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Abstract 15 

The bacterium Xylella fastidiosa (Xf) is a major threat to European agriculture and notably to 16 

the olive and Citrus industry. It is transmitted by xylem-feeding insects, whose plant-feeding 17 

preferences still require investigation in European agroecosystems. Here we studied olive and 18 

clementine groves of the oriental plain of Corsica. Insect-vegetation type interaction 19 

networks for nymphs and adults of xylem-feeding insects were investigated three times a 20 

year during two years in and around crops. Networks were dominated by the Philaenus 21 

spumarius – Cistus monspeliensis interaction and were similar for olive and clementine 22 

groves, despite differences in plant communities of the ground vegetation and agricultural 23 

practices. To a lesser extent, Dittrichia viscosa was also a suitable feeding plant for 24 

P. spumarius, the main vector of Xf in Europe. Neophilaenus campestris was associated with 25 

grove ground vegetation, whereas Lepyronia coleoptrata and Aphrophora alni exhibited no 26 

or weak association with any of the target vegetation types. All species occurred on olive and 27 

clementine foliage in similar low abundance. Our results suggest that soil tillage in spring 28 

would be less efficient than in Italy to control P. spumarius. Instead, removing 29 

C. monspeliensis bushes from the close vicinity of groves could reduce risk of spread of Xf to 30 

crops. Finally, conserving D. viscosa in olive groves as a biological control strategy against 31 

the olive fruit fly is rather counter-productive as it maintains populations of P. spumarius 32 

under susceptible crops. Overall, our study shows that management strategies should be 33 

designed in relation to local insect-plant interaction networks that should be investigated in 34 

both cultivated areas and their immediate environment. 35 

 36 

Keywords  37 

Vector-borne disease, Community ecology, Meadow spittlebug, Phytopathogen 38 



 3

1 Introduction 39 

Xylella fastidiosa (Wells, 1987) (Xf) (Xanthomonadales, Xanthomonadaceae) is 40 

transmitted between plants by xylem-sap feeding hemipterans (Cornara et al., 2019; Krugner 41 

et al., 2019). Biofilm-like colonies (Alves et al., 2004) and/or tyloses and pectin gels (De 42 

Benedictis et al., 2017) are formed that can completely occlude vessels of the xylem, thereby 43 

blocking water transport, which can lead to plant death (Chatterjee et al., 2008). Since 44 

decades and every year, the bacterium causes more than US$100 millions losses to the US 45 

grape industry (Pierce’s disease) and to the Brazilian citrus industry (Citrus Variegated 46 

Chlorosis; Bové and Ayres, 2007; Tumber et al., 2014). Since 2013, the presence of Xf has 47 

been confirmed in different Mediterranean regions of Europe (EPPO, 2021) and research has 48 

intensified to better understand and control its spread. 49 

As other insect-microbial-plant pathosystems (e.g. Irwin and Thresh, 1990), the Xf 50 

pathosystem is complex and gaps of knowledge remain although the bacterium has been 51 

extensively studied in the Americas, where it originated (Sicard et al., 2018). Xf can infect 595 52 

wild or cultivated plant species from over 85 families (EFSA, 2020). In addition, most insect 53 

vectors are polyphagous (Cornara et al., 2019; Redak et al., 2004), which increases chances of 54 

transmission between semi-natural and cultivated habitats. Thus, connexions between 55 

agroecosystems and their immediate environment created by insect vectors need to be 56 

investigated to anticipate and limit outbreaks (Almeida et al., 2005; Coletta-Filho et al., 57 

2011). 58 

Insect vectors found in the New World are almost completely different from those found in 59 

Europe, making knowledge transfer difficult. Although networks of interactions between 60 

plant and vector communities are complex, all interactions do not equally contribute to 61 

disease spread. Understanding what are the main plant reservoirs of Xf as well as what are the 62 

main vectors and their preferred feeding plants is crucial to identify routes leading to 63 
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transmission to susceptible crops (Farigoule et al., 2020; Rasplus et al., 2016). In addition, 64 

identifying key entities to plant-Xf-vector networks integrity should help design agro-65 

ecological management strategies to control them and, consequently, to reduce the spread of 66 

Xf (Fontenille et al., 2020). 67 

So far, a few studies have investigated vector feeding preferences in european agro-68 

ecosystems (Antonatos et al., 2021; Bodino et al., 2021, 2020a; Cornara et al., 2017; 69 

Dongiovanni et al., 2019a; Villa et al., 2020). Most of them focused on olive groves of 70 

Southern Italy, a region that suffered from the dramatic economic and socio-cultural 71 

consequences of Xf introduction (Saponari et al., 2019). Nevertheless, there are other 72 

important crops threatened by Xf. For example, the Mediterranean basin produces almost 20% 73 

of the citruses worldwide (FAO, 2017) and to date only Thanou et al. (2020) reported samples 74 

of Auchenorrhyncha species in Greek Citrus groves. Given the impact of the Citrus 75 

Variegated Chlorosis (Bové and Ayres, 2007), other studies are urgently needed to anticipate 76 

possible outbreak. 77 

In addition, although vectors are polyphagous, they seem to locally aggregate on 78 

preferred host plants. Thus, nymphs of Philaenus spumarius (L.), the most significant vector 79 

of Xf in Europe so far (Cornara et al., 2019) were reported to aggregate on Asteraceae, 80 

Apiaceae and Fabaceae in most large scale studies performed in Southern Italy (Bodino et al., 81 

2020a; Dongiovanni et al., 2019a), Spain or Portugal (Morente et al., 2018; Villa et al., 2020). 82 

They were reported preferentially on Apiaceae and Rubiaceae, especially Foeniculum vulgare 83 

L. and Galium album Mill on a specific research center of central Italy (Latini et al., 2019). In 84 

Coastal California, where P. spumarius has been introduced from Europe, nymphs are 85 

particularly abundant on the seaside daisy Erigeron glaucus Ker Gawl (Karban and Strauss, 86 

2004). In Corsica, P. spumarius seems to aggreate on Cistus monspeliensis L., at least locally 87 
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(Albre et al., 2021; Cruaud et al., 2018). These local associations and possible regional 88 

specificities question the generalization of sustainable management plans. 89 

Finally, the role of surrounding semi-natural habitats is rarely investigated (but see 90 

Bodino et al., 2020a), even though, for example, riparian vegetation has been shown to be key 91 

in the primary transmission of Xf to grapevines in California (Coletta-Filho et al., 2011). 92 

In this work, we analyzed the relative abundance of known and potential vectors of Xf 93 

(nymphs and adults) on four vegetation types in and around two economically important crops 94 

of Corsica (Agreste, 2021): clementine (Citrus clementina hort. ex Tanaka) and olive (Olea 95 

europaea L.) with statistical approaches and interaction network metrics. In addition to crop 96 

foliage and grove ground vegetation, we chose to focus on C. monspeliensis bushes and 97 

D. viscosa covers in the immediate grove environment. Indeed, based on literature and 98 

preliminary observations, substantial populations of P. spumarius were expected on these two 99 

plants. We investigated whether vectors shifted between vegetation types in the course of the 100 

year and we were particularly interested in detecting potential transfers to crop foliage as 101 

observed in previous studies in a similar climatic context (Cornara et al., 2017). 102 

 103 

2 Materials and Methods 104 

2.1 Study sites and sampling design 105 

We monitored 8 and 6 organically-managed clementine and olive groves respectively. 106 

Their general features as well as the farming practices applied to these groves are presented in 107 

Table 1. All groves were located in a climatically homogeneous region of Corsica, France 108 

(Fig. 1) in which, during the two years of the study, minimum day temperature ranged from 109 

0.1 to 4.6 °C (mean = 3.0 °C), maximum day temperature ranged from 26.5 to 30.4 °C (mean 110 

= 28.7 °C) and annual precipitation ranged from 637 to 1066 mm (mean = 809 mm) (source 111 

Météo France). On-field map of the groves and their vicinity were drawn prior to the first 112 
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sampling session. Circular zones centered on the groves, thereafter called “microlandscapes” 113 

were defined so that their diameter (1 km) did not exceed the average dispersal capacity of the 114 

target insects (Bodino et al., 2020b; Lago et al., 2021). Depending on the size of the grove, 115 

either one or two microlandscapes were defined and a total of 17 microlandscapes were 116 

sampled (9 in clementine and 8 in olive groves; Table 2; Supplementary maps).  117 

Three times a year during two years (2019 and 2020), known and potential vectors of Xf 118 

were counted on four vegetation types in each microlandscape: 1. on the tree crop foliage, 2. 119 

on the grove ground vegetation, 3. on C. monspeliensis bushes and 4. on D. viscosa covers. 120 

These two last vegetation types were chosen because C. monspeliensis (Albre et al., 2021; 121 

Cruaud et al., 2018) and D. viscosa (pers. obs.) are suspected to host significant populations 122 

of P. spumarius in Corsica. Other vegetation types covering large areas such as forests (Table 123 

3) were left unsampled because Chartois et al. (2021) showed that they host low abundances 124 

of Xf vectors. 125 

A sampling event on each vegetation type consisted in a 10 minutes count of nymphs or 126 

adults (see Insect Collection).  127 

For tree foliage, peripheral branches up to 2.5m were targeted. The grove ground 128 

vegetation as a whole was included in the survey. A botanical inventory of the grove ground 129 

vegetation was carried out in October 2019, June 2020 and October 2020 using one square 130 

meter quadrats randomly positioned in two inter-rows with four repetitions per row (i.e., 8 131 

quadrats per site). Each species recorded (or genus if the phenological stage did not allow for 132 

a more precise identification) was associated with an “abundance-dominance” coefficient 133 

derived from Braun-Blanquet (1964) (1: <1% cover of the quadrat; 2: 10 to 25% cover; 3, 4 134 

and 5: 25 to 50, 50 to 75 and 75 to 100% cover of the quadrat). For C. monspeliensis and D. 135 

viscosa, when several patches were present in the microlandscape, patches (young seedlings 136 

and old shrubs) closest to the grove were sampled first. Then, collectors progressively moved 137 
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away from the grove to sample more distant patches until the 10 min time limit was reached. 138 

The same patches were visited in each sampling session. Table 3 shows the areas 139 

available/actually sampled for each vegetation type as well as the distance among sampled 140 

vegetation types (for a comprehensive description of spatial size and location of sites, see the 141 

Supplementary maps). 142 

2.2 Insect collection 143 

Cercopoidea populations were monitored in mid April when spittle abundance was the 144 

highest as well as in June and October, when populations of adults of P. spumarius before and 145 

after aestivation were the largest (pers. obs.). Therefore, our sampling shedule was primarly 146 

designed to get the best focus possible on P. spumarius, the main vector of Xf, but was also 147 

relevant for other spittlebugs. Indeed, Bodino et al. (2021, 2019) suggested that the 148 

phenologies of P. spumarius, N. campestris and A. alni are similar in Italian olive groves. 149 

Monitoring was not possible in April 2020 due to restrictions relative to the Covid-19 150 

pandemic.  151 

Insect monitoring (nymphs and adults) was based on an equal sampling duration of 10 152 

minutes on each of the four target vegetation types. For nymphs, a preliminary test was 153 

performed to assess an on-sight sampling method. Four hundred forty individuals were 154 

randomly collected from various spittles, assigned to species based on literature and identified 155 

in the lab under a binocular microscope (Appendix 1 in Supplementary Materials). Precisely, 156 

spittle masses found at the crown of grass plants were assigned to Neophilaenus campestris 157 

(Fallén); those found at the crown of dicotyledonous plants species were assigned to 158 

Aphrophora alni (Fallén) and those found on the upper part of graminaceous or 159 

dicotyledonous plants were assigned to P. spumarius (Halkka et al., 1977; Fig. 2). Nymphs of 160 

Lepyronia coleoptrata (L.) appeared later in our climatic context (Barro and Pavan, 1999), 161 

and no spittle could be attributed to this species. In our context, on sight identification by our 162 
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trained eye was validated in over 99 % of cases (Appendix 1). Spittle masses were therefore 163 

counted and identified directly in the field (upper and lower surfaces of the leaves were 164 

inspected when relevant). In the rare cases where identification was troublesome, we 165 

dispersed the spittle with a fine paintbrush and identified nymphs to species with 166 

morphological characters (Fig. 2). Because the number of nymphs per spittle was close to one 167 

for all species (1.45 for P. spumarius, 1.24 for N. campestris and 1.39 for A. alni; Bodino et 168 

al., 2020a), we considered the number of spittles as a good proxy of the number of nymphs. 169 

For adults, the 10 minutes sampling were fragmented in periods of 30 seconds of 170 

vegetation sweeping with alternate backhand and forehand strokes of sweeping nets followed 171 

by 10-30 seconds of collection of spittlebugs with mouth aspirators. Sweep netting is indeed 172 

recognized as the best method to collect the target insects (Morente et al., 2018). Sweeping 173 

the vegetation over a longer period would have increased risks of missing target insects in the 174 

net among the many plant debris and non-target arthropods. When the 10 min time limit was 175 

up, insects collected in the mouth aspirators were stored in 75° alcohol and brought to the 176 

laboratory for identification under a binocular microscope using Biedermann & Niedringhaus 177 

(2009) identification key. 178 

2.3 Data analysis 179 

Analyses of i) networks between insects and target vegetation types; ii) insect abundances 180 

per vegetation type; iii) insect shifts between vegetation types; iv) insect occurrences on crop 181 

foliage and v) grove ground vegetation were performed in R (R core team, 2019) using 182 

generalized linear mixed models (GLMMs; Bolker et al., 2009; Table 4). 183 

Details on each model adjustment (error distributions, link functions, observation-level 184 

random effects) are available in Appendix 2. Random effects on microlanscape or site 185 

locations were used to account for spatial or temporal dependence resulting from our 186 

sampling design (Faraway, 2006; Appendix 2). GLMM validity hypotheses of correct 187 



 9

distribution, dispersion, frequency of outliers and homoscedasticity were checked with the R 188 

package ‘DHARMa’ (Hartig, 2020). The structure of each model was simplified by 189 

successive backward elimination of non-significant fixed effects based on analysis of 190 

deviance (R package ‘car’, Fox and Weisberg, 2019). Post-hoc pairwise comparisons of 191 

estimated marginal means were performed on the final model (R package ‘emmeans’, Lenth, 192 

2020) to assess differences among factor levels. 193 

2.3.1 Interaction networks  194 

We built an interaction network (insect vs. vegetation type) for each microlandscape and 195 

each sampling session. To compare the diversity and evenness of interactions, we computed 196 

the connectance (i.e. the ratio between the number of observed interactions and the potential 197 

number of interactions with the R package ‘bipartite’; Dormann et al., 2008), the interaction 198 

evenness (i.e. the observed Shannon’s diversity of interactions divided by the maximum 199 

Shannon’s diversity attainable, with the same package) and the proportion of interactions 200 

represented by the bipartite P. spumarius – C. monspeliensis interaction (that was highligted 201 

as predominant). We assessed the correlation between each of these metrics and tree crop, 202 

sampling month and their interaction (Table 4A). For network visualization, we computed one 203 

summed network per tree crop and sampling month (R package ‘bipartite’) using weights to 204 

take the uneven sampling efforts into account (Table 2, Appendix 3). 205 

2.3.2 Association with vegetation types 206 

We analyzed insect association with vegetation types by assessing the correlation between 207 

the number of sampled individuals and species, sampling month, vegetation type and tree 208 

crop. As we expected varying effects of tree crop, vegetation type and sampling month with 209 

respect to insect species, we introduced interactions between insect species and these three 210 

factors (Table 4B). 211 
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In order to test whether host associations varied in the course of the year, we used one 212 

GLMM per insect species, testing the interaction between sampling month and vegetation 213 

type, while controlling for the effects of sampling month, vegetation type and tree crop (Table 214 

4C). 215 

Finally, we tested the hypothesis that P. spumarius was the most frequent Cercopoidea, 216 

including on crop foliage. Abundance was coded as a dummy variable (0 for absence, 1 for 217 

presence) and only sampling months for which at least one individual was found on crop 218 

foliage were kept. We assessed the correlation between insect occurrence and insect species; 219 

tree crop, and sampling month (Table 4D). 220 

2.3.3 Differences in ground vegetation between crops 221 

Divergence between plant communities found in inter-rows of clementine and olive groves 222 

was assessed using a correspondence analysis (Chessel et al., 2004) performed on species 223 

presence/absence. To minimize the sensitivity of this analysis to rare plant species, only 224 

species found on at least 5% of the quadrats were kept. 225 

To get a functional view of vegetation communities, we retrieved Ellenberg’s indicator 226 

values (EIVs) established in Italy (Pignatti et al., 2005) for moistness and nutrient availability 227 

of all plant species found in this study (R package ‘TR8’; Bocci, 2015). EIVs give a general 228 

view of plant species requirements based on experts’ knowledge (Ellenberg et al., 2001), are 229 

unitless, and range from 1 to 12 (for moistness) or from 1 to 9 (for nutrients). Plant species 230 

requirements for the abiotic factor increase with the EIV value. A community weighted mean 231 

(“CWM”; Violle et al., 2007, see Appendix 4 for details) was computed for each EIV on each 232 

quadrat, giving the average level of moistness (“CWM_moistness”) and nutrient availability 233 

(“CWM_nutrients”) on each quadrat as reflected by the vegetation. We assessed the 234 

correlation between these two CWMs and the tree crop plus the sampling month (Table 4E). 235 

 236 
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3 Results 237 

Overall, we counted 6,647 nymphs and 1,714 adults (Fig. 3). Four species of 238 

Aphrophoridae were found in the sampled sites: P. spumarius, N. campestris, L. coleoptrata 239 

and A. alni. 240 

3.1 Interaction networks 241 

The connectance and evenness of the interaction networks were higher in October than in 242 

April (nymphs) or June (Figs. 3-4, Table 4A). The connectance did not differ significantly 243 

between olive and clementine groves, whatever the sampling month, and evenness of 244 

interactions was higher in olive groves (Figs. 3-4, Table 4A). The P. spumarius-245 

C. monspeliensis interaction was predominant. This interaction was the strongest in April 246 

(nymphs), and was globally stronger in clementine groves (Figs. 3-4, Table 4A). 247 

3.2 Association with vegetation types 248 

Philaenus spumarius was more abundant than any other species in April (nymphs) and 249 

October. Lepyronia coleoptrata was the least abundant in October (Fig. 3, Table 4B & S5.1). 250 

Insect abundance was generally low in June and did not differ significantly among species, 251 

except that L. coleoptrata was more abundant than N. campestris (Table S5.1). 252 

The association with the vegetation type differed for the four species but only P. spumarius 253 

and N. campestris exhibited marked associations (Fig. 3, Table 4B). For all sampling months 254 

combined, C. monspeliensis bushes hosted the largest abundance of P. spumarius. 255 

Populations of P. spumarius were smaller on D. viscosa covers, even smaller on grove ground 256 

vegetation and the smallest on crop foliage (Fig. 3, Table S5.2). For N. campestris and 257 

L. coleoptrata, the largest populations were recorded on grove ground vegetation and 258 

populations were smaller on D. viscosa covers, C. monspeliensis bushes and on crop foliage 259 

(Fig. 3, Table S5.2). Finally, A. alni population sizes did not differ significantly among 260 
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vegetation types (Fig. 3, Table 4B). All vegetation types combined, whatever the species 261 

considered, Cercopoidea populations were larger in olive groves (Table 4B). 262 

The association of P. spumarius with C. monspeliensis bushes, followed by D. viscosa 263 

covers, grove ground vegetation and, lastly, crop foliage, did not change substantially 264 

depending on sampling month, even though a significant interaction between vegetation type 265 

and sampling month was found (Table 4C, S5.3). The association with the vegetation types 266 

(or lack of it) described above for the three other species did not vary with the sampling 267 

month (Table 4C). 268 

In June and October, all tree crops combined, P. spumarius, N. campestris, L. coleoptrata 269 

and A. alni were respectively found on 7.0 (± 3.4, standard deviation), 3.5 (± 2.4), 3.5 (± 2.4) 270 

and 14.0 (± 4.6) percent of the samples made on crop foliage. The difference in frequency 271 

between species was not significant and neither was the difference between crops (Table 4D). 272 

Contrastingly, the probability to find cercopoids on crop foliage was higher in October (0.11 273 

± 0.03) than in June (0.03 ± 0.01, Table 4D) and no nymph was found on crop foliage in 274 

April. 275 

3.3 Differences in ground vegetation between crops 276 

Plant communities of the ground vegetation were different in olive and clementine groves 277 

(Fig. 5A), even if axes 1 and 2 of the correspondance analysis only captured 15.9% of the 278 

inertia in the data. The moisture and nutrient availability in ground vegetation, as reflected by 279 

plant communities, did not significantly vary with the sampling month but were higher in 280 

clementine groves (Table 4E, Fig. 5B). 281 

 282 
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4 Discussion 283 

4.1 Spittlebug association with vegetation types 284 

As expected from their ability to fly, adults have connection with more vegetation types 285 

than nymphs that hardly move from their native plant. Our sampling showed that populations 286 

of P. spumarius were significantly larger on C. monspeliensis patches located in the vicinity 287 

of olive and clementine groves than on any other of the target vegetation types. Thus, so far, 288 

Corsica appears to be the only place where P. spumarius is preferentially associated with 289 

C. monspeliensis although this plant is common over the whole Mediterraneean basin 290 

(Fernández-Mazuecos and Vargas, 2010). While D. viscosa was never reported as one of its 291 

preferred host plants, it also hosted substantial populations of P. spumarius (both nymphs and 292 

adults), which is not surprising since P. spumarius frequently aggregates on Asteraceae 293 

(Cornara et al., 2018). 294 

Expectations regarding other species were globally confirmed. Neophilaenus campestris 295 

was mostly found on grove ground vegetation, in accordance with its expected association 296 

with Poaceae (Bodino et al., 2020a; Dongiovanni et al., 2019a; Villa et al., 2020). Dittrichia 297 

viscosa also appeared a suitable host for adults of N. campestris, mostly during autumn, which 298 

adds another shift in host plant family to those previously documented (e.g. in Spain where it 299 

has been recorded on Pinus halepensis; Lago et al., 2021; Morente et al., 2018). Aphrophora 300 

alni and L. coleoptrata were not, or only weakly associated with a specific vegetation type. 301 

However, it should be noted that our sampling design focused on insect-vegetation 302 

associations that were the most noticeable to us in preliminary experiments. We especially 303 

focused on two plants of the grove vicinity (C. monspeliensis bushes and D. viscosa covers) 304 

that appeared to be significant reservoirs of P. spumarius. Several vegetation types 305 

representing large areas were left unsampled in our microlandscapes (e.g. oak forests or 306 

riparian forests, Table 3) and insect-vegetation type associations were probably overlooked 307 
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based on our sampling design. We probably missed few significant interactions in oak forests 308 

since Chartois et al. (2021) showed that they host low abundances of Xf vectors. Still, 309 

L. coleoptrata nymphs were found on Quercus suber, Arbutus unedo, Myrtus communis or 310 

Pistacia lentiscus in forest borders (this study, pers. obs.) and may require further attention. 311 

Substantial populations of A. alni were also found in riparian forests during previous field 312 

work (Chauvel et al., 2015). Such associations should be investigated to get a more 313 

comprehensive view of the distribution of Xf vectors in ecosystems, but this was beyond the 314 

scope of this study. 315 

Finally, it is important to note that, although assignation of spittles to species could have 316 

been, in our specific case, accurately derived from plant host class, spittle position and spittle 317 

aspect, this can be misleading to non-trained eye and unreliable when associations with 318 

vegetation type are weaker. Therefore, we would not advise this method for untrained 319 

experimenters and/or studies performed in habitats where several species of spittlebugs are 320 

mixed on the same vegetation types. In such cases, the collection and identification of all 321 

nymphs is advisable. 322 

 323 

4.2 Interaction networks and epidemiology of Xf in Corsica 324 

Plant communities found in olive and clementine crops reflected different conditions in 325 

terms of moisture and nutrient richness. Moreover, the number of mowing operations in olive 326 

groves was about two times lower, meaning that the insects were generally less disturbed. 327 

Contrastingly, we found only minor differences on the interaction networks between 328 

spittlebugs and vegetation types. Spittlebug populations (especially N. campestris) were 329 

slightly larger in olive groves, with a more even repartition of interactions in the networks. 330 

This is in line with results of Sanna et al. (2021) who found decreasing abundance of 331 

P. spumarius with increasing mowing frequency. But above all, these results suggest a weak 332 
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link between plant communities, ecological conditions, and insect populations in the ground 333 

vegetation of Corsican clementine and olive groves, at least within the climatic context 334 

studied. This suggests that if Xf strains to which olive and clementine groves are susceptible 335 

were to be introduced in Corsica, the transmission chances to both crop species would be 336 

likely similar. 337 

For any of the species studied, no transfer from ground vegetation to crop foliage was 338 

observed in June. This contrasts with what was observed in June-July in Italy, where 339 

populations of P. spumarius occuring on ground vegetation decrease, while populations 340 

remain stable or increase on crop foliage (Bodino et al., 2020a, 2019; Cornara et al., 2017). 341 

Given this contrast, it would be interesting to complement our sampling with collection in 342 

mid-summer, to check whether transfer to crop foliage does not occur later in Corsica. More 343 

generally, shifts between the studied vegetation types or with unsampled types may occur in 344 

the middle of the summer when even mediterraneous shrubs such as C. monspeliensis get dry. 345 

This remains an open research avenue because spittlebug preferences in summer are poorly 346 

documented (Albre et al., 2021; Chauvel et al., 2015; but see Cornara et al., 2021). 347 

Spittlebug density on ground vegetation and crop foliage were globally much lower than 348 

reported in Italy. Indeed, Bodino et al. (2019) reported adult densities of 1-2 individuals per 349 

m2 on average on ground vegetation (in June and October) and Bodino et al. (2020a) reported 350 

abundances of ca. 1-2 individuals per olive tree (in May, June and July). Contrastingly, in our 351 

study, maximum abundances were reached in October and were respectively of ca. 3.1×10-3 352 

individuals per m2 (1.2 individuals on 390 m2, Table 3) and of ca.1.9×10-2 individuals per 353 

olive tree (0.14 individuals for 7.5 trees). Although a rigorous comparison of these densities is 354 

difficult due to different sampling methods, data suggest that the density of P. spumarius 355 

adult is 100 to 1000 times higher in Italian olive groves than in Corsican olive or clementine 356 

groves (confirmed by observations in Apulia, Cruaud & Rasplus, pers. com.). Understanding 357 
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what landscape features (see e.g. Santoiemma et al., 2019) and/or farming practices (see e.g. 358 

Sanna et al., 2021) explain the difference between these two contexts is one of the 359 

perspectives opened by our study. 360 

In epidemiological terms, the conclusions drawn from the two previous paragraphs, i.e. 361 

low transfer from ground vegetation to crop foliage and smaller populations of P. spumarius, 362 

suggest that Xf propagation to tree crops could be slower in the Corsican context than in the 363 

Italian one. 364 

We found that the four spittlebugs occurred at similar frequencies on crop foliage, contrary 365 

to Antonatos et al. (2021) or Bodino et al. (2020a), who found a strong predominance of 366 

P. spumarius on the foliage of olive trees (usually 4-6 times more abundant than A. alni or 367 

N. campestris). In our context, based on relative frequencies, P. spumarius, N. campestris, 368 

A. alni and L. coleoptrata could contribute similarly to Xf epidemics in Corsican groves. 369 

However, aside from frequency, species may also have different transmission efficiency. 370 

Transmission rate has not been quantified for L. coleoptrata and A. alni (Cornara et al., 2019), 371 

but Cavalieri et al. (2019) showed that N. campestris is consistently less efficient than 372 

P. spumarius in transmitting Xf to healthy plants. Further studies are thus needed to 373 

understand on what species control measures are most needed. 374 

Finally, spittlebug frequency on crop foliage was higher in October than in June, contrary 375 

to Italy, where maximum densities are observed in June-July (Bodino et al., 2020a). This 376 

result has two contrasting implications for Xf epidemics in Corsica. On the one hand, 377 

spittlebugs occur on crop foliage when they are the most infective, because insect infectivity 378 

in natura globally rises from their emergence in spring to following winter (Beal et al., 2021). 379 

On the other hand, several authors found that the probability of Xf winter curing is higher 380 

when Xf inoculation date occurs late (Cao et al., 2011; Feil et al., 2003). Consequently 381 

corsican clementine and olive trees would be more likely to recover thanks to winter curing 382 
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than if they were infected earlier in the season. However, climatic conditions, specific features 383 

of plant species and Xf subspecies may modulate overwinter recovery and specific studies are 384 

also needed on that topic. 385 

 386 

4.3 Implications for the agroecological management of Xf vectors 387 

Given host plant association for P. spumarius, removing C. monspeliensis bushes that are 388 

close to groves could decrease risk of transfer of Xf to crops and the consequences of such 389 

practice should be properly evaluated. Dittrichia viscosa is occuring naturally and is 390 

conserved by some farmers to control the olive fruit fly Bactrocera oleae (Diptera: 391 

Tephritidae) (Boccaccio and Petacchi, 2009). Indeed, species within the Eupelmus urozonus 392 

complex (Hymenoptera: Eupelmidae) are thought to parasitize larvae of B. oleae in summer 393 

and those of another tephritid, Myopites stylata that forms gall in flowers of D. viscosa, in 394 

winter (Michelakis, 1986; Warlop, 2006). Therefore, D. viscosa is supposed to maintain 395 

substantial population of parasitoid in winter which should improve control of B. oleae in the 396 

next year. The conservation of D. viscosa near and inside olive groves has therefore been 397 

encouraged, especially in organic farming (Warlop, 2006; Warlop et al., 2010). However, 398 

taxonomic revision of the E. urozonus complex by Al Khatib et al. (2014) casts doubts on the 399 

identification of parasitoids in earlier works. Uncertainties remain regarding their host 400 

specificity and the actual frequency of host shifting between B. oleae and M. stylata (Al 401 

Khatib et al., 2014). As our results show that D. viscosa hosts significant populations of 402 

P. spumarius and in the absence of quantitative studies assessing the effect of D. viscosa 403 

conservation on B. oleae occurrence and damage, removing D. viscosa from olive groves is 404 

recommended. 405 

Finally, soil tillage has been advocated in Italy to kill P. spumarius nymphs (Dongiovanni 406 

et al., 2019b) that develop on ground vegetation. Recent work has shown that soil tillage 407 
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indeed limits P. spumarius density on ground vegetation (Sanna et al., 2021), but only in the 408 

short term (differences disappeared within ca. 2 months). Here, we found that the 409 

predominance of the P. spumarius-C. monspeliensis interaction was the strongest in April, 410 

with very few nymphs developing on the ground vegetation. This result suggests that soil 411 

tillage in the spring would likely be inefficient to limit spittlebug populations in Corsican 412 

olive and clementine groves.  413 

Instead, release of Ooctonus vulgatus (Hymenoptera: Mymaridae) in autumn (Mesmin et 414 

al., 2020), of Verrallia aucta (Diptera: Pipunculidae) in late spring/early summer (Molinatto 415 

et al., 2020), and/or of Zelus renardii (Hemiptera: Reduviidae) in autumn (Liccardo et al., 416 

2020) in the close vicinity of groves, could be efficient to reduce P. spumarius pressure. 417 

However, while these three natural enemies naturally occur in mainland France (Garrouste, 418 

2019; Mesmin et al., 2020; MNHN and OFB, 2021), information are still missing regarding 419 

the occurrence of the last two in Corsica. Complementary studies are needed to avoid 420 

releasing allochthonous species and reduce risk of non-target effects (Van Driesche and 421 

Hoddle, 2016). 422 

 423 

5 Conclusion 424 

We showed that P. spumarius displays an unusual association with C. monspeliensis in the 425 

studied agro-ecosystems and their immediate environment. The relative frequency of four 426 

common spittlebugs on olive or clementine foliage suggest that species others than 427 

P. spumarius may have a significant role in Xf spread in Corsican groves, should they be 428 

proven efficient vectors. Finally, as insect association with vegetation types changes inside a 429 

common geographic and climatic context, our results and those obtained in Italy emphasize 430 

that management methods to decrease risk associated with Xf should be designed in relation to 431 

local insect-plant interaction networks. 432 
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Table 1 Characteristics and agricultural practices of the studied groves. Mean values 690 

and standard deviations (in brackets) are provided, except for the proportion of irrigated 691 

groves that is shown in percents. 692 

Table 2 Sampling events on vegetation types targeted in the study. Changes in 693 

agricultural practices through time led to the inclusion/suppression of groves. Changes in the 694 

number of C. monspeliensis bushes and D. viscosa covers are due to their unavailability in 695 

some groves. 696 

Table 3 Area of each sampled vegetation type, distance among sampled vegetation 697 

types and area of available vegetation types in the microlandscapes. Median values are 698 

provided. Variation in sampled areas for adults (larger) and nymphs was due to the difference 699 

in sampling methods (sweeping net versus on sight count). Available areas were assessed 700 

based on aerial photographs, field knowledge and photographs made in the field, but not on a 701 

comprehensive on-field cartography. They are therefore accurate for most vegetation types 702 

but should be seen as an order of magnitude for C. monspeliensis bushes and D. viscosa 703 

covers. “Forests” are mainly oak forests in our meso-mediterranean context (Reymann et al., 704 

2016, p. 9). Riparian forests were defined as 5 m buffers around stream banks (Sawtschuk et 705 

al., 2014). An interactive and comprehensive description of the spatial ditribution of sampling 706 

sites can be found in the Supplementary maps. 707 

Table 4 Description and results of analyses using GLMMs. Fixed effects and sample 708 

sizes (“#obs”, missing values removed) used to analyze insect-vegetation type networks (A), 709 

insect abundances per vegetation type (B), vegetation type shifts per species (C), insect 710 

occurrence frequency on crop foliage (D) and ground vegetation (E). “x : y” stands for 711 

“interaction between x and y”. Vegetation type refers to olive or clementine foliage, grove 712 

ground vegetation, C. monspeliensis bushes and D. viscosa covers located within a 500 m-713 

radius to the crop. For each GLMM and each fixed effect, values and significance of Type-II 714 
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Wald chi square tests are shown. Non significant fixed effects were dropped in model 715 

selection and are depicted with a “-“ in χ2, df and P columns. For all significant interactions, 716 

text in exponent refers to tables of Appendix 5 that detail pairwise comparisons of factor 717 

levels. CWM : community weighted mean (see text). 718 

  719 
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Figure 1 Sampling sites. A and B, studied area (white circles and triangles for clementine 720 

and olive groves, respectively); C, details of one olive grove (see Supplementary maps for a 721 

comprehensive description of the spatial distribution of sampling sites). Elevations and 722 

orthophotographs are from BD ALTI® 25M (© IGN – 2022) and ORTHO HR® (© IGN – 723 

2022), respectively. 724 

Figure 2 Typical positions and aspects of spittles produced by nymphs and lateral 725 

views of nymphs. Philaenus spumarius (A), N. campestris (B), A. alni (C) and L. coleoptrata 726 

(D). Nymphs of comparable sizes were selected for illustration purpose, and nymphal stage 727 

differs between species. 728 

Figure 3 Insect-vegetation type interaction networks for each sampling month and 729 

each crop. Numbers of nymphs (April) or adults (June, October) on which networks are 730 

based are displayed as “Ntot”. Abbreviations of insect names (upper part of each network) are 731 

as follows: Nc: Neophilaenus campestris, Aa: Aphrophora alni, Lc: Lepyronia coleoptrata, 732 

Ps: Philaenus spumarius. Abbreviations of vegetation type (lower part of each network) are as 733 

follows: GV: grove ground vegetation, CF: crop foliage, Dv: Dittrichia viscosa cover, Cm: 734 

Cistus monspeliensis bushes. 735 

Figure 4 Values of connectance, interaction evenness and P. spumarius-736 

C. monspeliensis predominance depending on sampling month and crop. Each point 737 

represents a network established on a given microlandscape for a given sampling session 738 

(circles and triangles for clementine and olive groves, respectively). Estimated marginal 739 

means of the model fitted on the data are displayed as black squares together with their 95% 740 

confidence levels and letters depict the significance of the effect of sampling month on 741 

network metrics (pairwise comparisons of estimated marginal means). For each panel taken 742 

independently, sampling months sharing a letter do not differ significantly.  743 
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Figure 5 Comparaison of ground vegetation between olive and clementine crops. 744 

Correspondance analysis performed on the botanical composition of the quadrats (A) and 745 

functional characterization of the vegetation based on the Ellenberg indicator values for 746 

moistness and nutrients (CWM; community weighted means). In A, each point is a vegetation 747 

quadrat (circles and triangles for clementine and olive groves, respectively); each abbreviation 748 

depicts a plant species (initials of the genus and species names; see Table S6.1 for complete 749 

names) and ellipses show 75% confidence enveloppes of quadrats (computed with the R 750 

package ‘FactoMineR’; Lê et al., 2008). In A, only species found on at least 5% of the 751 

quadrats are shown. In B, data are shown as density traces (“violin plots”; Hintze and Nelson, 752 

1998) highlighting the distribution of the data. The significance of correlation between each 753 

variable and crop is shown with asterisks (***<p=0.001<**<p=0.01<*<p=0.05<NS). 754 
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Tree crop Olives  Clementines 

Year 2019 2020 2019 2020 

Grove age (years) 16.6 (15.1) 21 (16.9) 26.9 (9.5) 27.9 (9.5) 

Irrigated 86% 80% 100% 100% 

Mowing operations 4.3 (1.8) 4 (1.2) 10.2 (3.7) 9.6 (2.7) 

Tillage operations 0.3 (0.5) 0 (0) 0.4 (0.9) 1.4 (3) 

Treatments 
against insects 

Physical 2 (1.4) 0 (0) 2 (1.4) 0 (0) 

Biological 0 (0) 3.8 (2.3) 0 (0) 3.8 (2.3) 

 



 

Tree crop Olives  Clementines 

Year 2019 2020 2019 2020 

Month Apr Jun Oct Jun Oct Apr Jun Oct Jun Oct 

Crop foliage 7 6 6 5 5 8 8 9 9 9 

Ground vegetation 7 6 6 5 5 8 8 9 9 9 

C. monspeliensis bushes 6 6 6 5 5 6 6 7 7 7 

D. viscosa covers 7 6 6 5 5 5 4 6 5 5 

Total 27 24 24 20 20 27 26 31 30 30 

 



 

 

Sampled    Available 

Areas (m2) Distance among habitats (m) Areas (percent of 
microlandscape 
area) Nymphs Adults 

Ground 
vegetation 

C. monspeliensis 
bushes 

D. viscosa 
covers 

Crop foliage 64 76 0 74 53 14.5 % 

Ground vegetation 72 390 - 62 51 14.5 % 

C. monspeliensis bushes 210 232 - - 26 0.3 % 

D. viscosa covers 33 36 - - - 0.1 % 

Forest Not sampled 17.9 % 

Riparian forest Not sampled 1.8 % 

 



 

 Response #obs Fixed effects c2 df P 
A Connectance 72 Sampling month 54 2 < 0.001 

Tree crop - - - 
Sampling month: Tree crop - - - 

Interaction 
evenness 

60 Sampling month 23.2 2 < 0.001 
Tree crop 6.4 1 0.012 
Sampling month: Tree crop - - - 

Ps-Cm 
predominance 

52 Sampling month 26.5 2 < 0.001 
Tree crop 8.5 1 0.004 
Sampling month: Tree crop - - - 

B Insect abundance 1036 Insect species 72.8 3 < 0.001 
Sampling month 87.1 2 < 0.001 
Vegetation type 91.5 3 < 0.001 
Tree crop 12.0 1 < 0.001 
Insect species : Sampling month S5.1 69.4 6 < 0.001 
Insect species : Vegetation type S5.2 222.4 9 < 0.001 
Insect species : Tree crop - - - 

C P. spumarius 
abundance 

259 Sampling month - - - 
Vegetation type 155.2 3 < 0.001 
Tree crop - - - 
Vegetation type : Sampling month S5.3 313.6 8 < 0.001 

N. campestris 
abundance 

259 Sampling month 23.8 2 < 0.001 
Vegetation type 37.5 3 < 0.001 
Tree crop 12.5 1 < 0.001 
Vegetation type : Sampling month - - - 

A. alni abundance 259 Sampling month - - - 
Vegetation type - - - 
Tree crop - - - 
Vegetation type : Sampling month - - - 

L. coleoptrata 
abundance 

259 Sampling month - - - 
Vegetation type 40 3 < 0.001 
Tree crop - - - 
Vegetation type : Sampling month - - - 

D Insect presence / 
absence on crop 
foliage 

228 Insect species - - - 
Sampling month 8.5 1 0.004 
Tree crop - - - 

E CWM_moistness 344 Sampling month - - - 
Tree crop 9.3 1 0.002 

CWM_nutrients 343 Sampling month - - - 
Tree crop 33.4 1 < 0.001 

 




