Figure 1.
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