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Residual correlation and ensemble modelling to improve crop and grassland models
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Multi-model ensembles are becoming increasingly accepted for the estimation of agricultural carbon-nitrogen fluxes, productivity and sustainability. There is mounting evidence that with some site-specific observations available for model calibration (with vegetation data as a minimum requirement), median outputs assimilated from biogeochemical models (multi-model medians) provide more accurate simulations than individual models. Here, we evaluate potential deficiencies in how model ensembles represent (in relation to climatic factors) the processes underlying biogeochemical outputs in complex agricultural systems such as grassland and crop rotations including fallow periods. We do that by exploring the correlation of model residuals. We restricted the distinction between partial and full calibration to the two most relevant calibration stages, i.e. with plant data only (partial) and with a combination of plant, soil physical and biogeochemical data (full). It introduces and evaluates the trade-off between

) what constitutes best modelling practice. The lower correlations obtained overall with fully calibrated models highlight the centrality of the full calibration scenario for identifying areas of model structures that require further development.

Introduction

The development of a robust modelling capacity is needed to carry out assessments of agricultural carbon (C) and nitrogen (N) fluxes (productivity, leaching and export) and to quantify the outcomes of agricultural management and policy decisions, as it supports participatory frameworks, as well as sensitivity and uncertainty analyses of model outputs (e.g. [START_REF] Martin | How to address the sustainability transition of farming systems? A conceptual framework to organize research[END_REF][START_REF] Harrison | Simple, efficient and robust techniques for automatic multi-objective function parameterisation: Case studies of local and global optimisation using APSIM[END_REF]. Several biogeochemical models are available for estimating variables of agronomic, environmental and ecological interest in croplands and grasslands (see a summary in [START_REF] Brilli | Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes[END_REF]. Owing to insufficient knowledge, approximations, inaccurate parameterisations and/or lack of biological and physical representations, each crop or grassland model is an imperfect representation of the biophysical and biogeochemical processes in the vegetation, soil and atmosphere that are critical to ecosystem functioning (e.g. [START_REF] Challinor | Use of agro-climate ensembles for quantifying uncertainty and informing adaptation[END_REF][START_REF] Snow | The challenges -and some solutions -to process-based modelling of grazed agricultural systems[END_REF][START_REF] Calanca | Testing the ability of a simple grassland model to simulate the seasonal effects of drought on herbage growth[END_REF]Jones et al., 2017a). Thus, each model represents a balance between parsimony and excessive complexity [START_REF] Harrison | Using a mathematical framework to examine physiological changes in winter wheat after livestock grazing: 1. Model derivation and coefficient calibration[END_REF]. Models may give different answers to the same scientific question, not just in terms of the estimated magnitude of output, but also in the direction of change under climate or management scenarios [START_REF] Brilli | Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes[END_REF][START_REF] Bilotto | Can seasonal soil N mineralisation trends be leveraged to enhance pasture growth?[END_REF].

Comparing and contrasting different models for their fit, precision, scope, validity and reliability may lead to choosing the one model that is optimal for the intended purposes (e.g. [START_REF] Bellocchi | Validation of biophysical models: issues and methodologies. A review[END_REF]. However, relying on a single model deemed to be the best, ignores the uncertainty associated with alternative model structures and underestimates the possible effects of inaccurate estimates, especially when models are used in contexts outside the original development area (e.g. [START_REF] Riccio | Seeking for the rational basis of the Median Model: the optimal combination of multi-model ensemble results[END_REF]. Many authors have recognised the drawbacks of ignoring model uncertainties (e.g. papers cited by [START_REF] Dijkstra | On model uncertainty and its statistical implications[END_REF]. Due to a lack of knowledge about whether any model is an appropriate representation of the target system/output in question, epistemic uncertainties, in particular, contribute to model spread. This is realised by a range of responses in a model ensemble (e.g. [START_REF] Knutti | Uncertainty quantification using multiple models -prospects and challenges[END_REF].

Ensemble modelling is an emerging method that involves running several related (but different) modelling solutions and then combining their results into a single result (or comparing them), which creates a consensus on the predictions obtained with multiple models [START_REF] Spence | Multi-model ensembles for ecosystem prediction[END_REF][START_REF] Calder | Computational modelling for decision-making: where, why, what, who and how[END_REF]. In addition, a smaller selection of models can approximate the median of a larger ensemble once all models are verified (e.g. [START_REF] Ehrhardt | Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions[END_REF]. Multimodel ensembles aim to reduce uncertainties in the prediction because ensemble estimates include multiple alternative representations of the same biophysical and biogeochemical processes in agricultural systems. They also provide more reliable information on the J o u r n a l P r e -p r o o f uncertainties of the outputs predicted by the diversity amongst ensemble members, as highlighted in crop/grassland modelling exercises (e.g. [START_REF] Bassu | How do various maize crop models vary in their responses to climate change factors?[END_REF][START_REF] Rosenzweig | Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison[END_REF][START_REF] Kollas | Crop rotation modelling -A European model intercomparison[END_REF][START_REF] J O U R N A L P R E -P R O O F Li | Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions[END_REF][START_REF] J O U R N A L P R E -P R O O F Ruane | Multi-wheat-model ensemble responses to interannual climate variability[END_REF][START_REF] Ruane | An AgMIP framework for improved agricultural representation in integrated assessment models[END_REF][START_REF] Sándor | Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance[END_REF]. The assumption underlying the use of multiple models is that a measure of central tendency of the results of different models reduces uncertainties by balancing the errors of the individual models and thus results in a better fit (e.g. [START_REF] Riggers | Multi-model ensemble improved the prediction of trends in soil organic carbon stocks in German croplands[END_REF]. In many cases, the median value of multi-model predictions was shown to be able to outperform any single deterministic model in reproducing observational data at different locations (as explained by [START_REF] Martre | Multimodel ensembles of wheat growth: many models are better than one[END_REF] and, on a theoretical basis, by [START_REF] Wallach | Multi-model ensembles improve predictions of crop-environmentmanagement interactions[END_REF]. In particular, model simulations are less accurate in situations of limited inputs and below-potential yield situations, where soil processes need to be adequately simulated, and model ensembles offer higher accuracy than randomly taken models [START_REF] Falconnier | Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-Saharan Africa[END_REF]. For this reason, ensemble modelling is a proposed means of reducing some of the uncertainties in model estimates of productivity and other C and N fluxes in croplands and grasslands [START_REF] Ehrhardt | Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions[END_REF][START_REF] Sándor | Ensemble modelling of carbon fluxes in grasslands and croplands[END_REF].

Intrinsic differences between models may also become a useful asset to be exploited for more informed decision-making support, e.g. towards alternative farming practices to reduce net greenhouse gas emissions [START_REF] Alcock | Can animal genetics and flock management be used to reduce greenhouse gas emissions but also maintain productivity of wool-producing enterprises[END_REF][START_REF] Harrison | The concordance between greenhouse gas emissions, livestock production and profitability of extensive beef farming systems[END_REF]Sándor et al., 2018a). As a corollary to reducing ensemble uncertainties, running more models can highlight model shortcomings, as it is unlikely that all models represent each physical phenomenon in the same way (e.g. [START_REF] Sándor | Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models[END_REF]. Thus, the envelope of possible model outputs can be narrowed as our understanding of key processes improves, or with the inclusion of a particular process not previously considered, or to save time in scaling up.

With the aim of increasing reliability and confidence in the simulated results, this study explores patterns of simulated C-N and productivity responses with a multi-model ensemble approach.

We included results from 23 crop and grassland models, used to simulate C-N and productivity outputs in five sites worldwide (three crop rotations with spring and winter cereals, soybean and rapeseed, and two temperate grasslands). This work builds on comprehensive foundations laid by [START_REF] Ehrhardt | Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions[END_REF] for yield and nitrous oxide (N2O) emissions, and [START_REF] Sándor | Ensemble modelling of carbon fluxes in grasslands and croplands[END_REF] for C fluxes. Here, we analyse factors that may explain differences in simulated model responses. Viewing and interpreting a variety of modelled outputs is intended to lay ground for future model developments. We thus further explored the extent to which multi-model ensembles can be used to help identify deficiencies in model structures, which limit model performance in different situations. Specifically, we present an approach that uses a correlation matrix (with graphical representation) to correlate both the residuals of outputs from the J o u r n a l P r e -p r o o f ensemble against residuals of selected climate drivers. The estimation of uncertainty in simulation models is based on the assumption that model residuals (differences between model estimates and observations) are additive and independent. When the residuals of one model output are correlated with the residuals of other outputs, the different outputs would probably be the result of processes not included (or partially included) in the models. This suggests that interacting processes are sources of model-data mismatch and, in this case, non-negligible correlations between model residuals and external drivers might inspire a more detailed description of these same drivers to improve the models.

Focusing on the correlation among model residuals, the central assumption of this study is that an ensemble of partially or fully calibrated models can produce uncorrelated residuals which would validate the assumptions of error independence. Using the median of the outputs of several models as a metric of the multi-model ensemble, the aim was to compare the standardised residuals of the different outputs of an ensemble of models run with limited calibration datasets (partial calibration desirable for users and beneficiaries) and rich datasets (full calibration more suitable for scientists).

Materials and methods

Experimental sites and measurements

We adopt multi-year model outputs, obtained from 23 crop and grassland simulation models at five agricultural sites worldwide [START_REF] Sándor | Ensemble modelling of carbon fluxes in grasslands and croplands[END_REF]. The approach was based on a multimodel study, in which all participating teams received the same data and were asked to return simulated outputs for the same conditions using their usual calibration techniques (for a discussion on the validity of calibration practices for good modelling, see [START_REF] J O U R N A L P R E -P R O O F Wallach | The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise[END_REF].

The models were run independently in five stages (S), as shown in Table 1, from blind modelling (S1) to partial (S2 to S4) and full (S5) calibrations. In particular, site-specific model parameterisation was performed at each modelling stage, with gradual access to site data from S2 onwards, to inform and parameterise the models. 

S5

calibration with the addition of surfaceto-atmosphere C and N fluxes C-N emissions and soil organic C stock changes

For consistency, we have maintained the model and site identifiers specified by [START_REF] Ehrhardt | Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions[END_REF]. The variability of the multi-model simulation exercise across stages was documented by inspecting how the multi-model median (MMM) converged to the observations. Observational data were from two long-term (19 years in total), grazed experimental sites (G3, G4) and three cropland sites (C1, C2, C3), covering a variety of pedo-climatic conditions and agricultural practices from United Kingdom, France (two sites), Canada and India (Table 2).

The selected cropping systems covered a range of climates, from continental (C1, Canada), oceanic (C2, France) and subtropical (C3, India). All cropland sites had rotations with at least one wheat crop (six growing seasons), while maize was present in C1 and C2 (three growing seasons), and rice was only grown in C3 (two growing seasons), for a total of 18 growing seasons (including fallow intercrops). The 23 models (Table A in the Supplementary material), and the model identifiers and outputs provided, encompass all but one of the 24 biogeochemical models described in [START_REF] Ehrhardt | Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions[END_REF]. Model M11 was not included in the analysis because it did not provide the C-flux related outputs. At cropland sites, we had: GPP from six models, NEE from seven models, RECO from 14 models, N2O from 15 models, Yield from 15 models.

At grassland sites, we had: GPP from 10 models, NEE from 10 models, RECO from 11 models, N2O from nine models, Yield from nine models. The use of flux tower data allows the determination of NEE, which is partitioned into its (simulated) component fluxes -RECO and GPPby flux partitioning methods. Separated from flux tower measurements of NEE, the estimated GPP provides information on the physiological processes that contribute to NEE, which is the balance between the C released by the RECO and the GPP (e.g. Raj et al., 2016).

Climate data available at each site since 1980 were used to initialise the models (calibration stage S2).

J o u r n a l P r e -p r o o f

Table 2. Cropland and grassland sites, and years of available data, for analysis on the following output variables from different models: GPP (g C m -2 yr -1 ): gross primary production; RECO (g C m -2 yr -1 ): ecosystem respiration; NEE (g C m -2 yr -1 ): net ecosystem exchange of CO2); N2O

(μg N2O-N m -2 yr -1 ): nitrous oxide emissions; Yield (kg DM m -2 yr -1 ): annual grain yield for arable crops or annual above-ground net primary productivity for grasslands. Cropland sites used different crop rotations ( 

Agro-climatic metrics

Three metrics were selected to characterise the study-sites based on the extent to which they fulfil the need to report the response of models to water-limited and heat stressed conditions [START_REF] Sándor | Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance[END_REF][START_REF] Sándor | The use of biogeochemical models to evaluate mitigation of greenhouse gas emissions from managed grasslands[END_REF][START_REF] Farina | Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils[END_REF]. They are also important within a climate-change focus [START_REF] Rivington | An integrated assessment approach to conduct analyses of climate change impacts on wholefarm systems[END_REF][START_REF] Rivington | Climate change impacts and adaptation scope for agriculture indicated by agrometeorological metrics[END_REF][START_REF] Matthews | Characterising the agro-meteorological implications of climate change scenarios for land management stakeholders[END_REF][START_REF] Graux | Ensemble modelling of climate change risks and opportunities for managed grasslands in France[END_REF][START_REF] Lardy | Towards vulnerability minimization of grassland soil organic matter using metamodels[END_REF][START_REF] Lardy | Vuln-Indices: Software to assess vulnerability to climate change[END_REF][START_REF] Eza | An open platform to assess vulnerabilities to climate change: An application to agricultural systems[END_REF]. An increase in Tmax and frequency of hw is desirable if the two metrics are negatively correlated with model residuals. The aridity index (b) is defined in such a way (the higher it is, the lower the aridity) that, with a positive correlation, higher model residuals are expected in wetter conditions and, with a negative correlation, higher model residuals are expected in drier conditions. In fact, the De Martonne aridity index (b≤100) was ), where PY is the total annual precipitation (mm), TY is the mean annual temperature (°C), pa is the total precipitation of the driest month (mm), and ta is the mean temperature of the driest month (°C).

The possibility to discriminate between thermo-pluviometric conditions associated with aridity gradients is given by the range limits published by [START_REF] Diodato | Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands[END_REF]: b<5: extreme aridity; 5≤b≤14: aridity; 15≤b≤19: semi-aridity; 20≤b≤29: sub-humidity; 30≤b≤59: humidity;

b>59: strong humidity. Adopting the definition of [START_REF] Confalonieri | A software component to compute agrometeorological indicators[END_REF], after [START_REF] Barnett | A handbook of climate trends across Scotland[END_REF], for identifying the frequency of hw within a year in each site, we defined the heatwave event as the number of ≥7 consecutive days when Tmax was higher than the mean summer (northern hemisphere: June, July and August in the temperate sites; April, May and June in the monsoonal site) Tmax of all the available years (baseline) +3 °C. The range limits in this study were given by the minimum and the maximum numbers of the hw days of all sites: hw≤14: of heatwave days (left-bottom graph). The area of the circles and diamonds in the left-bottom graph is proportional to the mean maximum air temperature of each site.

extremely

Residual scatterplot analyses

According to [START_REF] Ehrhardt | Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions[END_REF] and [START_REF] Sándor | Ensemble modelling of carbon fluxes in grasslands and croplands[END_REF], although detailed observations (i.e. C-N fluxes) to support full model calibration (S5) may be desirable, multiple model ensembles with plant observations as a minimum data requirement (S3) could be a promising way to guide modelling applications.

For both arable crops and grasslands, [START_REF] Ehrhardt | Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions[END_REF] found that no model consistently outperformed the others in terms of both N2O emissions and yield production. In particular, in the case of cereal crop yields, the MMM error decreased considerably from S1 (34%, 31% and 45% for wheat, maize and rice, respectively) to S3 (6.4%, 5.8% and 5.5% for wheat, maize and rice, respectively) and remained below 5% in S4 and S5. In the case of grassland yields, the MMM error decreased from 44% in S1 to 27% in S3 and finally increased to 46% in S5. [START_REF] Sándor | Ensemble modelling of carbon fluxes in grasslands and croplands[END_REF] reported that the MMM outperformed the individual models in 92.3% of the cases and, in general, they obtained the greatest improvements (MMM close to the mean of the observations) at calibration stages S3 or higher. For instance, the best cropland RECO estimates were obtained with S3, where the MMM and the observed mean were similar: 241 and 242 g C m -2 season -1 , respectively (mean of sites C1, C2 and C3). For the GPP of grasslands, the best estimates were obtained with S5, where the MMM was equal to 1632 g C m -2 yr -1 and the observed mean was equal to 1763 g C m -2 yr -1 (mean of sites G3 and G4).

We thus quantified the correlations among standardised model residuals of GPP, RECO, NEE, N2O and Yield (differences between ensemble MMM and mean of observations), based on the results from partially and fully calibrated simulations (stages S3 and S5). For both calibration stages, we also quantified the correlations between model residuals and three agro-climatic metrics (annual values) related to the occurrence of high temperature (mean maximum air temperature, Tmax and heatwave days, hw) and arid conditions (Figures A-E in the Supplementary material).

Arrays of pairwise scatterplots (scatterplot matrices) were generated with the panel plot option 'panel.smooth' (https://stat.ethz.ch/R-manual/Rdevel/library/graphics/html/panel.smooth.html) in the R language and environment for statistical computing (R Core Team, 2020). The function produces x-y scatterplots of each pair of variables below the diagonal (output residuals and agro-climatic metrics) and overlays a local non-parametric smoother curve (locally estimated scatterplot smoothing) on each plot to give J o u r n a l P r e -p r o o f some indication of trends without inferential characteristics (after [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF]. For readability, the correlation between each variable and its significance (p value) is indicated in the lower triangular part of the matrices. The non-significant correlations (p≥0.10) are not discussed (e.g. [START_REF] Bellocchi | An indicator of solar radiation model performance based on a fuzzy expert system[END_REF]. According to [START_REF] Sándor | Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance[END_REF], we have selected an arbitrary (high enough) absolute minimum threshold, i.e. r=|0.66|, and identified the number of cases when the correlation coefficient equals or exceeds this minimum value. Correlations between external climate factors (mean maximum air temperature, aridity index and frequency of heatwave days) are reported but are not informative in the present context.

Results

Evaluation of output dynamics

In general, model results showed the largest spread with the S3 scenario, considering the C outputs such as NEE (Fig. 2), GPP and RECO (Appendix A), N2O-N emissions (Fig. 2) and yield (Appendix A). In some years, the MMM of S3 and in some cases the S5 scenario also overestimated the amount of C respiration, e.g. at G4 site in 2002(S3: -0.05; S5: -0.04; observed: -0.44 g C m -2 yr -1 ) and 2010 (S3: -0.01; S5: -0.07; observed: -0.48 g C m -2 yr -1 ), while the N2O-N emission was underestimated at this site. The MMM lines for all outputs were remarkably close to the observations at all sites, despite the wider range of S3 individual simulations (blue shaded area in Fig. 2 and Appendix A). The largest difference between the spread of S3 and S5 was found for the N2O-N emissions.

J o u r n a l P r e -p r o o f 

Residual analysis in grassland sites

The MMM analysis of residual scatterplot clouds at G3 (Laqueuille, France) shows some similarities between the S3 (Fig. 3, left) and S5 (Fig. 3 Analysis of residual scatterplots at G4 (Easter Bush, United Kingdom) shows some similarities at both calibration stages (Fig. 4). The negative correlation between NEE and GPP residuals at S3 (r=-0.29, p<0.01) indicates that overestimation of NEE may be the result of underestimation of GPP. This is reflected in the negative correlation between NEE and Yield (r=-0.42 at S3, p<0.01). RECO and GPP residuals are significantly (p<0.01) positively correlated (r=0.86 at S3 and r=0.57 at S5). In addition, GPP and Yield residuals are positively correlated (r=0.48, p<0.01 and r=0.25, p=0.02 at S3 and S5, respectively). Overall, these correlations between Cfluxes and yield residuals are less important or less significant for the fully calibrated models (S5). However, N2O residuals show significant correlations (p<0.01) with NEE residuals at both calibration stages (r=0.37 and r=0.50 at S3 and S5, respectively), while no significant correlations (p>0.10) were found with other C-flux residuals. Considering climatic factors, heatwaves do not have a significant impact on C-flux and Yield residuals in G4 (which is not exposed to severe heatwaves; Fig. 1). Interestingly, N2O-emission residuals are significantly (p<0.01) positively correlated with heatwaves at both S3 (r=0.36) and S5 (r=0.28). Thus, increasingly long heatwaves may lead to greater model inaccuracy in simulating N2O emissions, likely due to poor estimates of soil water content at higher temperatures or model limitations in appropriately reducing emission estimates at low soil water contents [START_REF] Wang | Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: a review[END_REF]. The aridity index was negatively correlated (p<0.05) with NEE residuals for both S3

(r=-0.22) and S5 (r=-0.24), and was not correlated with N2O, GPP, RECO and Yield residuals.

These negative correlations indicate that simulations are generally more reliable under G4 humid conditions. Since Tmax is significantly negatively correlated with NEE at S3 (r=-0.25, p<0.01) and S5 (r=-0.21, p<0.05), the models are expected to give poorer C-flux simulations under colder conditions and better results at higher temperatures.

J o u r n a l P r e -p r o o f 

Residual analysis in cropland sites

The results of the residual analysis differ among cropland sites, with the strongest differences occurring at the most humid study-site (Fig. 1), i.e. C1 (Ottawa, Canada), with seven significant correlations at S3 (Fig. 5, left), which reduce to four at S5 (Fig. 5, right). As with G4, the negative correlation between NEE and GPP residuals at S3 (r=-0.87, p<0.02) may indicate that an overestimation of NEE is likely to be the result of an underestimation of GPP, but this is not reflected in any other correlation between the model residuals (p>0.10 At C2 (Grignon, France), there was some significant positive correlations, e.g. between NEE

and N2O residuals at S3 (Fig. 6;r=0.68,p=0.07) and between RECO and GPP at S5 (r=0.70, p=0.05). However, some significant correlations between GPP residuals and climatic factors (heatwaves: r=0.68, p=0.07; Tmax: r=-0.71, p=0.05) observed at S3 were no longer significant at S5 (p>0.10).

J o u r n a l P r e -p r o o f At the Indian site of Delhi (C3), where NEE and GPP data are not available, it is relevant to note the significant positive correlation observed between RECO and N2O residuals at S5 (r=0.95, p=0.02), not observed at S3 (Fig. 7). Then, there is a dependence of the simulation quality for these two fluxes on aridity (RECO: r=0.92, p=0.03) or Tmax (N2O: r=0.93, p=0.02) at S3, or on Tmax only at S5 (RECO: r=0.84, p=0.08; N2O: r=0.89, p=0.04).

J o u r n a l P r e -p r o o f However, the multi-model simulations show complex patterns, illustrated by the analysis of land uses (grasslands, arable crops), study-sites (C1, C2, C3, G3 and G4) and calibration stages (S3 and S5) investigated, which show considerable differences in terms of correlation between model residuals, and between these residuals and weather metrics. Positive correlations were established between the RECO and GPP residuals at G3 (Fig. 3) and G4 (Fig. 4) in both calibration stages, and at C2 (Fig. 6) with fully calibrated models (along with a positive correlation between NEE and GPP residuals). At G4, positive correlations also characterise the relationships between GPP and Yield residuals (both calibration stages) and between RECO and NEE residuals (at S5). In addition, negative correlations were found at this site between NEE and GPP residuals (at S3), NEE and Yield residuals (at S3) and GPP and Yield residuals (at both calibration stages). At cropland site C1 (Fig. 5), NEE and GPP residuals are also negatively correlated (at both calibration stages). Overall, these results indicate that errors are J o u r n a l P r e -p r o o f likely to be propagated through C-flux (and yield) predictions, and full calibration with plant, soil and surface-to-atmosphere C-N fluxes does not always limit them. On the contrary, full calibration can also increase the propagation of errors through C fluxes, as obtained in G4 with RECO and NEE residuals (from r~0 at S3 to highly significant r=0.26 at S5). However, while many correlations between residuals are significant in G4, only the correlation between RECO and GPP residuals at S3 (r=0.86) is high in this site.

Geographical location, land use characteristics and calibration stages

The occurrence of intense weather factors such as high temperatures and arid conditions also had significant effects on the model residuals. At cropland site C1, high negative correlations between NEE and GPP residuals (r=-0.87 at S3 and r=-0.99 at S5) are accompanied by positive high correlations between NEE residuals and the aridity index (r=0.85 at S3 and r=0.75 at S5), while other negative correlations occurring between residuals and aridity (RECO and GPP) or heatwaves (Yield) indicate higher residuals under more arid and hotter conditions.

In the Indian site (cropland site C3; Fig. 7), which is the most arid site investigated here (Fig. 1), we cannot explore the full correlation pattern of C-flux residuals because GPP and NEE outputs are missing. However, we see that RECO residuals are positively correlated with the aridity index at S3 (r=0.92, p=0.03), likely associated with the irrigation regime adopted in this site (~250 mm yr -1 for spring wheat and >1000 mm yr -1 for rice), which may limit model capacity in the presence of soil water saturation. Under these conditions, it appears that the introduction of biogeochemical data in the calibration procedure (stage S5) becomes essential to improve C-flux estimates (RECO residuals-aridity index r=0.67, p=0.22).

Discussion

This study provides a tentative answer to the question of whether, and to what extent, the results of an ensemble of models can give insights into the limitations of the ensemble and offers suggestions for model improvement. In particular, residual correlation matrices were used to illustrate some of the main (and not unique) challenges of the emerging multi-model ensemble approach in agricultural modelling to evaluate whether the overall pattern of model outputs can help make progress in crop and grassland modelling by assessing model responses and uncertainties against climatic factors. Focusing on the results of the ensemble, no attempt was made to identify the best model(s) for crop and grassland C and N fluxes, and no probability of success was assigned for the relevance of including or excluding one biogeochemical model over another in the ensemble exercise.

Residual analysis and model quality

J o u r n a l P r e -p r o o f

Residual analysis can help to find relationships between certain output variables, and between output variables and external factors (and thus help to find additional variables that may need to be included in the models as predictors, e.g. [START_REF] Medlyn | On the validationof models of forest CO2 exchange using eddy covariance data: some perils and pitfalls[END_REF]. This analysis can indicate the dependence of errors in case of error propagation in a model, although the mode of error propagation cannot be attributed to a particular process using a correlation matrix. For instance, overestimation of crop yields can lead to overestimation of shading of the soil surface by (overestimated) plant biomass, which interferes with the simulation of soil heat and water balances. Parallel to that, plant residues, senescent roots and the application of organic manure feed the fresh organic matter pool of soil and are slowly decomposed after incorporation in soil.

Thus, biases in heat and water balances can interact with soil respiration, affecting the RECO estimates and hence the C-budget estimates (i.e. NEE estimates). In this regard, it is notable that significant correlations between NEE and Yield residuals were only observed in grassland sites (at S3), where aboveground biomass and vegetation cover are continuously reduced by grazing and recover after grazing cessation. In contrast, croplands are generally characterised by alternating episodes of high C uptake or loss during the crop-growing season, directly related to farmers' management practices like mineral fertilisation, grain and straw removal rates, fallowing and tillage [START_REF] Lehuger | Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model[END_REF].

The net fixation of C being directly related to global solar radiation levels up to the saturation point can lead to irregular patterns of net photosynthesis. Thus, while inaccurate simulations of the soil water balance may affect plant biomass, e.g. due to an incorrect representation of the effect of drought, it is also possible that inaccurate estimates of plant biomass (e.g. GPP) lead to incorrect simulations of the water cycle due to an altered representation of evapotranspiration or other water-related processes. Ensemble techniques are certainly a feasible method to simulate biogeochemical processes in crops and grasslands, but model development is a must to improve the multi-model approach (e.g. [START_REF] Hidy | Terrestrial ecosystem process model Biome-BGCMuSo: summary of improvements and new modeling possibilities[END_REF] for processes related to soil moisture and N balance; Sándor et al., 2018b for the acclimation of grassland vegetation to temperature; [START_REF] Liebermann | Simulating longterm development of greenhouse gas emissions, plant biomass, and soil moisture of a temperate grassland ecosystem under elevated atmospheric CO2[END_REF] for feedbacks between different landscape compartments; Doro et al., 2021 foir soil heat transfer). In general, C fluxes (and interlinked N fluxes) remain difficult to estimate in croplands and grasslands, likely due to incomplete representation of key functions in models. For instance, rhizosphere-soil organic matter interactions, which include enzyme production, maintenance and overflow metabolism, are mostly not represented [START_REF] Cavalli | Sensitivity analysis of C and N modules in biogeochemical crop and grassland models following manure addition to soil[END_REF]. Specifically, for grassland models, the simulation of biogeochemical cycles is generally not coupled with simulation of plant species dynamics, which leads to considerable uncertainty in the quality of estimates [START_REF] Van Oijen | Incorporating biodiversity into biogeochemistry models to improve prediction of ecosystem services in temperate grasslands: review and roadmap[END_REF].

J o u r n a l P r e -p r o o f

Effects of agro-climatic factors

While models estimating crop or pasture yields may not explicitly account for the impact of heatwaves on grain or biomass formation (e.g. [START_REF] Harrison | Management options for dairy farms under climate change: Effects of intensification, adaptation and simplification on pastures, milk production and profitability[END_REF][START_REF] Mangani | Potential impacts of extreme weather events in main maize (Zea mays L.) producing areas of South Africa under rainfed conditions[END_REF], the opposite impact of arid conditions on NEE (negative correlation) or RECO and GPP (positive correlations) residuals is somewhat unexpected, considering that one variable (NEE) is the difference of the two others. Considering that drought may be more effective in reducing CO2 uptake by the plant than reducing ecosystem respiration [START_REF] Gibelin | Modelling energy and CO2 fluxes with an interactive vegetation land surface model -Evaluation at high and middle latitudes[END_REF][START_REF] Nakano | Modeling gross primary production and ecosystem respiration in a semiarid grassland of Mongolia[END_REF], better results are provided when simulating NEE with a multi-model ensemble (at C1 as at other sites, Fig. 2). This implies that there may be error compensation in the ensemble. Greater coverage of plant and soil processes is also likely when more models are used to simulate NEE than its basic components.

As far as N fluxes are concerned, N uptake by plants is computed by the models through a supply/demand scheme, with soil supply depending mainly on soil nitrate and ammonium concentrations and root length density [START_REF] Lehuger | Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model[END_REF]. However, N2O emissions are mostly controlled by soil properties and local climate conditions, and current soil N levels, and only to a lesser extent by the doses and types of N fertiliser applied [START_REF] Butterbach-Bahl | Nitrous oxide emissions from soils: how well do we understand the processes and their controls?[END_REF]. For instance, increasing bulk density decreases soil porosity and thereby increases the likelihood of moisture conditions favourable to denitrification and N2O emissions [START_REF] Gabrielle | Processbased modeling of nitrous oxide emissions from wheat-cropped soils at the subregional scale[END_REF]. As well, the correlation between N2O and NEE residuals may be due to soil processes because if heterotrophic respiration is too high there may be too many substrates (C and N) available for nitrate respiration and denitrification (e.g. [START_REF] Rajta | Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater[END_REF]. The high negative correlations (r=-0.86, p=0.06 and r=-0.88, p=0.05 at S3 and S5, respectively) between N2O residuals and aridity index at grassland site G3 reflect the deficit of moisture occurring mostly in summer in central France (e.g. [START_REF] Klumpp | Long-term impacts of agricultural practices and climatic variability on carbon storage in a permanent pasture[END_REF], while in the wet climate of the United Kingdom (grassland site G4) most nitrate available for leaching may result in reduced N2O

emissions (e.g. [START_REF] Cardenas | Towards an improved inventory of N2O from agriculture: Model evaluation of N2O emission factors and N fraction leached from different sources in UK agriculture[END_REF]. In fact, grazed G4 grassland tends to have high N leaching rates (and corresponding limited N2O emissions) due to added urinary N to the system and the non-uniform distribution of excreted organic N, which further enhances leaching due to N hotspot formation (Jones et al., 2017b). N2O emissions are reported to increase with increasing temperature, which is attributed to an increase in the anaerobic volume fraction, caused by an increased respiratory oxygen sink [START_REF] Smith | Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[END_REF]. With a mean annual maximum annual temperature equal to 31.5 °C, N2O residuals at the hot Indian cropland site J o u r n a l P r e -p r o o f

C3 are still positively correlated with Tmax with fully calibrated models (r=0.93, p=0.02 at S3; r=0.89, p=0.04 at S5).

Conclusions

Residuals from model-ensemble outputs tend to be less correlated when crop and grassland models are calibrated using soil and C-N fluxes together with vegetation data (compared to partial calibration with vegetation data alone). If full calibration can reduce the correlation between C-and N-flux residuals (e.g. between GPP and N2O residuals), intense weather factors can also have significant effects on model residuals (e.g. N2O residuals positively correlated with maximum air temperature at the hot Indian cropland site). However, complex multi-model simulation patterns indicate that full calibration does not always constrain the correlation between model residuals, and between these residuals and agro-climatic metrics. Our assessment, which remains limited to climate-related drivers calculated annually (and could then a future improvement be a seasonal climate analysis), holds potential for a wider analysis that surveys contextual soil and management factors, for which the current database was not designed. In that, we have proposed a somewhat ad hoc multi-output analysis that considers inter-dependencies in the model outputs, but there are challenges that require further work.

These include how to quantitatively account for consistency with mechanistic viewpoints supported by alternative models of varying complexity as a further important requirement for model ensembles, as well as definitions of core concepts and metrics to provide a quantitative determination of the stability of simulation results under a variety of conditions. These challenges are interesting from a practical point of view because improving our understanding of these issues and finding better ways to deal with the plurality of models has the potential to increase the value of biogeochemical models in agriculture, where determining the robustness of results is a strategy to assess confidence in results. In the end, this may provide modellers with a clearer explanation of what they are doing in ensemble modelling (as well as how they are doing it), and stronger arguments as to when ensemble modelling can, or cannot, become a practical epistemic resource.

One of the features of C-N modelling today is the huge quantity and variety of models available.

Our analysis, which did not consider all sources of uncertainty (e. 

  Fig. 1. Geographic location (diamonds: grassland sites; circles: cropland sites) and classification of study sites with respect to De Martonne-Gottmann aridity index and frequency

Fig. 2 .

 2 Fig.2. Temporal changes of NEE (g C m -2 season -1 for crops and g C m -2 yr -1 for grasslands, left) and N2O (g N2O-N m -2 season -1 for crops and g N2O-N m -2 yr -1 for grasslands, right) observations (Obs, red square) and simulations: S3 (stage 3, blue) and S5 (stage 5, pink) at all sites (site codes as in Fig.1). Lines represent the multi-model median (MMM) of the S3 and S5 simulations, and shaded areas represent the simulation envelopes given by the edges of the most extreme model predictions (with the same colours as the lines). At cropland site C3, only modelled RECO data are reported.

Fig. 3 .

 3 Fig. 3. Scatterplot correlation matrix of NEE, RECO, GPP and yield model residuals of multimodel medians (MMM) for stages 3 (left) and 5 (right) at G3 grassland site, and the annual agro-climatic metrics aridity index (b), heatwave frequency (hw) and maximum temperature (Tmax). Overlaid (red line) is a local non-parametric smoother curve. Coloured areas indicate significant correlations (p<0.10).
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 4 Fig. 4. Scatterplot correlation matrix of NEE, RECO, GPP and yield model residuals of multimodel medians (MMM) for stages 3 (left) and 5 (right) at G4 grassland site, and the annual agro-climatic metrics aridity index (b), frequency of heatwaves (hw) and maximum temperature (Tmax). Overlaid (red line) is a local non-parametric smoother curve. Coloured areas indicate significant correlations (p<0.10).

  Fig. 5. Scatterplot correlation matrix of NEE, RECO, GPP and yield model residuals of multimodel medians (MMM) for stages 3 (left) and 5 (right) at C1 cropland site, and the annual agroclimatic metrics aridity index (b), frequency of heatwaves (hw) and maximum temperature (Tmax). Overlaid (red line) is a local non-parametric smoother curve. Coloured areas indicate significant correlations (p<0.10).

Fig. 6 .

 6 Fig. 6. Scatterplot correlation matrix of NEE, RECO, GPP and yield model residuals of multimodel medians (MMM) for stages 3 (left) and 5 (right) at C2 cropland site, and the annual agroclimatic metrics aridity index (b), frequency of heatwaves (hw) and maximum temperature (Tmax). Overlaid (red line) is a local non-parametric smoother curve. Coloured areas indicate significant correlations (p<0.10).
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 7 Fig. 7. Scatterplot correlation matrix of NEE, RECO, GPP and yield model residuals of multimodel medians (MMM) for stages 3 (left) and 5 (right) at C3 cropland site, and the annual agroclimatic metrics aridity index (b), frequency of heatwaves (hw) and maximum temperature (Tmax). Overlaid (red line) is a local non-parametric smoother curve. Coloured areas indicate significant correlations (p<0.10).

Fig. 8

 8 Fig. 8 is a summary plot (correlogram) that averages the changes between partial (S3) and full (S5) calibration for each of the model residuals and weather metrics investigated. The heatmap values show mean correlation coefficients between model output residuals and weather drivers across all study-sites and land uses with partial and full calibration. Overall, there are quite strong positive correlations (on a gradient of r~0.5 and r~0.7) between GPP and RECO

Fig. 8 .

 8 Fig. 8. Heatmap of mean correlation coefficients (r) between NEE, RECO, GPP and yield model residuals of multi-model medians (MMM) for stages 3 (left) and 5 (right) across sites/land uses, and the annual agro-climatic metrics aridity index (b), frequency of heatwaves (hw) and maximum temperature (Tmax).

  g. the influence of the unique choices made by modellers), relied on the integration of several modelling teams into an ensemble protocol. Comparing different approaches have revealed great model diversity and the need to accommodate challenges experienced by modellers (including initialization and calibration procedures), as reflected in the co-creation (with modellers and data providers) of J o u r n a l P r e -p r o o f alternative calibration scenarios. The distinction between partial and full calibration, limited here to the two most relevant calibration stages, i.e. with plant data only (S3) and with plant, soil physical and biogeochemical data (S5), introduced and formalised a dialectical perspective (or compromise approach) between what is practical to implement for the users and beneficiaries of models (S3) and what constitutes (scientifically) the best modelling practice (S5). In fact, with overall lower or less significant correlations obtained with the fully calibrated models, the centrality of the S5 calibration scenario emerges overall if not for the practical implementation of model ensembles (which requires simplified datasets), for the identification of areas of model structures requiring further development. All this considered, this study on ensemble results presents important elements that can lead individual modelling teams to identify a spectrum of actions for model (and modelling practice) improvement.

  

  

  

Table 1 .

 1 Stages of model run (after Ehrhardt et al., 2018). The grey cells indicate the two stages

		J o u r n a l P r e -p r o o f
	(S3: partial calibration; S5: full calibration) on which this study focuses.
		Modelling stage	Description
			Basic data covering the simulation
	S1	blind with no calibration and initialisation data	period of experimental measurements (climate, initial soil properties and site
			management	information,	crop

  Table B in the Supplementary material), including cereals (spring and winter wheat [W], triticale [T], maize [M] and rice [R]), legumes (soybean [S]), rapeseeds (canola and mustard [C]), borages (phacelia, F) and fallow intercrop periods [I].

	Sites, country (latitude, longitude, elevation)	Years of period) available data (simulation	Land use	References
	C1: Ottawa, Canada			Pattey et al. (2006); Jégo et
	(45.29, -75.77, 94 m	2007-2012	W/S/C/M/W/C	al. (2012); Sansoulet et al.
	a.s.l.)				(2014)
	C2: Grignon, France		
	(48.85, 1.95, 125 m	2008-2012	
	a.s.l.)			
	G3:	Laqueuille,		
	France (45.64, 2.74, 1040 m	2003-2012	Permanent grassland	Allard et al. (2007); Klumpp et al. (2011)
	a.s.l.)			
	G4: Easter Bush,		
	United Kingdom (55.52, -3.33, 190 m	2002-2010	Permanent grassland	Skiba et al. (2013); Jones et al. (2017b)
	a.s.l.)			

C/M/W/T/P/M/W/I Laville et al. (2011); Loubet et al. (2011) C3: Delhi, India (28.60, 78.22, 233 m a.s.l.) 2006-2009 W/R/W/R/W Bhatia et al. (2012)
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Appendix A. Temporal changes of GPP (g C m -2 season -1 for crops and g C m -2 yr -1 for grasslands, (left), RECO (g C m -2 season -1 for crops and g C m -2 yr -1 for grasslands, middle) and Yield (kg DM m -2 season -1 for crops and kg DM m -2 yr -1 for grasslands, right) observations (Obs, red square) and simulations: S3 (stage 3, blue) and S5 (stage 5, pink) at all sites (site codes as in Fig. 1). Lines represent the multi-model median (MMM) of the S3 and S5 simulations, and shaded areas represent the simulation envelope (with the same colours as the lines). At cropland site C3, only modelled GPP and RECO data are reported.
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