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ABSTRACT 

A model for description of local filtrate flux and local solids concentration distribution 
in the filter channel at the steady-state of the cross-flow membrane filtration of 
colloidal suspension is proposed.  

The model accounts for rheological and compression-permeability properties of the 
filtered material: 

 (a) 

where  is the shear rate, c is the solids concentration, and τ is the shear stress, 

 (b) 

where Π is the osmotic pressure or solid pressure, and 

 (c) 

where k is the permeability. 

Analytical solution of a system of mass and pressure balance equations under the 
assumption of a thin concentration polarization (CP) layer yields the local filtrate flux 
distribution along the membrane, J(x)  

 (d) 

where J(0) is the filtrate flux across the membrane in the absence of the 
concentration polarization, c0 is the solids concentration in the bulk, μf is the filtrate 
viscosity, x is the distance from the entrance to the filter channel, and M(csg, τw) is the 
integral characteristics of the filtered material, which is defined as 

 

(e) 

(where τw is the applied wall shear stress, and csg is the sol-gel transition 

concentration, i.e. the maximal solids concentration in the CP layer). 

It should be noted that according to Eqs. (d) and (e), filtrate flux is independent of 
deposit properties (i.e., there is no need to define or measure neither , Π nor k at c > 

csg for the local filtrate flux calculation). However, Eqs. (b) & (c) for c > csg can be used 
to predict the local solids concentration in the deposit c(x,z) for the found J(x) with the 
help of the integral form of Darcy’s equation (where z is the normal distance to the 
membrane surface). 
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INTRODUCTION 

The present paper is devoted to the modelling of the steady-state cross-flow filtration 
of Brownian suspension that results in formation of concentration polarization (CP) 
layer, which can exhibit non-Newtonian rheological properties (e.g., shear thinning), 
that is optionally followed by formation of compressible deposit (a gel having a yield 
stress that exceeds an applied wall shear stress in the filter channel). 

The model development was started in our previous work (Loginov et al., 2021), 
however, this paper only described filtration under the limiting flux conditions in a 
short filtration (when the fully gel covers the membrane surface and the 
transmembrane pressure is constant along the filter channel). 

In the present paper we provide a full model, which accounts for the transmembrane 
pressure distribution along the filter channel, is applicable for sub-critical filtration 
conditions (before the gel formation), and accounts for the gel appearance (between 
the critical and limiting filtration conditions). Here, for readers’ convenience, we recall 
the model assumptions and the model development, which are partially published in 
(Loginov et al., 2021). 

 

MODEL DEVELOPMENT 

Following equations are obtained for the case of cross-flow in a cylindrical filter 
channel. Fig. 1 presents a scheme used for the model derivation. 

 

 

Fig. 1. Filtration of a feed suspension with particle volume fraction ϕ = ϕ0 through a 
fully retentive membrane results in formation of filtrate (ϕ = 0) and CP layer with the 
thickness hCP(x) and local concentration ϕ(x, z) > ϕ0 followed by formation of a 
deposit with the thickness hd (x) and local concentration ϕ(x, z) > ϕsg, where ϕsg is a 
concentration of sol-gel transition. Local particle concentration on the membrane 
surface is denoted as ϕw(x). 

 

The current model derivation follows general approach and uses some of 
assumptions proposed by Gaddis (1992) and Bacchin et al. (2002). 

The model is obtained for the case, when thicknesses of CP layer and deposit are 
negligible as compared to the filter channel radius. Consequently, it is assumed that 
tangential gradients of different parameters in the CP layer are negligible as 
compared to respective normal gradients. 

At a steady state, there is no additional particle accumulation inside the filter channel 
(neither the particle redistribution between the flowing CP layer and the immobile 



deposit). The total flux of particles across a transverse section of the filter channel at 
any distance from the entrance x is equal to the total particle flux at the entrance of 
the filter channel Q0ϕ0, where Q0 is the average tangential flow rate at the entrance to 
the filter channel (at x = 0), and ϕ0 is the particle volume fraction in feed suspension. 
Filtration results in a gradual concentrating of particles in the CP layer, where ϕ(x, z) 
> ϕ0. Following the idea of Gaddis (1992) and Bacchin et al. (2002), the total particle 
flux across a transverse section of the filter channel at any distance from the 
entrance x is presented as a sum of two virtual components: (1) tangential transport 
of excess particles in the flowing CP layer and (2) transport of suspension having the 
initial particle volume fraction ϕ0. Therefore, the total transport of particles through 
any cross section of the filter channel can be written as 

  (1) 

where u(x, z) is the local tangential flow rate of liquid and particles, Q(x) is the 
average tangential flow rate through the entire cross section of the channel (including 
the CP layer), and R is the inner radius of the filter channel. The integration in Eq. (1) 
is done over the local thickness of CP layer hCP(x), and the lower integration limit 
hd (x) is the local deposit thickness (note that hd (x) = 0, if the deposit is absent at 
given x). 

Using the definition of shear rate , the local tangential flow rate u(x, z) can be 
presented as 

  
(2) 

where  is the normal component of local shear rate (as it is stated before, its 
tangential component is neglected for the case of thin CP layer). It is assumed that 
there is no liquid slip at the CP–solid (membrane or deposit) boundary (at z = hd (x)). 

Further description of particle transport in the CP layer requires the knowledge of its 
local rheological properties (i.e., shear stress dependence of shear rate at a given 
particle concentration): 

 (3) 

As soon as the CP layer thickness is assumed to be negligible as compared to the 
channel radius R, it can be assumed that the shear stress in the CP layer is 
practically constant at given x and equal to the local wall shear stress τw(x) 

  
(4) 

where P(x) is the local pressure in the filter channel. In the case of laminar flow in 
cylindrical filter channel, the local pressure gradient dP(x)/dx is related with the 
average tangential flow rate Q(x) as 

  
(5a) 

where μb is the viscosity of suspension in the bulk. In the case of turbulent cross-flow 
the relation is 

  
(5b) 



where ρb is the density of bulk suspension. It is assumed that Eqs. (5a) and (5b) are 
valid despite of the presence of thin CP layer. 

The value of Q(x) decreases with x because of filtrate formation 

  
(6) 

where J(x) is the local filtrate flux. However, for the usual case of relatively slow 

filtration (i.e., when the average filtrate flux over the filter channel length  is 

relatively low,  << Q0), for the sake of evaluation of τw, it can be assumed that the 
value of local flow rate is practically unaffected by filtrate formation, Q(x) ≈ Q0. 
Hence, the applied pressure gradient is practically constant and equal to 

  
(7a) 

in the case of laminar cross-flow and to 

  
(7b) 

in the case of turbulent cross-flow. Thus, as it follows from Eqs. (4), (7), the value of 
the shear stress in a thin CP layer is practically constant along the filter channel and 
equal to 

 (8a) 

in the case of laminar cross-flow and to 

  (8a) 

According to Eqs. (8), the value of shear stress in a thin CP layer is an operating 
parameter depending on Q0. Hence, the modeling of filtration requires to determine 
the local rheological properties in this layer (defined via Eq. (3)) for a single value of τ 
(defined via one of Eqs. (8)). For a given value of τ, known (either modeled or 

experimentally measured) dependency , can be introduced into Eq. (2) 

  (9) 

where  is unknown. 

An extension of the usual assumption of conventional filtration theory (filtrate flux 
does not vary across the filter cake, i.e., J ≠ J(z)) for the case of cross-flow filtration 
with CP layer formation allows to apply Darcy equation in order to relate the local 
filtrate flux with local filtration properties of CP layer and deposit: 

 
(10) 

where μf is the filtrate viscosity, k(x, z) is the local hydraulic permeability and Π(x,z) is 
the local osmotic pressure in the CP layer or the solid pressure in the deposit. Eq. 
(10) is applied for description of deposit (immobile) and CP layer (flowing): in the 
current model, usual presentation of filtrate percolation across the CP layer as a 
backward diffusion of particles (Gaddis (1992), Bacchin et al. (2002)) is replaced by 
Darcy equation, where osmotic pressure substitutes for solid pressure. 



According to the conventional filtration theory, for a given system of particles, k and Π 
are material properties that depend only on the local particle volume fraction. Further 
in this section, we assume that the particle volume fraction dependencies k(ϕ) and 
Π(φ) are not affected by the tangential flow of CP layer or tangential stress applied to 
the deposit (in other words, shear-induced diffusion coefficient is negligible, or 
hydrodynamic component of osmotic pressure is negligible; the model extension for 
the case of non-negligible shear-induced effects is provided in the Appendix B). 
Then, Eq. (10) can be rewritten as 

 
(11) 

where  is unknown. 

The following model derivation is equivalent to that done by Bacchin et al. (2002). 
Expression of dz from Eq. (11) 

 
(12) 

with its following substitution into Eq. (9) yields 

 

(13) 

Substitution of Eqs. (12) and (13) into Eq. (1) yields 

 

(14) 

The upper limit of the first integral corresponds to the boundary between the CP layer 

and the bulk suspension, where  (it is assumed that relatively low filtrate flux 
has no significant influence on the bulk concentration). The lower integration limit 
hd (x) corresponds to the “lower” boundary of CP layer. Therefore, when the deposit 

is absent, it corresponds to the membrane surface position, where . When 
the deposit is present on the membrane, it corresponds to the CP layer – deposit 

surface position, where . The particle concentration in the point of sol-gel 

transition  does not depend on x but depends on  (i.e., an element of external 
membrane fouling flows, so, belongs sol and not to gel, if its local particle 
concentration corresponds to the yield stress, which is lower that the wall shear 

stress ). Hence, Eq. (14) can be rewritten as 

 

(15a) 

for values of x corresponding to the membrane covered by flowing CP layer, or 



 

(15b) 

for values of x corresponding to the membrane covered by solid deposit. 

For any point on the membrane surface, the local value of  can be obtained 
from the expression for the pressure distribution between the CP layer, the deposit (if 
it is present on the membrane surface) and the membrane: 

 (16) 

where Rm is the hydraulic resistance of filtration membrane,  is the local 

pressure drop across the deposit and the CP layer, and  is the pressure at 
filtrate side. In the present model, is assumed that Pf (x) is not controlled (as it is 
done, for example, in the uniform transmembrane pressure filtration units); therefore, 

. The variation of P(x) along the filter channel can be found form  

  
(17) 

with the help of Eqs. (7a) or (7b) for the case of laminar or turbulent cross-flow, 
respectively. 

Eqs. (6), (15a), (15b), (16) and (17) are main model equations that are sufficient for 
calculation of local flux J(x) at different filtration conditions. For the sake of 
convenience, all assumptions used for their derivation are summarized in the 
Appendix A. 

 

MODEL SOLUTION 

For a given suspension (given value of ϕ0 and given dependencies k(ϕ), Π(ϕ) and 

(ϕ,τ)) subjected to a given shear stress τ (that determines ϕsg and (ϕ,τ)), the value 
of double integral in Eq. (15a) if a function, which depends only on ϕw (which varies 
with x). The value of the double integral in Eq. (15b) is a constant (which depends 
only on ϕsg). Therefore, Eqs. (15a) and (15b), can be rewritten as 

 
(18a) 

 
(18b) 

where M is the material properties-dependent function of concertation ϕ defined as 

  
(19a) 

and M(ϕsg,τ) is the said constant 

  
(19b) 



The system of Eqs. (6), (16), (17) and (18a) is sufficient for the modeling of cross-
flow filtration without deposit formation. It yields an ordinary differential equation 

 

(20) 

Numerical solution of Eq. (20) with the initial condition ϕw(0) = ϕ0 yields ϕw(x) 
distribution for the part of membrane, where ϕw(x) < ϕsg is satisfied. Then, J(x) 
dependency can be calculated using Eq. (16) and (17) from obtained ϕw(x) 
dependency using known Π(ϕ) dependency. 

At certain filtration conditions, a deposit appears at a certain critical distance from the 
entrance to the filter channel xcr1, where ϕw(xcr1) = ϕsg is satisfied. For the 
downstream part of the filter channel (with x ≥ xcr1), filtration is described by the 
system of Eqs. (6) and (18b), having the following analytical solution 

 

(21) 

where values of J(xcr1) and xcr1 are determined from the solution of Eq. (20). The 
ϕw(x) dependency (local deposit concentration on the membrane surface) can be 
further calculated from ϕw(x) and Π(ϕ) dependencies with the help of Eqs. (16) and 
(17). 

In the case of sufficiently long filter channel, decreasing of J(x) and P(x) with x can 
reduce the value of ϕw(x) below ϕsg at x = xcr2 (the second critical distance from the 
entrance). For the downstream part of the filter channel (at x > xcr2) filtration will be 
again described by Eq. (20) with ϕw(xcr2) = ϕsg as an initial condition. 

The areas of applicability of Eqs (20) and (21) are summarized in Fig. 2. 

 

 

Fig. 2. Areas of applicability of model equations. 

 

Finally, the local particle concentration distribution across the CP layer and the 
deposit ϕ(x, z) can be calculated at any value of x with the help of obtained J(x) and 
ϕw(x) dependencies, which are introduced into the integral form of Eq. (12): 



 

(22) 

Eq. (22) is also used for the calculation of local deposit thickness hd (x) = z(x, ϕsg) and 
local CP layer thickness hCP(x) = z(x, ϕ0) – z(x, ϕsg). 

 

MODEL RESULTS AND DISCUSSION 

Impact of material and rheological properties on filtration, new measure of the 
filterability 

For a filter channel part starting at the cell entrance and having a length l < xcr1 
combination of Eqs. (6) and (18a) yields the following expression for the length-

averaged filtrate flux   

 
(23) 

Besides of evident dependencies (filtration rate decreases with increasing of bulk 
concentration ϕ0 and filtrate viscosity μf), Eq. (23) also suggests that filtration 
depends on M(ϕw,τ), and that filtrate flux is higher, when M(ϕw,τ) is higher. As it 
follows from Eq. (21), these dependencies also hold for the filter channel part 
covered by deposit: in particular, filtration rate is higher at higher M(ϕsg,τ). It can be 
concluded that, irrespective of ϕw(x) and J(x), filtration is faster, when M(ϕ,τ) is higher 
in a particle concentration range [ϕ0, ϕsg]. Therefore, M is a measure of filterability of 
suspension in a cross-flow filtration experiment. 

According to Eqs. (19a) and (19b), for a given ϕ, the value of M(ϕ,τ) increases with 
the increasing of permeability k(ϕ) and decreasing of compressibility and viscosity 

(increasing of ∂Π(ϕ)/∂ϕ and (ϕ,τ), respectively). These are expectable correlations of 
filterability with material properties of a filtered sample. In addition, as soon as all 
multipliers of integrands in Eqs. (19a) and (19b) are positive, M(ϕ,τ) is an increasing 
function of ϕ. 

According to Eq. (19a), for a CP layer and a deposit with Newtonian rheological 

properties (that is (ϕ,τ) = τ/μ(ϕ) and ϕsg ≠ f(τ)), M(ϕ,τ) is directly proportional to τ. 
However, for non-Newtonian CP layer and deposit (that exhibit shear-thinning and 
yield stress) the increasing of M(ϕ,τ) with τ is sublinear, and the maximal value of 
M(ϕsg,τ) attained in the experiment increases with τ since ϕsg = f(τ). 

Detailed discussion of the influence of operating parameters and sample material 
properties on filtration kinetics requires assumed functional forms of material 

properties (either Π(ϕ), k(ϕ) and (ϕ,τ) or M(ϕ,τ)) for a particle concentration range 
[ϕ0, ϕsg(τmax)], where τmax is a maximal value of wall stress expected in the 
experiment. It is worth noting that according to the model, sample properties at ϕ > 
ϕsg(τmax) (i.e., deposit properties) do not influence the steady-state kinetics of cross-
flow filtration (though they can influence a solute rejection during the filtration and the 
membrane cleaning after the filtration). 

 



Inverse and direct problems solution: characterization of cross-flow filterability 
and scaling of cross-flow filtration 

As it follows from the previous section, the cross-flow filtration rate at different 
operating conditions can be predicted with the help of Eqs. (19a) and (20) or (19b) 
and (21) together with Eqs. (16) and (17) for suspension with known material 

properties Π(ϕ), k(ϕ) and (ϕ,τ), which completely characterize the filterability. 

Experimental determination of Π(ϕ), k(ϕ) and (ϕ,τ) for different suspensions is a 
feasible but time consuming routine. Moreover, these dependencies must be 
determined in the concentration range [ϕ0, ϕsg], which generally corresponds to low 
osmotic pressure range (therefore, particular methods are suggested for the Π(ϕ) and 
k(ϕ) determination). 

Using the model, it is possible to characterize filterability of suspension during a 
cross-flow filtration in a different way, by determining M from cross-flow filtration data. 
New method for determination of filterability can be introduced as follows. Material 
properties of a studied sample can be presented and the model equations can be 
rewritten for a new variable, which is local osmotic (or solid) pressure in the CP layer 
or deposit Π (instead of the used before local particle concentration ϕ(x, z)): ϕ(Π), 

k(Π) and (Π,τ). The pressure varies across the CP layer and the deposit Π = Π(x, z), 
it changes from Π = Π0 at the bulk – CP layer interface to Πw at the membrane 
surface, and it is equal to Πsg at the deposit surface. There are following relations of 
these values with previously defined limiting values of ϕ: Π0 = Π(ϕ0) (constant), Πw = 
Π(ϕw) (varies with x), and Πsg = Π(ϕsg) (does not depend on position but depends on 
τ, because ϕsg depends on τ). Following the same routine as it was used for the 
derivation of Eqs. (15a) and (15b), the filterability M can be now presented as 

  
(24a) 

Likewise, Eq. (18a), Eq. (24a) is applicable when Πw(x) < Πsg, while in the point of 
sol-gel transition the value of M is 

  
(24b) 

Using new definition of M, Eq. (23) can be simply rewritten as 

 
(25) 

with the same condition of applicability x < xcr1. The following rewritten form of 
Eq. (21) 

 

(26) 

describes local filtration flux for x ≥ xcr1. Finally, Eq. (16) can be rewritten as 

 (27) 

If the local flux distribution along the filter channel J(x) is measured in a cross-flow 
filtration experiment at given values of P0 and τ, then the distribution of M along the 

channel (i.e., M(x)/(ϕ0 )) can be obtained via the data fitting with the help of 



Eqs. (25) and (26). Also, Πw(x) can be calculated with the help of Eq. (27) with for 

known dependencies P(x) and Pf (x). Hence, the dependency M(Π,τ)/(ϕ0 ) on Π can 
be constructed for the used value of τ (for a certain range of Π, which can be 
enlarged via application of different values of P0 at the same value of τ). This 
dependency is a measure of filterability of a studied sample in a cross-flow filtration 
for the given value of τ and for any set of other operating parameters (applied 
pressure P0, filter channels’ length l and internal radius R, membrane resistance Rm). 

When M(Π,τ)/(ϕ0 ) is determined, it can be used for the calculation of filtration rate 
J(x) for x < xcr1 with the help of the following equation  

 

(28) 

which is derived using the same routine as it was used for Eq. (20). Numeric solution 
of Eq. (28) with initial condition Πw(0) = Π0 and application of Eq. (27) yields J(x) and 
the value of xcr1 at the point with Πw(xcr1) = Πsg (deposit formation). Following filtration 

is described by Eq. (26) as soon as M(Πsg,τ)/(ϕ0 ) is known from the aforementioned 
experiment. 

 

APPENDIX A. MODEL ASSUMPTIONS 

The following assumptions are used for the model derivation. 

1. Steady-state filtration is considered. 

2. Flow is fully developed (at least in the CP layer). 

3. Filtration membrane is a continuum with constant hydraulic resistance. 

4. Membrane is fully retentive. 

5. Pore blocking and other “pore fouling” phenomena are not considered. If they are 
present, clean membrane resistance is replaced by fouled membrane resistance 
(that does not comprise the CP and deposit resistance). 

6. Thickness of CP layer (and that of the deposit) is negligible as compared to the 
filter channel dimensions. 

7. In the CP layer, tangential gradients of cross-flow rate and particle concentration 
are negligible as compared to respective normal gradients. 

8. Local values of material properties (k(ϕ) and (ϕ)) are not affected by tangential 
flow. 

9. In CP layer and deposit, dependencies k(ϕ), (ϕ) and (ϕ) are equivalent to those 
for suspensions having same particle concentration (e.g., particle classification or 
other phenomena potentially influencing granular of chemical composition of CP 
layer and deposit are not considered). 

10. The shear stress in CP layer is constant and equal to the wall shear stress. 

11. Poiseuille relationship for friction factor is valid despite of the presence of CP 
layer and deposit. 



12. Filtrate flux is negligible as compared to cross-flow flux; therefore, tangential 
pressure gradient is practically constant over the filter channel (including the CP 
layer). 

13. For given x, filtrate flux is constant across the CP layer, deposit and membrane. 

14. Filtrate permeation in CP layer can be described by Darcy equation for granular 
media. 

 

APPENDIX B. MODEL EXTENSION FOR THE CASE OF NON-NEGLIGIBLE 
SHEAR-INDUCED EFFECTS 

When the modelling of cross-flow filtration is based on consideration of convection-
diffusion balance, the influence of local shear rate on the particle diffusion away from 
the membrane is accounted with the help of the coefficient of shear-induced 
diffusion. In the current paper, an equivalent approach (which is usually applied in 
conventional filtration-consolidation theory) is used for description of local material 
balance in cross-flow filtration: the local flux towards the membrane is proportional to 
the hydraulic pressure gradient (which is equal to the osmotic or solid pressure 
gradient with the opposite sign) and impeded by the local hydraulic resistance of the 
CP layer (deposit): 

 
(B1) 

where J(x) is the filtrate flux, μf is the filtrate viscosity, k(x, z) is the local hydraulic 
permeability and Π(x, z) is the local osmotic pressure. The local osmotic pressure is 
a function of particle concentration ϕ(x, z), however, it can also depend on the local 

shear rate (x, z), and the influence of the shear rate on the local osmotic pressure is 
equivalent to the influence of the shear rate on the coefficient of diffusion. Therefore, 
the influence of the local shear rate in the CP layer on the cross-flow filtration rate 
can be accounted as 

 
(B2) 

Both ϕ and  depends on x and z, while k only depends on the systems 

concentration k = k(ϕ). However,  = (ϕ, τ), and Eq. (B2) can be rewritten as 

 
(B3) 

where dependence of osmotic pressure on shear rate is implicit. As soon as Eq. (B3) 
is equivalent to Eq. (11), the following model derivation for the case of non-negligible 
shear enhanced diffusion results in exactly the same equations Eqs. (12) – (23). 

 

ABBREVIATIONS 

CP concentration polarization 

sg sol-gel transition 

 



NOMENCLATURE 

hCP local thickness of CP layer (m) 

hd local thickness of deposit (m) 

J local filtrate flux (m∙s–1) 

 average filtrate flux over a part of the filter channel (m∙s–1) 

k local permeability (m2) 

L length of filter channel (m) 

l length of a part of the filter channel (m) 

M filterability, material function that governs cross-flow filtration (m4∙Pa2∙s–1) 

P total pressure in the filtration channel (Pa) 

P0 total pressure at the entrance to the filter channel (Pa) 

Pf pressure at filtrate side (Pa) 

Q average tangential flow rate in the filter channel (m3∙s–1) 

Q0 average tangential flow rate at the entrance to the filter channel (m3∙s–1) 

R inner radius of filter channel (m) 

Rm membrane resistance (m–1) 

u local tangential flow rate (m∙s–1) 

x axial distance from the entrance of the filter channel (m) 

xcr1 first critical distance, axial distance from the entrance of the filter channel, 
where the deposit appears on the membrane surface (m) 

xcr2 second critical distance, axial distance from the entrance of the filter channel, 
where the deposit disappears from the membrane surface (m) 

z normal distance from the membrane surface (m) 

 

GREEK LETTERS 

 local shear rate (s–1) 

μb viscosity of bulk suspension in the filter channel (Pa∙s) 

μf filtrate viscosity (Pa∙s) 

Π local osmotic pressure of particles in CP layer or solid pressure in deposit (Pa) 

Π0 osmotic pressure in feed suspension (Pa) 

Πsg osmotic pressure in point of sol-gel transition (Pa) 

Πw osmotic pressure (solid pressure) on the membrane surface (Pa) 

ρb density of bulk suspension in the filter channel (kg∙m3) 

τ shear stress (Pa) 

τw wall shear stress (Pa) 



ϕ particle volume fraction (dimensionless) 

ϕ0 particle volume fraction in feed suspension (dimensionless) 

ϕsg particle volume fraction in point of sol-gel transition (dimensionless) 

ϕw particle volume fraction on the membrane surface (dimensionless) 
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