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Abstract
The estimation of irrigation water requirements (IWR) amount and timing is crucial for designing water management strate-
gies at the regional scale. Irrigation requirements can be estimated with different types of models: very complex and detailed 
crop models, agent-based models, or simplified modeling approaches. Because simplified approaches are often preferred, 
in this study, we evaluate the consequences of using simplified approaches for IWR assessment at a catchment scale and the 
consequences of various modeling choices, providing information on the uncertainties. To this end, different simple mod-
eling approaches based on the CropWat model are compared with an agent-based approach (MAELIA), which serves as a 
benchmark. To assess simulations in detail, partial variance is calculated for several indicators characterizing daily simulated 
irrigation. Our sensitivity analysis, applied over a sub-catchment of the Aveyron River (southwestern France), shows a high 
variability in simulations produced by CropWat between the modeling assumptions tested, principally explained by the rules 
for irrigation triggering and the quantification of daily irrigation. The analysis also shows that several simplified approaches 
are able to reproduce the irrigation simulated by the high-accuracy MAELIA model, but not necessarily corresponding to an 
optimal irrigation scheme. Hence, this study confirms the possibility of assessing daily irrigation with simplified approaches, 
but warns about high modeling uncertainties, reflecting uncertainty in effective irrigation practices. This uncertainty can be 
taken into account by water managers and modelers through the combination of a set of irrigation models.

Introduction

Water withdrawals for irrigation water requirements (IWR) 
have a huge impact on low flows in water-stressed agri-
cultural catchments (Martin et  al. 2016). Their impact 
may increase with climate change as a consequence of the 
decrease in water resources in summer and the increase in 
crop water requirements (Wanders and Wada 2015), as is 
expected in France (Collet et al. 2015). Hence, IWR assess-
ment is essential for managing water resources in water-
stressed agricultural catchments. It might become essential 
to take into account irrigation withdrawals processes and 
their evolution while performing hydrological modeling 

and considering future climate change. Moreover, IWR 
assessment may help to evaluate the relevance of adaptation 
strategies to climate change scenarios in association with 
hydrological projections. The IPCC (2014) recommended 
planning water management at the catchment scale. In 
France, a new planning and dialog tool was created, coined 
“PTGE” (Projets de Territoire pour la Gestion de l'Eau, i.e., 
Territory Project for Water Management; MTES and MAA 
2019), to build water management strategies at the local 
scale. To support the design of such planning or strategies, 
many hydrological simulations have been coupled with esti-
mations of irrigation withdrawals based on IWR assessment 
(Collet et al. 2013; Dehghanipour et al. 2020; Gorguner and 
Kavvas 2020; Kolokytha and Malamataris 2020; Wanders 
and Wada 2015). Likewise, several studies estimated crop 
water stress induced by limited water resources for irrigation 
(Collet et al. 2013; Elliott et al. 2014).

IWR in a catchment can be estimated from observation 
data. However, observation data are often lacking, leading to 
a preferential use of automatic irrigation algorithms for irri-
gation assessment (Uniyal and Dietrich 2019; Wriedt et al. 
2009), i.e., algorithms based on soil–crop water balance 
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models. Specifically, irrigation algorithms simulate auto-
matic triggering and nominal irrigation depths to quantify 
irrigations. This enables, for example, long-term IWR pro-
jections in the context of climate change. Most often, irri-
gation is triggered according to decision rules based on soil 
moisture deficit or crop water stress thresholds. Irrigation 
amounts can be fixed (Bouras et al. 2019; Rouhi Rad et al. 
2020), or can be calculated to fill the soil reservoir totally 
(Collet et al. 2013; Hori et al. 2008) or partially (Funes et al. 
2021; Smith et al. 2012). To estimate soil moisture or crop 
water stress, a soil–crop water balance model is often used. 
The development and the use of sophisticated crop models 
have been largely investigated (Di Paola et al. 2016). The 
spatio-temporal distribution of farmers’ practices strongly 
determines irrigation dynamics and amounts (Bergez et al. 
2012; Zaccaria et al. 2013). McInerney et al. (2018) explored 
the impacts of different spatio-temporal distribution methods 
of observed irrigation among hydrological response units 
(HRUs) of a catchment and showed that the choice of dis-
tribution method might have an important impact on flows. 
An approach was developed to estimate IWRs at the regional 
scale based on a high-accuracy reproduction of farmers’ 
practices, taking into account spatio-temporal variability. 
This approach is agent-based and is called the “MAELIA” 
(Modelling of socio-Agro-Ecological system for Landscape 
Integrated Assessment) platform (Allain et al. 2018; Martin 
et al. 2016; Therond et al. 2014). In this last example, farm-
ers’ practices are represented on an individual basis, using 
decision algorithms and taking into account field size and 
spatial allocation, irrigation equipment, and working time 
constraints. Nevertheless, the complexity of the spatio-tem-
poral distribution of farmers’ practices is often overlooked in 
efforts aiming to develop operational methods of irrigation 
quantification and to deal with the lack of data. However, 
the spatio-temporal variability of irrigation practices might 
be high and might have strong impacts on hydrology, and 
simplifying assumptions might lead to biases that should 
be evaluated.

Few previous studies performed a sensitivity analysis 
of IWR assessment methods. Multsch et al. (2015) quanti-
fied wheat IWR with different potential evapotranspiration 
formulas and crop coefficients sets and analyzed the vari-
ability obtained. Wada et al. (2013) and Wan et al. (2018) 
developed a hydrological multi-model approach to estimate 
global IWR. However, to our knowledge, the sensitivity of 
IWR assessment to different automatic irrigation rules at 
a regional scale has not been quantified. Moreover, these 
comparisons between IWR simulations are usually based 
on annual or monthly scales, while regulatory constraints 
and objectives are usually defined on the basis of shorter 
time steps (e.g., day(s)) and on small catchment scale as 

is the case, for example, in France (Mazzega et al. 2014; 
MEDDTL 2011).

The present study aims to fill these gaps in IWR assess-
ment by comparing the impact of different automatic irri-
gation rules with other sources of potential variability on 
which many researchers focus their efforts, such as crop 
evapotranspiration estimation, or root growth estimation. In 
an operational perspective and for integrated hydrological 
modeling, it is important to identify the strongest source 
of uncertainty in IWR assessment. Two types of mod-
eling approaches involving different levels of simplifica-
tion of farmers’ practices are compared with the MAELIA 
benchmark in a French southwestern water basin with a 
significant water deficit. MAELIA has already been cali-
brated and validated on this study area in a previous work 
(Martin et al. 2016; Murgue et al. 2016). Different versions 
of these approaches are explored and compared with the 
MAELIA outputs. To this end, indicators characterizing 
irrigation hydrographs at the daily time step are used. The 
impact of modeling hypotheses was quantified with variance 
decomposition.

The following research questions are investigated in the 
present study:

1. What is the sensitivity of daily IWR assessment to 
simplifying modeling assumptions at different spatial 
scales? How should this sensitivity be taken into account 
by hydrological modelers and water managers?

2. Is it possible to adequately reproduce simulations of 
a high-accuracy agent-based model with simplified 
approaches?

Study area and data

Study area

The study focuses on an 840-km2 downstream portion of 
the Aveyron River basin, a tributary of the Garonne River, 
located in southwestern France (Fig. 1). This area is mostly 
agricultural, with 58,500 ha of cropland, 22,000 ha of for-
ests and semi-natural areas, and only 3500 ha of artificial-
ized soils. Irrigated crops comprise 8000 ha. Maize is by far 
the main irrigated crop, followed by wheat and orchards. 
Murgue et al. (2016) estimated that mono-cropping of grain 
maize in alluvial soils reached an annual average irrigation 
amount of 255–305 mm during the 2003–2007 period in 
the study area.

This area is highly water-stressed and agricultural with-
drawal restrictions are common in summer. These restric-
tions are aimed at avoiding ecological degradation of the 
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aquatic environment and ensuring water is available for 
domestic and industrial use.

The climate is temperate with an annual mean air tempera-
ture of 13 °C and mean annual precipitation of approximately 
750 mm. However, summers are dry and hot, when maize 
water needs are high, leading to a high irrigation dependency. 
Monthly precipitations are less than 50 mm in July and August, 
while monthly evapotranspiration is more than 115 mm during 
the same period.

Data

The following data were available:

• Crop rotation sequences and irrigated surfaces from the 
French Land Parcel Identification System (LPIS) database 
created in 2006, based on European Union Common Agri-
cultural Policy declarations of cultivated plots;

• Soil characteristics from the Soil Geographical Data Base 
of France (SGDBF) (INRA 2018);

• Daily data of past climate conditions (precipitation and air 
temperature) from the SAFRAN reanalysis (Vidal et al. 
2010).

Data were previously completed and adjusted through a 
survey among local farmers and stakeholders (see Murgue 
et al. 2015).

The major irrigated crops in the study area are cereals (other 
than maize), maize (six cultivars from very early to very late), 
maize seeds, maize silage, rapeseed, peas, soybean, sunflower, 
orchards, and grassland.

Modeling protocol

Irrigation modeling at regional scale

In the present study, we compare two approaches of vary-
ing complexity:

• The MAELIA platform, combining the soil–crop water 
balance model AqYield (Constantin et al. 2015) at plot 
scale and a high-accuracy agent-based automatic irri-
gation modeling. This modeling approach is called 
“MAELIA” (M);

• The soil–crop water balance model CropWat (Smith 
1992) combined with two simpler regional automatic 
irrigation approaches called “Conceptual” (C) and 
“Semi-plot” (S).

These different approaches are described below and 
summarized in Fig. 2. Details about the soil–crop water 
balance models, CropWat and AqYield, are given in 
Appendix “Soil–crop water balance models”. Their param-
eter calibration procedure is detailed in Appendix “Param-
eter calibration”. The beginning of the simulation period 
is January 2008 and the end is December 2014. The year 
2007 is used for initialization.

The MAELIA approach benchmark

MAELIA (Therond et al. 2014) is a high-accuracy platform 
modeling explicitly farmers’ practices at a daily time step in 
each plot (n = 15,224) individually for each farm (n = 1143) 
described in the LPIS database of the study area. It provides 

Fig. 1  Study area location (a) 
and land use (b)
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a plot-scale modeling of irrigation practices. Technical 
operation durations are taken into account to constrain the 
number of farmers’ actions within a single day. Irrigation 
management strategies described through IF–THEN deci-
sion rules are defined for different combinations of crops, 
soils, irrigation equipment, farm types, etc. Each strategy 
defines a possible period for irrigation, the dose for each irri-
gation (mm), the conditions triggering irrigation (e.g., soil 
moisture and past and future rainfall thresholds, crop water 
stress), and the minimal temporal interval between irriga-
tion applications in the same field (hereafter called “water 
turn”). Details regarding these decision rules are provided by 
Murgue et al. (2014). The irrigation strategies in our study 
area stem from a farm survey performed and described by 
Murgue et al. (2015).

The soil–crop model AqYield runs on each plot (Fig. 2), 
characterized by crop, technical management, soil proper-
ties, and climate. For the study area, 51 climatic zones (CZs) 
and 14 soils were differentiated. Crossing soils and CZs gen-
erate 232 pedo-climatic areas.

Unfortunately, irrigation data are very coarse in space, 
time span and time resolution, and their exactitude is highly 
questionable in France and particularly in the South-west 

region, where this information is highly sensitive. The only 
existing information is irrigation declared by farmers to the 
French Water Authority at an annual time step. Moreover, 
actual irrigation withdrawals cannot be directly compared 
with IWR, because withdrawals can be limited by water 
availability and restrictions. A comparison between simu-
lated irrigation withdrawals with MAELIA, taking into 
account water availability and restriction rules, and annual 
individual farmer reports to French water authorities showed 
a very good fit (Martin et al. 2016). The temporal distri-
bution of irrigation over weeks was also assessed through 
local expert interviews (Murgue et al. 2016). Therefore, we 
consider in our work that the MAELIA irrigation demand 
estimation, without taking into account water availability 
and restriction rules, is probably the best assessment of daily 
IWR that one can afford for this region given the available 
data and it will represent our reference in this study.

Conceptual approach

In many studies (Collet et al. 2015; Smith et al. 2012), 
regional irrigation modeling consists of bringing the amount 
of water (Irr, mm) to fill the soil reservoir, to maintain the 

Fig. 2  The three modeling 
approaches used to assess 
irrigation water requirements 
(IWRs). The MAELIA (M) irri-
gation approach distinguishes 
232 pedo-climatic zones and 
each individual plot and farm. 
The AqYield soil–crop water 
balance model is coupled to an 
agent-based model in MAELIA 
to assess IWR. A Conceptual 
approach (C) is used to simulate 
daily irrigation amounts on the 
basis of data aggregated on 200 
pedo-climatic zones crossed 
with existing crops based on 
CropWat outputs. A Semi-plot 
approach (S) in which the simu-
lation units of the C approach 
are surface-equally divided 
into irrigation water turn 
groups irrigated successively. 
At simulation unit scale, the 
S approach leads to irrigation 
events on singular days followed 
by several days without irriga-
tion represented by peaks in 
the figure. AqYield outputs are 
used to calibrate the CropWat 
parameters
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soil water deficit (Dr, mm) to a prefixed threshold (θ, mm) 
for each simulation unit, as expressed in Eq. (1). In this 
configuration, irrigation is triggered when Dr exceeds θ. A 
similar approach is to bring the amount of water needed to 
compensate for the lack of soil water to evapotranspirate at 
the crop maximal evapotranspiration (CET, mm  day−1) level, 
maintaining water at the readily available water (RAW, mm) 
level equivalent to a θ value (Funes et al. 2021):

In this simplified approach, individual plots are not 
explicitly represented. Simulation units to calculate daily 
irrigation are defined for homogeneous crop, soil, and cli-
mate types (Fig. 2). In this study, 200 pedo-climatic zones 
were defined, aggregating MAELIA spatial units character-
ized by the same climate and water content characteristics.

Semi‑plot approach

We developed an intermediate approach in this study, 
called the “Semi-plot” approach. It aims at reproducing 
a more realistic modeling of irrigation over plots, but in 
a more simplified way than the reference (MAELIA). In 
this approach, pedo-climatic zones are the same as in the 
Conceptual approach but the crop simulation units of the 
Conceptual approach are divided into irrigation water turn 
groups of equal area and are irrigated successively (Fig. 2). 
For example, for a 5-day water turn, a simulation unit would 
be divided in 5 groups, and the first group could be irrigated 
on days 1, 6, 11, etc., the second group could be irrigated 
on days 2, 7, 12, etc., and so on. The number of groups for 
each crop type was defined based on the number of water 

(1)
{

if Dr(d) < 𝜃(d), Irr(d) = 0

else, Irr(d) = Dr(d) − 𝜃(d)
.

turns simulated by the reference experiment. This approach 
simulates more explicitly the dynamics of irrigation at the 
plot scale as each simulation unit can receive a high amount 
of water on a particular day followed by several days without 
irrigation (Fig. 2).

Indicators characterizing irrigation

While most studies only consider monthly or even annual 
IWR amounts, this study explores numerous indicators to 
characterize the temporal variability of withdrawals under 
different simulations. Indeed, water crises can occur in short 
time intervals, and a monthly estimation of IWR might 
not be sufficient to identify them (Mazzega et al. 2014). 
Indicators were selected to characterize seven features of 
irrigation:

• irrigation volumes (I, I_m),
• irrigation frequency (N, N_m),
• period of inter-annual mean highest irrigation (Max_

regime, Max_regime_date),
• mean annual highest irrigation (Max_10, Max),
• irrigation daily variability (Q_dispersion, Var2),
• accuracy compared with reference irrigation simulation 

(KGE, KGE_10),
• crop water stress (ET_S, ET_S_m).

Details on these indicators are provided in Appendix 
“Indicator calculation”. In particular, the Var2 indicator 
was developed to compare narrow temporal variabilities of 
irrigation.

Table 1  Mean, minimal, and maximal values of annual indicators 
(“Indicators characterizing irrigation”) for Conceptual, Semi-plot 
and reference experiments (as described in “Irrigation modeling at 

regional scale” and “Sensitivity analysis experiments”) for lumped 
outputs at the scale of the study zone

Indicator Conceptual Semi-plot Reference

Mean Min Max Mean Min Max

I  (m3) 1.40E+07 6.08E+06 2.48E+07 1.54E+07 4.83E+06 2.99E+07 1.41E+07
N (days) 120 79 188 148 83 269 154
Max_regime  (m3) 1.05E+05 7.20E+04 1.47E+05 1.10E+05 5.40E+04 1.72E+05 1.16E+05
Max_regime_date (DOY) 197 (16 July) 139 (19 May) 201 (20 July) 194 (13 July) 140 (20 May) 230 (18 August) 201 (20 July)
Max  (m3) 5.10E+05 2.81E+05 1.41E+06 4.21E+05 1.91E+05 8.08E+05 3.29E+05
Max_10  (m3) 3.10E+05 1.94E+05 4.31E+05 3.22E+05 1.46E+05 5.07E+05 1.47E+05
Q_dispersion (–) 3.7 2.4 6.4 4.3 2.2 13.7 5.1
Var2 (–) 0.0021 0.0019 0.0027 0.0010 0.0006 0.0016 0.0009
ET_S (–) 0.97 0.87 1.00 0.97 0.83 1.00 0.93
KGE (–) 0.57 − 0.1 0.81 0.56 − 0.26 0.91 –
KGE_10 (–) 0.70 0.17 0.95 0.62 − 0.21 0.96 –
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Sensitivity analysis experiments

Balanced simulation plans were developed for both the 
Conceptual and Semi-plot approaches. They aim at study-
ing the impact of modeling simplifications and at identifying 
sensitive parameters for each soil–crop water balance and 
regional irrigation modeling chain. The chosen variation 
factors are:

• Soil water deficit threshold θ. Many studies fix θ at a 
hypothetical RAW level (Neilsen et al. 2018; Rinaudo 
et  al. 2013), corresponding to the value optimizing 
the amount of water brought to crops. Some studies 
fix various values of θ, e.g., at a value of 0 mm (Col-
let 2013), at a threshold of 50% of total available water 
(TAW, mm; Bouras et al. 2019), or at a threshold of 
0.8 × RAW + 0.2 × TAW (Smith et al. 2012). Moreover, 
deficit irrigation amounts (θ > RAW) are also possible, 
particularly for crops resistant to water stress. Because 

irrigation is calculated at a daily time step, contrary to 
Collet et al. (2013), who considered a 10-day time step, 
we consider that θ cannot be equal to 0 in this modeling 
configuration. We also include a value higher than RAW 
to explore a deficit irrigation hypothesis. Accordingly, 
we explore a range of values for θ from 0.25 × RAW to 
RAW + 0.25 × (TAW − RAW);

• Irrigation amounts (IA). For Semi-plot experiments, dif-
ferent quantification methods of irrigation in simulation 
units are tested: one similar to the Conceptual approach 
simulation units (Dr − θ), one with a fixed amount for 
each crop (FixMeanC), as done by Bouras et al. (2019) 
or Rouhi Rad et al. (2020), and one to fill the soil water 
reservoir (Dr), as done by Hori et al. (2008);

• Seasonal variation of depletion factor p_var. Simulations 
were made with variable p or constant p to evaluate the 
importance of taking into account this seasonal variabil-
ity (see Appendix “The CropWat model”);

Fig. 3  Daily regimes of irrigation obtained at the study zone scale 
from the reference experiments (purple) and from the ensemble, the 
mean and the 80% and 90% envelopes of all C and S experiments 

(blue), as described in “Irrigation modeling at regional scale” and 
“Sensitivity analysis experiments” (color figure online)

Fig. 4  Partial variance 
explained by the factors of 
annual indicators. On the left, 
the Conceptual (C) experiments, 
on the right, the Semi-plot (S) 
experiments. A higher partial 
variance indicates that the vari-
ability of the indicator is more 
affected by this factor
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• Root growth z_var. Simulations were made with increas-
ing rooting depth between initial and maximal rooting 
depth or constant rooting depth equal to maximal rooting 
depth (see Appendix “The CropWat model”);

• Irrigation period (IP). MAELIA defines precise irriga-
tion periods for each crop. However, in the context of 

inter-annual climate variability increasing with climate 
change, it seems important to let the model calculate 
irrigation potential needs outside the usual irrigation 
periods. For this, we simulated experiments following 
irrigation periods for each crop defined in the reference 

Table 2  Characteristics of the “best experiments” compared to the reference (MAELIA) for Conceptual and Semi-plot approaches

For three thresholds of performant KGE (best potential performance for KGE = 1), modalities of corresponding experiments are indicated, aimed 
at identifying modalities that clearly result in an improvement of KGE

Conceptual (96 experiments) Semi-plot (256 experiments)

Number of experiments: 7

Factor Modality Number

KGE > 0.9 Number of experiments: 0 θ varCrop 7
IA varCrop 7
IP 0 3

1 4
CET 1 7

Number of experiments: 1 Number of experiments: 58

Factor Modality Number Factor Modality Number

KGE > 0.8 θ varCrop 1 θ 0.25 × RAW 8
IP 0 1 0.5 × RAW 16
CET 1 1 0.75 × RAW 10

RAW 8
varCrop 16

IA Dr-θ 21
FixMeanC 21
varCrop 16

IP 0 28
1 30

CET 0 19
1 39

Number of experiments: 36 Number of experiments: 100

Factor Modality Number Factor Modality Number

KGE > 0.7 θ 0.5 × RAW 8 θ 0.25 × RAW 8
0.75 × RAW 8 0.5 × RAW 17
RAW 8 0.75 × RAW 32
varCrop 16 RAW 20

IP 0 18 RAW + 0.25 (TAW-RAW) 7

1 18 varCrop 16
CET 0 12 IA Dr-θ 41

1 24 Dr 3
FixMeanC 40
varCrop 16

IP 0 48
1 52

CET 0 45
1 55
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and compared them with experiments able to trigger irri-
gation at any time during the crop cycle;

• Crop maximal evapotranspiration calculation (CET) (see 
Appendix “The CropWat model”). The impact of the 
evapotranspiration calculation method has already been 
studied and quantified (Multsch et al. 2015). To identify 
the main sensitivity sources of regional irrigation uncer-
tainty including evapotranspiration, we integrate experi-
ments into our modeling scheme with a classic evaluation 

of CET and with experiments considering CET equal to 
PET-PM.

The modalities for each factor are summarized in Appen-
dix “Varying factors in C and S experiments”.

Some complementary experiments were conducted to 
evaluate the added value of defining different irrigation rules 
(θ and IA) between crops. For each crop, for each cross-
ing of p_var, z_var, CET and IP hypotheses conditions, θ 
(for C experiments), and θ and IA (for S experiments), the 

Fig. 5  Partial variance of monthly indicators related to different factors. For each month, partial variances are cumulated, and show the monthly 
variation in the contribution of each factor

Table 3  Mean, minimal, and maximal experiment values of mean CZ value for each indicator (“Indicators characterizing irrigation”) for Con-
ceptual, Semi-plot and reference experiments (as described in “Irrigation modeling at regional scale” and “Sensitivity analysis experiments”)

Indicator Conceptual Semi-plot Reference

Mean Min Max Mean Min Max

I  (m3) 2.98E+05 1.29E+05 5,28E+05 3.27E+05 1.03E+05 6.37E+05 3.01E+05
N (days) 75 47 127 85 33 165 76
Max_regime  (m3) 4.53E+03 3.14E+03 6.28E+03 4.90E+03 2.39E+03 7.40E+03 4.86E+03
Max_regime_date (DOY) 198 (17 July) 143 (23 May) 218

(6 August)
196 (15 July) 142 (22 May) 222 (10 August) 197 (16 July)

Max_10  (m3) 6.71E+03 4.31E+03 9.43E+03 7.29E+03 3.27E+03 1.29E+04 6.20E+03
Max  (m3) 1.12E+04 5.83E+03 3.01E+04 9.89E+03 4.00E+03 2.38E+04 8.80E+03
Q_dispersion (–) 1.47 1.09 1.87 2.21 1.26 3.68 1.45
Var2 (–) 0.0024 0.0021 0.0031 0.0018 0.0007 0.0031 0.0027
KGE_10 0.59 − 0.03 0.86 0.47 − 0.36 0.87 –
KGE 0.38 − 0.39 0.64 0.28 −0.48 0.68 –
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best-performing experiments in reproducing the reference 
experiment outputs at crop level were selected using the 
KGE-10 criterion (see “Indicators characterizing irrigation” 
and Appendix “Indicator calculation”). The resulting modal-
ity of θ and IA is called “varCrop.”

The variance decomposition procedure we used to esti-
mate the sensitivity of indicators to variation factors is 
detailed in Appendix “Variance decomposition”.

Results

In this section, we assess the irrigation obtained from the 
reference, Conceptual and Semi-plot experiments at the 
basin scale as well as the factors explaining the variability. 
Then, we analyze the best experiments in terms of KGE and 
assess the experiments at the CZ scale.

Sensitivity of simulation to variation factors 
at the scale of the total study zone

General analysis of indicators

According to the results from the reference experiment, irri-
gation can start in April, is maximal in July (mean value 
of 6 million  m3), and ends in October. The results of the 
reference, Conceptual (C) and Semi-plot (S) simulations are 
summarized in Table 1, presenting values of annual indica-
tors aggregated for the total study zone. With higher mean 
values of Q_dispersion, the S experiments show mean higher 
dephasing between daily values of high and low irrigation. 
However, with higher values of Var2, daily temporal varia-
tions of irrigation are globally higher in the C experiments. 
For almost all factors, the C results are within the envelope 
of the S results, which might be caused by the larger num-
ber of factors (IA) explored in the S experiments. Refer-
ence values of indicators are contained within the range of 
the C and S results except for the higher values reached by 
Max_10 and Var_2, which are not included within the range 
explored in the C experiments, showing that C experiments 
have a narrow higher daily variability than reference and 
S experiments (Appendix “Annual irrigation hydrographs”) 
The inclusion of the reference experiment in the CropWat-
based experiments is confirmed in Fig. 3, showing that the 
reference regime of irrigation is contained within the simula-
tions produced by our experiments.

Distribution of the total variance in indicators 
between factors

The variance of annual indicators explained by different 
factors is plotted in Fig. 4. For the Semi-plot experiments, 
the six modalities of θ (0.25 × RAW, …, varCrop) and the 
four modalities of IA (Dr, …, varCrop) were merged into 
one factor θ + IA of 16 modalities to avoid an unbalanced 
experimental plan, because the varCrop modality for θ was 
run only with the varCrop modality of IA.

Fig. 6  Comparison of indicator values at the CZ scale between the 
reference (MAELIA) and the best experiment. This experiment corre-
sponds to a Semi-plot approach, with irrigation rules defined specifi-
cally for each crop, no irrigation period delimitation, and root growth 
as well as seasonal variation of p and Kc taken into account (modali-
ties varCrop, 0, 1, 1, 1 for θ + IA, IP, z_var, p_var, CET, respectively)
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First, it is clear that the automatic irrigation parameters 
(θ for C experiments and θ + IA for S experiments) override 
the effects of the other factors for most indicators. CET is 
also very impactful for both the Conceptual and Semi-plot 
experiments, particularly on indicators I, N, Max_regime_
date, Var2, and ET_S, while IP is also very impactful on 
indicators N and Q_dispersion. Factors p_var and z_var are 
systematically not impactful, for each indicator of the Con-
ceptual and Semi-plot experiments. Second, we note that the 
interaction effects might be high. The interaction between 
automatic irrigation parameters (θ and θ + IA) and CET has 
a strong impact on the Max_regime_date and on KGE and 
KGE_10. Impacting factors on indicators are often the same 
between the C and S experiments, except for daily irrigation 
variability indicators, i.e., Var2, Q_dispersion. This differ-
ence between the C and S experiments is explained by the 
integration in the S experiments of several modalities of IA, 
leading to large variations between experiments for these 
indicators (Appendix “Impact of IA modalities on Var2 and 
Q_dispersion”).

The evaluation of the impact of each modality on each 
indicator is detailed in Appendix “Impact of factor modali-
ties on indicators”. It is a necessary additional step after var-
iance decomposition to select accurate modalities for mod-
eling purposes and to identify the strengths and weaknesses 
of the chosen modalities. Notably, we naturally observed 
that higher θ leads to a decrease in annual irrigation and in 
irrigation maxima, and to a delay in irrigation. For the S 
experiments, the modality Dr of IA leads to higher amounts 
of irrigation.

Characterization of best performing configurations

Table 2 summarizes modalities of experiments that reach 
high KGE values. First, we observe that the Semi-plot exper-
iments clearly outperform Conceptual experiments in KGE 
performance in reproducing the reference experiment daily 
irrigation. Moreover, varCrop experiments are overrepre-
sented, particularly among experiments with an excellent 
KGE (> 0.9). This observation is not surprising, because the 
selection of the modalities for automatic irrigation rules (θ 
and IA for S experiments) was based on their KGE_10 per-
formance. However, some experiments with homogeneous 
automatic irrigation rules among crops also reach good KGE 
values. KGE does not reveal a strong difference between IP 
modalities among the performant experiments. However, 
among the performant experiments, those with modality 
1 of CET are clearly more frequent than experiments with 
modality 0 of CET. This shows a clear and constant benefit 
of taking into account crop coefficients for IWR assessment, 
albeit the resulting variability is not as high as with other 
tested factors.

A look at the monthly time step

In Fig. 5, partial variances of factors in monthly indicators 
are presented. The reactions of Semi-plot and Conceptual 
experiments with respect to the variation factors are rela-
tively similar. The area under the curve for monthly variance 
of automatic irrigation parameters (θ and θ + IA) shows that 
these parameters are the most impactful parameters on each 
monthly indicator. Their impact reaches a peak in July for 
each indicator. Consequently, the June–July period appears 
to be the period with the highest variance for I_m between 
experiments. However, some factors have a strong impact 
in other months. CET and IP have a strong impact in spring 
months until the beginning of summer and in autumn. 
Under the influence of these last two factors cumulated 
with automatic irrigation factors, the periods of the high-
est variance for N_m are spring and autumn, and autumn 
for ET_S_m. IP has a strong impact on N_ m in winter and 
autumn months. Indeed, the irrigation periods defined for 
each crop often exclude those months, leading to large dif-
ferences between experiments of modality 1 or 0 of IP factor. 
However, the IP factor is not as impactful on I_m during 
these periods. That can be explained by small amounts of 
irrigation applied in these periods, because cultivated sur-
faces are low, evapotranspiration is low, and rainfall is high. 
The variance of N_m is low at the end of autumn and winter 
because conditions for triggering irrigation are not reached 
and the modality 0 of IP is not sufficient to trigger irrigation 
in those extreme periods. The impact of CET is particularly 

Fig. 7  Example of Kc (–) and p (–) curves for a set of parameters: 
crop coefficients  (Kcini,  Kcmid and  Kcend), depletion factor parameters 
(pini, pmid and pend), and length of growth stages (Lini, Ldev, Lmid and 
Lend)
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strong on ET_S in autumn. Indeed, in this season, the crop 
coefficient is supposed to be low, but with the modality 0 of 
CET, the crop coefficient is constantly equal to 1, which is 
a high value.

Impact of spatial resolution on experiment outputs

For each experiment, each indicator was calculated at the 
CZ scale. Then the mean CZ value was computed for each 
experiment (Table 3). Experiments at the CZ scale reach 
similar values as the reference for indicators, similarly to 
what was observed at the lumped scale. Indeed, reference 
values are still contained within intervals explored by our 
CropWat experiments. However, we observe that KGE val-
ues at the CZ scale are overall lower than KGE for lumped 
outputs (Table 1), which can be explained by a higher irri-
gation sporadicity at the CZ scale. The best mean KGE at 
the CZ scale reaches 0.68, while a value of 0.91 reached 
at the lumped scale. There was a greater deterioration in 
the performance of KGE for Semi-plot experiments than for 
Conceptual experiments.

To complete this analysis, we drew maps show-
ing values of indicators for different CZs for the refer-
ence experiment and the experiment reaching the best 
KGE_10 (Fig. 6), called the “best experiment” below. 
This experiment corresponds to a Semi-plot approach, 
with irrigation rules defined specifically for each crop, 
no irrigation period delimitation, and root growth as 
well as seasonal variation of p and Kc taken into account 
(modalities varCrop, 0, 1, 1, 1 for θ + IA, IP, z_var, p_var, 
CET, respectively). The spatial variability of indicators 
between CZs is linked to climatic (temperature and pre-
cipitations), pedologic and agronomic spatial variabili-
ties. The spatial variability of the reference experiment 
is almost perfectly reproduced by the best experiment for 
I and Max_regime. Some CZs show different values for 
Max_10. More important differences are observed in the 
other indicators. For some indicators, we observe a bias 
in comparison with the reference, but this bias is spatially 
homogeneous. For example, Max_regime_date seems to 
occur globally a few days later for the best experiment 
than for the reference. The best experiment has more dif-
ficulties to fit reference values for N, Q_dispersion, and 
Var_2. For these three indicators, the best experiment 
seems to produce more spatially homogeneous results 
than the reference experiment, showing that the simpli-
fied approaches tested here might face more difficulties 
in reproducing spatial heterogeneity in daily irrigation 
variability than the spatial heterogeneity in the other fac-
tors. Despite these differences, all spatialized indicator 
values of the best experiment remain globally consistent 
with those of the reference experiment.

Discussion

Impact of tested variation factors on irrigation 
simulations

Our results showed that irrigation modeling choices have 
an impact on irrigation modeling outputs, not only on 
annual irrigation volumes, but also on the seasonal dis-
tribution of irrigation and high variations in irrigation in 
short time periods. For example, the date of the maxi-
mal irrigation period (Max_regime_date) varies greatly 
between 13 May and 10 August among our experiments.

Impact of modeling approaches

Tables 1 and 3 show that the ranges explored with both the 
Conceptual and Semi-plot approaches are quite similar and 
consistent with the reference experiment for most of indi-
cators at lumped and CZ scales. However, the Semi-plot 
experiments are able to approach the results of the reference 
for the Var2 indicator, which represents daily variability, 
at the lumped scale, unlike Conceptual experiments. This 
difference leads to lower values of KGE for the Conceptual 
approach, because the daily variability of irrigation is differ-
ent from the daily variability simulated by MAELIA. Indeed, 
the Conceptual approach can trigger irrigation in all simula-
tion units, which can lead to high irrigation peaks and dips, 
which are not consistent with irrigation simulated by the 
reference and Semi-plot approaches at the lumped scale. As 
a consequence, taking into account water turns, which repro-
duce equipment availability constraints, might be decisive. 
Nevertheless, several simulations of both the Conceptual and 
Semi-plot approaches manage to approximate the reference 
experiment, reaching high KGE_10 and KGE values at the 
lumped scale: 37.5% of Conceptual experiments and 39% of 
Semi-plot experiments reach a KGE higher than 0.7.

The ability to obtain good performances for both the 
Semi-plot and Conceptual experiments in reproducing ref-
erence irrigation leads to the conclusion that calibration, 
particularly of irrigation rules, can be more impactful than 
the choice of the modeling approach among the approaches 
tested. However, although adequately reproducing irrigation 
at the lumped scale is possible, reproducing the daily irri-
gation simulated by the reference at the CZ scale is clearly 
more difficult (see “Impact of spatial resolution on experi-
ment outputs”). This is easily explained by the sporadic 
behavior of irrigation at the local scale.

However, we applied an approach using a fixed Kc curve 
for CropWat experiments compared to an approach estimat-
ing crop growth based on a degree.day approach (Appendix 
“Soil–crop water balance models”) for AqYield. Although 
this difference did not seem to be very impactful for the 
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study period, the change of crop growth dynamic in a con-
text of climate warming might be very impactful in future. In 
this context, it will become necessary to adjust Kc curves, or 
to use models such as AqYield, to estimate irrigation needs.

Impact of variation factors

The impact of automatic irrigation factors (θ, IA) is very 
strong among the factors tested. The impact of CET is also 
important, confirming the value of taking into account 
uncertainties in evapotranspiration estimation. Although the 
impact of IP is not strong according to the KGE_10 indica-
tor, it has an important impact on the number of days of 
irrigation. However, in a climate change context, restrain-
ing or not restraining irrigation to specific periods might be 
more impactful. Concerning the depletion factor and root 
depth curves, the modalities evaluated in this work were to 
take into account the variation in the parameters according 
to crop growth on the one hand (modality 1), or to fix a 
constant value on the other hand (modality 0). For example, 
concerning the rooting depth, the maximal value could be 
directly reached when the crop was sown (modality 0), or 
progressively increased with crop growth for other experi-
ments (modality 1; Fig. 7). The maximal rooting depths 
resulting from the crossing of crops and soils were main-
tained for all experiments. Consequently, our results show 
that the dynamics of the evolution of these is not a key pro-
cess for irrigation assessment at catchment scale, and their 
calibration should not be a priority. However, maximal root 
depth might be a key factor of interest to evaluate in future 
studies.

Beyond the statistical performance of the experiments, we 
can question their agronomic relevance and robustness. For 
example, extreme values of the modalities of factors inves-
tigated here can produce high KGE and KGE_10 values for 
some experiments while they might also lead to unrealistic 
simulations when combined with other modalities of other 
factors. To reinforce the probability of modeling choices to 
represent realistic irrigation over space and time, we advise 
selecting realistic modalities of each variation factor repre-
sented. Following the same logic, our study also reveals the 
importance of interactions between some variation factors. 
Hence, with the modality 0 of IP but a high value of θ, irri-
gation can be triggered late enough in the year to reproduce 
the reference scenario adequately.

There are numerous impacts related to the variation fac-
tors tested. Our study shows that evaluating and comparing 
irrigation modeling based on a single indicator, for example, 
annual irrigation, is not enough. Some modalities can lead 
to a decrease in annual irrigation (I), but without changing 
irrigation peaks in IWR (Max, Max_10, Max_regime_date) 
and thereby without an impact on extreme values of hydro-
logic droughts.

Many studies approximate irrigation inputs and with-
drawals by calculating optimized values of irrigation, which 
would correspond, for our CropWat simulations, to the use 
of a θ equal to RAW (Funes et al. 2021; Neilsen et al. 2018; 
Rinaudo et al. 2013). However, in our study site, more exper-
iments with a θ fixed at 0.5 × RAW or 0.75 × RAW were able 
to reproduce the reference simulations very well. Our results 
might be linked to the fact that farmers in our case study 
tend to implement an over-irrigation strategy (Allain et al. 
2018), as in other catchments (Battude 2017; Tan 2019). To 
take into account this uncertainty, we would advise mod-
elers using automatic irrigation algorithms to use several 
irrigation thresholds of θ to represent uncertainty linked to 
farmers’ practices. Finally, defining irrigation parameters 
adapted to each crop (varCrop) can lead to significantly 
more accurate irrigation modeling. However, it leads to a 
complexification of calibration while some experiments with 
homogeneously calibrated irrigation for the different crops 
were still able to reach high scores.

Potential consequences for hydrological modeling 
and water management

Simulating dynamics of irrigation is of particular interest 
when considering the impact of irrigation during low-flow 
periods. Irrigation has two main impacts on hydrology: on 
the one hand withdrawals impacts, i.e., taking out water from 
the system, and on the other hand, irrigation rain impacts, 
bringing water to the system. Periods of irrigation, periods 
of maximal irrigation, and daily irrigation variations can 
change significantly between simulations obtained from dif-
ferent model configurations. A model bringing high amounts 
of irrigation in short periods could have an impact on hydro-
logical modeling that is different from a model bringing low 
but regular amounts of irrigation.

Finally, similarly to Multsch et al. (2015), our results 
showed that the evapotranspiration estimation method might 
be an impactful variation factor between irrigation simula-
tions, even if this factor might be less important than the 
irrigation rules. If an exhaustive coupling between crops and 
hydrological modeling is intended, evapotranspiration esti-
mation might also be important as a direct input for hydro-
logical models.

Our simplified approaches (Conceptual and Semi-plot) 
seem to be able to reproduce adequately the spatial vari-
ability of most indicators and should be compatible with 
semi-distributed and distributed hydrological modeling. 
However, we observed difficulties in reproducing irrigation 
at a daily time step and at the local scale, showing the dif-
ficulty of mimicking farmers’ behavior regarding irrigation 
at these scales.
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Limitations to this work and other variation factors 
to explore

We can identify several limitations of our study. First, the 
benchmark irrigation data we used correspond to modeling 
outputs. As a consequence, these data are distinct from real-
ity, even if they represent the best reference data existing in 
our study area and even if MAELIA showed a very good 
capacity to simulate irrigation withdrawals. Therefore, we 
could assume that some of our experiments, even if not iden-
tified as the best ones, could be more realistic than MAELIA 
simulations. This supports the need to keep several mod-
eling hypotheses and even to keep modalities that were less 
performant to reproduce reference simulations if they are 
considered as realistic and robust.

Furthermore, this work was carried out in only one study 
zone. This choice is notably justified by the availability of 
MAELIA outputs and the complexity of the modeling proto-
col used, which cannot be easily generalized to other areas. 
Consequently, conclusions drawn in this area should be care-
fully used for other areas, particularly in very different agro-
climatic zones and cropping systems.

The modeling approaches tested here aimed at studying 
different levels of modeling simplifications. However, more 
simplified models exist. For example, the impact of spatio-
temporal aggregation of input data and the reduction in the 
number of simulated crops could also be explored in further 
studies. Moreover, the reference model, MAELIA, itself 
relies on several simplifications, and not all processes are 
described in detail. For example, the run-on of water and its 
impact on the redistribution of water between crop simula-
tion units is not taken into account.

Climate data are deterministic in this study. However, for 
operational purposes (prediction, projection, generic char-
acterization of irrigation distribution), climate inputs might 
result from hypotheses, simulations or estimations, which 
might also bring additional uncertainty. For example, Jie 
et al. (2022) considered precipitation and evapotranspiration 
statistical distributions as sources of variability to evaluate 
generic irrigation variability. Moreover, even deterministic 
precipitation amounts and spatio-temporal distribution carry 
unavoidable uncertainty. Comparing the relative impacts of 
climate modeling uncertainty and irrigation modeling uncer-
tainty might be very informative. This is however not in the 
scope of this study.

Last but not least, coupling these simulations with hydro-
logical modeling is necessary to confirm or contest the sig-
nificance of the differences between irrigation simulations 
for water management and resource issues. Indeed, the dif-
ferences between outputs might seem significant, but they 
may have a moderate impact on hydrology.

Conclusion

This work described the methodology and the results of 
a sensitivity analysis of irrigation modeling at the local 
to river-basin scale. Two simplified modeling approaches 
(Conceptual: lumping irrigation simulation for homogene-
ous crop, soil, and climate conditions; Semi-plot: dividing 
simulation units into water turns groups) were compared 
with a more complex, agent-based, benchmark (MAELIA). 
For the two simplified approaches, the impacts of several 
modeling hypotheses regarding irrigation variation factors 
were analyzed. A sensitivity analysis based on variance 
decomposition was performed. The relative impacts of 
variation factors were measured based on several indica-
tors of irrigation dynamics, with the objective of exploring 
the irrigation modeling effect beyond the simplistic annual 
sum of irrigation. This work highlighted that calibration 
of variation factors is more crucial than the choice of a 
given modeling approach. It showed the strong impact of 
irrigation-triggering rules and quantification of nominal 
irrigation amount parameters on regional irrigation assess-
ment. It also confirmed that the definition of evapotranspi-
ration and irrigation periods can have an important impact 
on irrigation modeling, a key issue for simulation under 
future climatic conditions. Several configurations of sim-
pler approaches (Conceptual and Semi-plot) managed to 
reproduce adequately the simulations of the more complex 
approach (MAELIA). Experiments managing to reproduce 
adequately MAELIA were actually quite heterogeneous, 
showing a multiplicity of possible performing modeling 
configurations and the ability of the modalities tested to 
offset each other. Finally, this work enabled us to identify 
the following recommendations that might be followed 
for irrigation modeling: using multi-parameter simula-
tions of irrigation; including different rules for trigger-
ing and quantifying irrigation; and evaluating irrigation 
with diverse indicators capturing its levels, frequency, and 
dynamics.

Appendices

Soil–crop water balance models

Soil water content mainly results from the balance between 
rain and irrigation inputs and evapotranspiration outputs. 
Evapotranspiration on cropland can be estimated with 
soil–crop water balance models. However, many of these 
models are complex, which makes them too computation-
ally and data demanding for regional applications. On 
the other hand, semi-empiric crop coefficient methods 
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described by the FAO (Allen et al. 1998) are still largely 
used in research work and their performance and robust-
ness, if well calibrated, have been demonstrated. The sin-
gle crop coefficient (Kc) approach was implemented in the 
CropWat model and is used in this study.

The CropWat model

In a single crop coefficient (Kc) approach, crop maximal 
evapotranspiration (CET, mm  day−1) is calculated at each 
time step (t) using Eq. (2) with the crop coefficient Kc (–) 
and potential evapotranspiration (PET, mm  day−1) estimated 
through the Penman–Monteith equation:

In CropWat, three values of Kc are defined for each 
crop corresponding to the initial, mid-, and end stage of 
the crop cycle, linked by linear interpolation and associ-
ated with length of growth stages (Fig. 7). Water balance 
is calculated at a daily time step (d). Soil water availability 
for crops consists of a single bucket. Total available water 
(TAW, mm), describing the depth of the bucket, is calculated 
using Eq. (3), with ωfc the water content at field capacity  (m3 
 m−3), ωwp the water content at wilting point  (m3  m−3), and 
Zr the rooting depth (mm):

The rooting depth is estimated at each time step by a lin-
ear interpolation between initial root depth and maximal root 
depth, the latter being reached at mid-stage. Readily avail-
able water (RAW) is calculated as follows in Eq. (4), with p 
(–) the depletion factor:

In CropWat, p is represented by a curve with pini, pmid, 
pend defined for each crop associated with length of growth 
stages (Fig. 7).

Water level is estimated at a daily time step by the root 
zone depletion Dr (mm), i.e., the gap between TAW and soil 
water content. Soil water content is updated with daily rain, 
irrigation and evapotranspiration amounts. If Dr exceeds the 
RAW value, evapotranspiration is reduced because of water 
stress, leading to the calculation of actual evapotranspira-
tion (AET, mm  day−1). AET is estimated with Ks (–), the 
water stress coefficient, as shown in Eq. (5). Ks is calculated 
through Eq. (6):

(2)CET(t) = Kc(t) × PET(t).

(3)TAW(d) =
(

�fc−�wp

)

× Zr(d).

(4)RAW(d) = p(d) × TAW(d).

(5)AET(d) = Ks(d) × CET(d),

The AqYield model

The MAELIA platform includes its own soil–crop water 
balance model, AqYield. Like CropWat, it is based on a Kc 
approach. The main differences are:

• Transpiration and evaporation are calculated separately. 
Transpiration takes water from the root zone, while evap-
oration takes water from the shallow soil horizon. Maxi-
mal crop transpiration (MT, mm  day−1) is calculated as 
follows in Eq. (7), with evaporation (E, mm  day−1):

• Developments of Kc and roots are represented by smooth 
functions depending on crop parameters and sum of 
degree day, with thresholds corresponding to flowering 
and maturity stages;

• Water stress impact on transpiration is a smooth func-
tion of the soil water amount, without any break between 
Dr ≤ RAW and Dr > RAW, and is influenced by the clay 
rate.

Parameter calibration

MAELIA crop parameters were calibrated by experts of the 
AqYield model to fit the Aveyron basin context. To avoid 
bias linked to the crop parameters, CropWat parameters 
were estimated based on the MAELIA outputs. Hence, Kc 
curves were built on the basis of AqYield detailed outputs. 
However, Kc curves were kept fixed inter-annually unlike 
AqYield simulations. Moreover, AqYield detailed outputs 
were obtained for only one CZ due to constraints on data 
storage and computation time. As a consequence, Kc curves 
were built to correspond to AqYield evapotranspiration in 
one CZ and applied to the entire study area for CropWat 
experiments. A detailed explanation of CZ choice and Kc 
calibration methodology is given hereafter (“Choice of ref-
erence AqYield data for calibration”, “CropWat crop coef-
ficients adjustment”).

Depletion factor p was adjusted locally with CET using 
the following FAO formula presented in Eq. (8):

(6)Ks(d) =

{

(TAW(d)− Dr(d))

(TAW(d)− RAW(d))
if Dr(d) > RAW(d)

1 if Dr(d) ≤ RAW(d)
.

(7)MT(d) = Kc(d) × (PET(d)−E(d)).

(8)p = pFAO + 0.04 × (5− CET),
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pini, pmid, and pend values were calibrated to correspond 
to daily p values calculated with the FAO formula. Minimal 
root depths were set to 30 cm for each crop and maximal root 
depths were taken from FAO report no. 56.

Choice of reference AqYield data for calibration

AqYield detailed outputs were obtained in the CZ 2031 
(Fig. 8).

The selection of this CZ was made with different criteria:

– each simulated crop is present;
– number of plots for every irrigated crop is high;
– number of different soils on which cultivated crops are 

present is high.

In CropWat, crop coefficients aim at calculating maximal 
crop evapotranspiration, cumulating evaporation, and tran-
spiration, while in MAELIA, crop coefficients are designed 
to be proportional to maximal transpiration only. That is why 
we compiled for each plot the sum of maximal transpiration 
and evaporation simulated by AqYield between 2008 and 
2014, considered as maximal evapotranspiration. Then, this 
maximal evapotranspiration was divided by potential evapo-
transpiration to obtain a crop coefficient curve comparable 
to the CropWat crop coefficient curve.

Finally, for each crop type, a mean daily inter-annual crop 
coefficient curve was calculated by the weighted mean of 
the crop coefficient curve of plots based on their surfaces 
(Fig. 9).

CropWat crop coefficients adjustment

Each crop Kc curve was calibrated manually with the 
objective of reproducing adequately MAELIA outputs 
(Fig. 10). The intercrop and initial-stages Kc calibrated 
value  (Kcini) is lower than the optimal value for this crop 
stage, but fits the crop Kc curve during the development 
stage. This choice was made to avoid overestimation of 
evapotranspiration during the transition between the initial 
and development stages, which would lead to an overes-
timation of soil reservoir depletion. This choice results in 
an underestimation of maximal evapotranspiration during 
the end of winter and spring, leading to a possible under-
estimation of water stress, but it does not have a strong 
impact on soil water depletion. Indeed, the water level is 
maintained near field capacity during this period (explain-
ing high values of evapotranspiration in AqYield). Excess 
water in CropWat is not integrated in the soil water res-
ervoir and is not converted into evapotranspiration, but is 
simply considered as lost water.

Fig. 8  Location of the reference CZ used for CropWat crop coeffi-
cients calibration

Fig. 9  Inter-annual variability of crop coefficients for wheat for CZ 
2031. Each colored curve corresponds to a mean crop coefficient 
curve weighted by the surfaces of plots for a specific year. The bold 

curve corresponds to the inter-annual mean of the colored curves 
(color figure online)
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Indicator calculation

Fig. 10  Annual crop coefficient 
curve calculated with AqYield 
(black line) and calibrated for 
CropWat (red line) for wheat 
(color figure online)

Indicator 
name

Unit Definition Scale of 
calculation

Calculation Variables

I m3 Mean annual 
irrigation

Lumped, CZ
I =

∑Nd
d=1

Id

NY

Nd : number of days (–)
d: day index (–)
Id : daily irrigation  (m3)
NY : number of years (–)

I_m m3 Mean monthly 
irrigation

Lumped For each month m,

I_m =
∑Nd,m

d=1
Id,m

NY

Nd,m : number of days in month 
m (–)

d: day index (–)
Id,m : daily irrigation of day d 

in month m  (m3)
NY : number of years (–)

N (–) Mean annual 
number of days 
of irrigation

Lumped, CZ N =
Nd,I>0

NY

Nd,I>0 : number of days with 
Id > 0 ( Id : daily irrigation 
 (m3)) (–)

NY : number of years (–)
N_m (–) Mean monthly 

number of days 
of irrigation

Lumped For each month m, N_m =
Nd,I>0,m

NY

Nd,I>0,m : number of days of 
month m with Id,m > 0 ( Id,m : 
daily irrigation of month m 
 (m3)) (–)

NY : number of years (–)
Max_

regime
m3 Maximum of 

irrigation for 
10-day rolling 
periods on 
mean annual 
regime curve

Lumped, CZ Maxregime = max
(

I10d
)

I10d : vector of 10-day rolling 
mean annual regime of 
irrigation  (m3,…,m3)

max(): maximal value  (m3)

Max_
regime_
date

DOY Day of year of 
maximum of 
irrigation for 
10-day rolling 
periods on 
mean annual 
regime curve

Lumped, CZ Max_regime_date = DOY_max
(

I10d
)

I10d : vector of 10-day rolling 
mean annual regime of 
irrigation  (m3,…,m3)

DOY_max(): date of maximal 
value (DOY)
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Indicator 
name

Unit Definition Scale of 
calculation

Calculation Variables

Max m3 Mean annual 
maximum of 
daily irrigation

Lumped, CZ
Max =

∑NY
Y=1

max(Id,Y )

NY

Id,Y : vector of daily irrigation 
for year Y  (m3,…,m3)

max(): maximal value  (m3)
NY : number of years (–)

Max_10 m3 Mean annual 
maximum of 
10-day mean 
rolling irriga-
tion

Lumped, CZ
Max_10 =

∑NY
Y=1

max(I10d,Y )

NY

I10d,Y : vector of 10-day rolling 
mean of daily irrigation for 
year Y  (m3,…,m3)

max(): maximal value  (m3)
NY : number of years (–)

Q_disper-
sion

(–) (Q75–Q25)/Q50 
of daily irriga-
tion

Lumped, CZ
Q_dispersion =

Q75

(

Id,Id>0

)

−Q25

(

Id,Id>0

)

Q50

(

Id,Id>0

)

Id,Id>0 : vector of daily 
irrigation Id , with Id > 0 
 (m3,…,m3)

Qx: quantile X%  (m3)
Var2 (–) Mean of absolute 

second deriva-
tive of daily 
irrigation  (m3), 
divided by 
mean annual 
irrigation

Lumped, CZ
Var2 =

∑Nd−1

d=2
�(Id+1−Id )−(Id−Id−1)�

I

Nd : number of days (–)
d: day index (–)
Id : daily irrigation  (m3)
I : see indicator I  (m3)

KGE (–) Kling–Gupta effi-
ciency compar-
ing irrigation 
obtained from 
experiments 
with reference 
irrigation

Lumped
KGE = 1 −

√

(1 − r(Id))
2 + (1 − �(Id))

2 + (1 − �(Id))
2 r: the Pearson product–

moment correlation coef-
ficient between experiment 
values and reference values 
(–)

� : the ratio between the mean 
of the experiment values and 
the mean of the reference 
values (–)

� : the ratio between the stand-
ard deviation of the experi-
ment values and the standard 
deviation of the reference 
values (–)

Id : vector of daily irrigation 
for experiment and reference 
 (m3,…,m3)

KGE_10 (–) Kling–Gupta 
efficiency 
comparing 
10-day roll-
ing irrigation 
obtained from 
experiments 
with reference 
10-day rolling 
irrigation

Lumped
KGE_10 = 1 −

√

(1 − r(I10d))
2 + (1 − �(I10d))

2 + (1 − �(I10d))
2 r: the Pearson product-

moment correlation coef-
ficient between experiment 
values and the reference 
values (–)

� : the ratio between the mean 
of the experiment values and 
the mean of the reference 
values (–)

� : the ratio between the stand-
ard deviation of the experi-
ment values and the standard 
deviation of the reference 
values (–)

I10d : vector of 10-day rolling 
mean of daily irrigation for 
experiment and reference 
 (m3,…,m3)
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Indicator 
name

Unit Definition Scale of 
calculation

Calculation Variables

ET_S (–) Sum of AET 
divided by sum 
of CET of cul-
tivated surfaces 
during crop 
growth cycles

Lumped
ET_S =

∑Nd
d=1

AETd

∑Nd
d=1

CETd

Nd : number of days (–)
d: day index(–)
AETd : daily actual evapotran-

spiration of all cultivated 
simulation units (between 
sowing date and harvesting 
date)  (m3)

CETd : daily crop maximal 
evapotranspiration of all 
cultivated simulation units 
(between sowing date and 
harvesting date)  (m3)

ET_S_m (–) ET_S calculated 
monthly

Lumped
ET_S =

∑Nd,m

d=1
AETd,m

∑Nd ,m

d=1
CETd,m

Nd,m : number of days in month 
m (–)

d: day index(–)
AETd,m : daily actual evapo-

transpiration of all cultivated 
simulation units (between 
sowing date and harvesting 
date) in month m  (m3)

CETd,m : daily crop maximal 
evapotranspiration of all 
cultivated simulation units 
(between sowing date and 
harvesting date) in month 
m  (m3)

Varying factors in C and S experiments

Factor name Definition Values

θ Deficit threshold for 
irrigation

0.25 × RAW 
0.5 × RAW 
0.75 × RAW 
RAW 
RAW + 0.25 × (TAW − RAW)

IAa Irrigation amounts Dr − θ: equivalent to C approach
Dr: irrigation amount is equal to Dr and soil is totally refilled
FixMeanC: irrigation amount is equal to a value defined for the crop based on MAELIA param-

eters
p_var Depletion factor vari-

ation
1: depletion factor varies along time according to pinit, pmid, pend (See Appendix “The CropWat 

model”)
0: depletion factor is constantly equal to pmid

z_var Root depth variation 1: root depth varies along time from minimal to maximal root depth
0: root depth is constantly equal to maximal root depth

IP Irrigation period 
delimitation

1: irrigation period delimitation is injected for each crop and crops cannot be irrigated before and 
after this irrigation period delimitation

0: crops can be irrigated at any time during their crop cycle if θ is reached
CET Crop modulation of 

potential evapotran-
spiration

1: CET is calculated as a modulation of Penman–Monteith PET
2: CET is considered equal to Penman–Monteith PET

a IA variations were simulated only for S experiments
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Variance decomposition

Conceptual and Semi-plot approaches consist of balanced 
simulation plans, allowing for simple variance decomposi-
tion. Variance decomposition is used to estimate the sen-
sitivity of IWR indicators to variation factors (θ, IP, etc.). 
For each indicator I and each factor F, we calculate partial 
variance VI,F with Eq. (9), with NF,exp the number of experi-
ments for each modality of F, NF the number of modalities 
of F,Xi the mean value of F for modality I, X. the mean value 
of F, and Nexp the total number of experiments:

Moreover, sensitivity to first-order interactions is also 
calculated with Eq. (10). For a factor F1 and a factor F2, 
the sensitivity to their interaction is VI,F1,F2

 , with NF1∩F2,exp
 

the number of experiments for each crossing modality of 
F1 and F2:

(9)VI,F = NF,exp

∑NF

i=1
(Xi − X

⋅
)
2

Nexp − 1
.

(10)

VI,F1,F2
= NF1∩F2,exp

∑NF2

j=1

∑NF1

i=1
(Xi,j − X

⋅,j − Xi,∙ + X
⋅,⋅)

2

Nexp − 1
.

Then partial variance can be divided by the total variance 
to get the contribution of a factor to total variability.

Annual irrigation hydrographs

To complete our work based on inter-annual indicators, 
annual hydrographs are produced for dry–hot (2009) and 
wet–cold (2013) years globally over the basin. First, we 
observe the impact of inter-annual variability on the duration 
of crop cycles in MAELIA, which is not taken into account 
in other approaches: in a dry–hot year, MAELIA irrigation 
ends before the other experiments (Fig. 11), contrary to a 
cold–wet year (Fig. 12). We observe a higher difficulty to 
reproduce MAELIA irrigation in spring when irrigation is 
low. The same difficulty might be found at the CZ scale. 
We observe that the Conceptual experiments produce abrupt 
dips contrary to the Semi-plot experiments, explaining the 
lower KGE values and the higher Var2 values for the Con-
ceptual experiments at the lumped scale. Irrigation during a 
wet–cold year seems to be more sporadic for all experiments, 
which can probably be explained by summer rain events lim-
iting the irrigation needs during some short periods.

Fig. 11  Comparison between CropWat experiments daily irrigation 
(salmon) and MAELIA reference irrigation (turquoise) for the year 
2009 (dry) globally over the basin. C40 (a) corresponds to the Con-
ceptual experiment yielding the best KGE value without varCrop 
modality; C0_0_1_1 (b) corresponds to the Conceptual experiment 

yielding the best KGE value with varCrop modality; S289 (c) cor-
responds to the Semi-plot experiment yielding the best KGE value 
without varCrop modality; S1_1_1_0 (d) corresponds to the Semi-
plot experiment yielding the best KGE value with varCrop modality
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Impact of IA modalities on Var2 and Q_dispersion

Figure 13 shows the high influence of IA variation factor on 
Var2 and Q_dispersion indicators.

Impact of factor modalities on indicators

The impact of the different modalities of each factor on indi-
cators is summarized in Fig. 14, compared with the MAE-
LIA benchmark indicator values. The indicators for annual 
irrigation (I) and number of irrigated days (N) increase if θ 

decreases. Indeed, if θ is higher, irrigation is triggered for 
higher values of Dr. As a consequence, irrigation is triggered 
less frequently in simulation units and later in the year. I and 
N are lower for modality 1 of IP than for modality 0, since 
for modality 1, irrigation can only be triggered during spe-
cific periods for each crop. I and N are lower for modality 1 
of CET. Indeed, the Kc curves for modality 1 of CET result 
in globally lower evapotranspiration than evapotranspira-
tion estimated from PET directly in modality 0. A higher 
evapotranspiration leads to an increase in instantaneous 
IWR, resulting in increased annual irrigation and number of 

Fig. 12  Comparison between CropWat experiments daily irrigation 
(salmon) and MAELIA reference irrigation (turquoise) for the year 
2013 (wet) globally over the basin. C40 (a) corresponds to the Con-
ceptual experiment yielding the best KGE value without varCrop 
modality; C0_0_1_1 (b) corresponds to the Conceptual experiment 

yielding the best KGE value with varCrop modality; S289 (c) cor-
responds to the Semi-plot experiment yielding the best KGE value 
without varCrop modality; S1_1_1_0 (d) corresponds to the Semi-
plot experiment yielding the best KGE value with varCrop modality

Fig. 13  Impacts of automatic 
irrigation parameters on daily 
irrigation variability for Semi-
plot experiments. IA modalities 
have a strong impact on Var2 
(a) and Q_dispersion (b) values
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days of irrigation. For IA modalities, I is minimal and below 
the reference for Dr-θ, followed by varCrop near the refer-
ence value, by FixMeanC, and finally by Dr, both exceed-
ing the reference value. It is clear that nominal amounts are 
higher for the Dr modality than for the Dr-θ modality, and 
this result shows that irrigation amounts brought with the 
Dr modality are globally higher than FixMeanC irrigation 
amounts. N is maximal for FixMeanC, followed by Dr-θ, 
by VarCrop, and by Dr. This observation can be linked to 
the explanation given for I: If nominal irrigation amounts 
are higher in simulation units, the frequency of irrigation is 
lower. Indeed, after an irrigation event in a simulation unit, 
if the irrigation amount was low, Dr after irrigation remains 
relatively high, and θ will be reached again after a shorter 
time than for a higher irrigation amount.

The maximum of irrigation for 10-day rolling periods on 
the mean annual regime curve (Max_regime) and its date 
of occurrence (Max_regime_date) are analyzed here. Max_
regime_date is reached later for high values of θ. Indeed, 
with higher θ, irrigation is triggered later in simulation units, 
which results in a lag for the period of maximal irrigation. 
Max_regime decreases if θ increases. For lower values of θ, 
θ might be reached by more simulation units simultaneously, 
leading to higher values of irrigation during the maximum 

irrigation period. Max_regime is higher than the reference 
value for the Dr modality of IA, and lower than the refer-
ence value for the other modalities, particularly the Dr-θ 
modality. As for annual irrigation, it is clear that nominal 
amounts are higher for the Dr modality than for the Dr-θ 
modality, leading to higher lumped irrigation amounts dur-
ing the period of maximal irrigation. Again, as for annual 
irrigation, the difference in Max_regime between the Dr and 
FixMeanC modalities can be explained by higher irrigation 
amounts with the Dr modality than with the FixMeanC 
modality during the period of maximal irrigation. Finally, 
we observe that Max_regime is slightly higher for modal-
ity 1 of CET. During the annual maximal irrigation period, 
some major crops have a Kc value higher than 1.0, leading 
to higher evapotranspiration than modality 0 of CET, which 
might lead to an increase in IWR during this specific period. 
Max_regime_date is seen to occur later for modality 1 of 
CET. During the period preceding the maximal irrigation 
period, evapotranspiration is globally lower with modality 
1 of CET than evapotranspiration estimated with modality 
0 of CET, leading to a temporal dephasing of irrigation-
triggering conditions.

The mean annual maximum of daily (Max) irrigation 
and 10-day (Max_10) irrigation indicators are both globally 

Fig. 14  Impact of the modalities of each factor on indicators com-
pared with their reference values. The mean indicator value was cal-
culated for each modality of each factor, then compared with the ref-
erence value (MAELIA). Differences between mean values for each 
modality and the reference value were then divided by the maximum 
absolute difference value for each indicator to get a relative variation 
between − 1 and + 1. Red: the mean modality value exceeds the ref-
erence value; blue: the mean modality value is below the reference 

value; yellow: the mean modality value is equal to the reference 
value. The color intensities are related to the variance of each factor 
separately, not to the total variance of all experiments. Consequently, 
some colors might be intense, but the total impact of this modal-
ity might remain relatively low compared to total variance. For the 
evaluation the partial effect of a variation factor, please refer to Fig. 4 
(color figure online)
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higher than the reference. Max_10 and Max slightly decrease 
with higher values of θ, in a similar manner to the Max_
regime. For S experiments, Max_10 and Max are higher for 
the Dr modality than for the other three modalities.

Regarding daily variability, indicators Var2 and Q_dis-
persion have opposite behavior, showing that these indi-
cators measure different aspects of temporal variability. 
For C experiments, Var2 remains globally superior to the 
reference value, showing that C experiments have a narrow 
higher daily variability than reference and S experiments 
(Appendix “Annual irrigation hydrographs”). However, Q_
dispersion is globally lower than for the reference experi-
ment. This result can be obtained for simulation showing 
unstable variations between successive days, for example, 
increasing and decreasing very frequently, but keeping 
lumped irrigation values in the same order of magnitude. 
On the contrary, a theoretical experiment with a regular 
increase in irrigation from day to day would lead to a low 
value of Var2, but a high value of Q_dispersion.

Regarding crop water stress, the ET_S indicator decreases 
(meaning higher crop water stress) with higher modalities 
of θ. Obviously, with higher values of θ, Dr can be higher 
and as a consequence crop water stress too. However, we 
notice that only the modality RAW + 0.25 × (TAW − RAW), 
consisting of deficit irrigation, leads to lower ET_S (higher 
crop water stress) than the reference experiment. This can 
be explained by the difference in AET formulation between 
AqYield and CropWat. In AqYield, water stress is a smooth 
function of soil water deficit, with crop water starting for a 
zero deficit and progressively accelerating with an increas-
ing deficit. In CropWat, there is a threshold effect since crop 
water stress begins when the deficit reaches RAW and is 
quickly high. Moreover, the calibration methodology of the 
Kc curve might also partly explain these differences (see 
Appendix “CropWat crop coefficients adjustment”). ET_S 
is higher (lower crop water stress) with modality 1 of CET. 
Indeed, in this case, the Kc curves result in globally lower 
evapotranspiration than evapotranspiration estimated from 
PET directly, and a lower evapotranspiration might lead 
to a lower crop water stress if conditions of irrigation are 
not triggered. ET_S is lower (higher crop water stress) for 
modality 1 of IP. Indeed, for this modality, irrigation can-
not be triggered outside irrigation periods, leading to higher 
crop water stress. For IA impacts, ET_S is minimal for Dr-θ 
but still higher than the reference, followed by varCrop, Fix_
Mean_C, and then Dr: the higher the irrigation amounts for 
the same crop evapotranspiration, the lower the crop water 
stress.
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