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Migration of surface-associated microbial 1 

communities in spaceflight habitats 2 

Abbreviations: 3 

CFU: Colony forming unit 4 

CLSM: Confocal Laser Scanning Microscopy 5 

ECLSS: Environmental Control and Life Support System  6 

e-DNA: extracellular DNA 7 

EPS: Extracellular polymeric substance  8 

ESA: European Space Agency 9 

ESKAPE: acronym describing six highly virulent and antibiotic-resistant bacterial pathogens of major 10 

interest in human health including (Enterococcus faecium, Staphylococcus aureus, Klebsiella 11 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) 12 

EVA: extra-vehicular activity  13 

FGB: Functional Cargo Module 14 

ISS: International Space Station 15 

LSMMG: low-sheared modelled microgravity 16 

NASA: National Aeronautics and Space Administration (America’s civil space program)  17 

OMV: outer membrane vesicles. 18 

PRW: Persistence Random Walk model  19 

QS: Quorum-sensing 20 

RNA-seq: RNA-sequencing for high-throughput transcriptomics analysis 21 

SUS: super-hydrophilic and underwater superoleophobic material 22 

T4P: type-IV-pili 23 

WPA: Water Process Assembly  24 

WRS: Water Recovery System  25 
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Abstract  26 

Astronauts are spending longer periods locked up in ships or stations for scientific and exploration 27 

spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 28 

20 years and the duration of space stays by crews could lengthen with the objectives of human 29 

presence on the moon and Mars. If the environment of these space habitats is designed for the comfort 30 

of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, 31 

most often associated with surfaces in the form of biofilm, have been implicated in significant 32 

degradation of the functionality of pieces of equipment in space habitats. The most recent research 33 

suggests that microgravity could increase the persistence, resistance and virulence of pathogenic 34 

microorganisms detected in these communities, endangering the health of astronauts and potentially 35 

jeopardizing long-duration manned missions. In this review, we describe the mechanisms and 36 

dynamics of installation and propagation of these microbial communities associated with surfaces 37 

(spatial migration), as well as long-term processes of adaptation and evolution in these extreme 38 

environments (phenotypic and genetic migration), with special reference to human health. We also 39 

discuss the means of control envisaged to allow a lasting cohabitation between these vibrant 40 

microscopic passengers and the astronauts. 41 

Keywords: Biofilm, space flight, microgravity, transcriptomic, adaptation, evolution, control.  42 

 43 

1. Introduction 44 

Human space exploration presents many challenges for space agencies, habitability engineers and 45 

microbiologists, especially in the upcoming new era of human expansion in the universe, such as 46 

future space travel to Mars. Internal spacecraft must provide safe levels of biological, chemical and 47 

physical parameters to astronauts. Space spaceships and stations are closed systems inhabited by 48 
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microorganisms that originate from different sources including the initial contamination of space 49 

flight materials during manufacturing and assembly, the delivery of supplies, the automicroflora of the 50 

crew and other biological materials present on board [1]. In space habitats, environmental conditions 51 

(gas composition, pressure, temperature, and humidity) are set to the comfort of astronauts (e.g. 22°C, 52 

6O% of relative humidity in the International Space Station (ISS) [2]) and are also favourable to other 53 

forms of terrestrial life such as embarked bacteria, yeasts, moulds or viruses. Microorganisms are 54 

ubiquitous and will in general accompany human-inhabited spacecraft without imposing dramatic 55 

safety concerns. However, if biological contamination were to reach unacceptable levels or if it 56 

contains microorganisms at risk (for astronauts and their equipment), long-term human space flights 57 

could be jeopardized. In these environments, most microorganisms are associated with surfaces in 58 

spatially organised microbial communities termed biofilms which can be defined as surface-59 

associated communities of microorganisms embedded in self-produced extracellular polymeric 60 

substances (EPS) [3]. This microbial mode of life significantly differs from free planktonic cultures in 61 

homogeneous Newtonian liquid environments. Cells in a multilayered biofilm experience a diversity 62 

of local microenvironments within the matrix and intensive cell-to-cell interactions with other 63 

community members. Biofilm structures are associated with emerging community functions such as a 64 

dramatic tolerance to the action of antimicrobials [4]. Important material degradation associated with 65 

microbial biofilm development has been reported in several space stations (Figure 1). The affected 66 

parts were for example piping and equipment behind panels, headphone of extra-vehicular activity 67 

(EVA) suit, thermal control system, rubber of hatch locks, electrical connectors, radiators, air 68 

conditioning, water recycling systems and oxygen electrolysis block [5]. The microbially-induced 69 

degradation of a navigation window was associated with the presence of Bacillus polymira, 70 

Penicillium rubens and Aspergfilus sp. [5]. On the ISS, the most severely affected units are 71 

wastewater collection reservoirs, also known as the Water Process Assembly (WPA) of the Water 72 

Recovery System (WRS) which is part of the Environmental Control and Life Support System 73 

(ECLSS). For WPA the most common microbial organisms isolated are Ralstonia picketii, 74 

Bulkholderia sp. and Cupriavidus metallidurans [6]. Biofilm formation is critical in any spacecraft 75 
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system, however, it is of utmost relevance when it affects ECLSS, given the relevance of this system 76 

to the health of the crew. 77 

Lessons learnt in previous space missions suggest that prevention of microbiological problems is 78 

preferred over mitigation, and prevention steps must be taken into consideration from the very early 79 

design phase. Requirements to control free water from condensate, hygiene activities, humidity, 80 

condensate and other releases must be included in every spacecraft system development. Water is one 81 

of the main driving elements for microbial outgrowth and its accumulation must be avoided and 82 

controlled either by hygienic design or by water processing techniques, such as thermal inactivation, 83 

filtration and biocide treatments. Furthermore, the materials selected must not promote microbial 84 

growth and system design must include the onboard capability to achieve recovery of the system from 85 

microbial contamination. Robust housekeeping procedures that include periodic cleaning and 86 

disinfection are required. In addition, routine and systematic microbial monitoring of surfaces, air, and 87 

water using culture-based techniques is conducted by each space agency [7]. Monitoring includes two 88 

levels of sample analysis. The first level corresponds to a real-time assessment of the microbial load 89 

and dynamics on the basis of total microbial counts. The second level is the ground-based assessment 90 

of species composition, properties, and characteristics of archived samples which were collected in-91 

flight, as well as samples that are collected 1-2 days before crew return [8]. However, culture-based 92 

analysis limits the understanding of the diversity of microorganisms in space habitats as only a small 93 

fraction of organisms can be cultured under standard laboratory conditions [9]. Implementing 94 

molecular methods on board the spaceship will enable the identification and quantification of both 95 

culturable and unculturable organisms providing a more in-depth assessment of the microbial 96 

population and density [10]. This is of utmost importance considering the long-term human space 97 

exploration and associated protection of planet contamination [11]. On the International Space 98 

Station, air cleanliness is ensured through the implementation of the Potok system [12]. The microbe-99 

killing principle of Potok is through the use of an electrical field of alternating polarity with fine 100 

electrostatic filtration of microbe decomposition products. In the framework of ESA's Microbial 101 

Detection in Air System for Space (MiDASS) project a miniaturised automated system was developed 102 

for the sampling and monitoring of the microbiological quality of air, surfaces, and also potentially 103 
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water and food [13]. The system comprises two modules: sample preparation with nucleic acids 104 

extraction, and module with nucleic acids amplification and detection [14].  105 

In regards to biocontamination analysis onboard spacecraft, Nokivoka et al. [15] reported that in the 106 

Mir orbital station, bacterial concentration in airborne contamination was below 5 x 102 Colony 107 

Forming Unity (CFU)/m3 where bacterial genera Staphylococcus sp., Corynebacterium sp., and 108 

Bacillus species were dominant. The concentration of airborne fungi fluctuated between 2 and 5 x 104 109 

CFU/m3, with Penicillium and Aspergillus as the dominant genera. Contamination levels of surfaces 110 

and equipment on board were also variable, with bacterial and fungal concentrations between 10 and 111 

105 CFU cm2, where the dominant bacterial and fungal genera were closed as for airborne 112 

contamination. Dominant opportunistic pathogenic bacteria were also identified, compiling among 113 

others Flavobacterium meningosepticum, Pseudomonas aeruginosa, Escherichia coli, Klebsiella 114 

pneumoniae, Staphylococcus  sp, etc. Some of these microorganisms have been associated with 115 

infectious diseases in respiratory organs and the digestive tract. Biocontaminants isolated on board the 116 

Mir orbital station are to a great extent comparable [16] to the results obtained from the ISS [17] [18] 117 

[19] [20] [21] [22] [23]. 118 

These reports highlight that the microbiota in inhabited space crafts is mainly associated with surfaces 119 

(often in contact with the crew) and dominated by human automicrobiota, including pathogenic 120 

species. Specific concerns about detected pathogens were pinpointed recently including a high 121 

prevalence of antibioresistant isolates, many of them listed in the ESKAPE list (the six most highly 122 

virulent and antibiotic-resistant human bacterial pathogens: Enterococcus faecium, Staphylococcus 123 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 124 

Enterobacter spp) [26] [27] [28]. 76% of isolates from the Russian segment on the ISS show 125 

resistance to one or more antibiotics, questioning the evolution of this microbiota and its interactions 126 

with astronauts in long-term missions [27].  127 

Recent fundamental studies on bacterial biofilms exposed to microgravity also pinpointed specific 128 

traits of serious concerns for the crew safety in long-term spaceflight missions: i) an important global 129 

regulator involved in the pathogenesis of Salmonella typhimurium was shown to be highly 130 

overexpressed aboard the space shuttle mission STS-115 compared to the ground control condition, 131 
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suggesting hypervirulent physiology of this pathogen under microgravity exposure [29], ii) 132 

Pseudomonas aeruginosa cultivated in microgravity condition (space shuttle missions STS-132 and 133 

STS-135) generate more biomass and adopted a unique canopy-like biofilm structure instead of the 134 

flat architecture observed in terrestrial conditions [30]. The impact of this specific structure on 135 

pathogens persistency and virulence is not elucidated yet, but the knowledge acquired on the links 136 

between biofilm architecture and their functions would suggest specific adaptive processes in these 137 

biological systems exposed to microgravity [31] [32] [33]. To illustrate the impact of microgravity 138 

exposure on P. aeruginosa cell microenvironments, we computed a reaction-diffusion model from 139 

real microscopic images from [30] showing shaper gradients of nutrients for biofilm cells exposed to 140 

microgravity (Figure 2).     141 

Altogether, the accumulation of data from spaceflight habitats and microgravity exposition of 142 

microorganisms suggest that biofilms' emerging properties make them an essential issue to take into 143 

account in long-duration space flights, as they could increase the risk and severity of microbial 144 

infection [34]. The objective of this review is to consider not only the mature biofilm traits in long-145 

term spaceflight habitats, but the whole dynamic of the biosystem, including the populations of cells 146 

migrating on the surface to initiate new biofilms, the populations migrating inside a biofilm matrix 147 

and the populations emigrating from a biofilm to propagate the community (Figure 3). We will also 148 

discuss the phenotypic and genetic migration of these vibrant surface communities that are 149 

continuously adapting and evolving to the specific conditions encountered in these biotopes, with 150 

special reference to crew health, and discuss envision control strategies.  151 

  152 

2. The mechanisms of microbial migration on surfaces  153 

Microorganisms can move across their environment through passive means such as colloidal particles, 154 

but also through highly sophisticated and tightly regulated mechanisms involving specific appendages 155 
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or cellular processes. Each cycle starts with the transport of the organisms from bulk to the host 156 

surface. 157 

2.1 The effect of gravity on bulk microbial transport  158 

In general, the bulk transport of microbes occurs either in gas or liquid phases. In the first case (gas) 159 

there are two possibilities for the microenvironment of microbes depending on the cell size [35]: (i) 160 

aerosols for cells < 1µm such as bacterial spores or viruses, (ii) suspended droplets for cell units with 161 

size > 1 μm. The transported aerosol units could have sizes quite similar to the cell size whereas 162 

several microbes could exist in a liquid droplet of size fairly larger than 1 μm [36] [37]. From now on, 163 

both types of transported units are called droplets (considering their varying amount of liquid). In case 164 

of favourable droplet/substrate interactions, droplet deposits through Brownian motion (i.e., diffusion) 165 

on a substrate, creating a local droplet concentration deficiency in the gas phase. The combination of 166 

the concentration gradient imposed by diffusion and of the gas flow transferring the droplet 167 

constitutes the convective-diffusion droplet deposition mechanism. The deposition is affected also by 168 

other mechanisms that lead to deviation of the droplet motion from the gas motion. Such mechanisms 169 

are the (droplet) inertia plus several external force fields like the gravitational one (leading to 170 

sedimentation), the electrical one (leading to electrical precipitation) and the thermal one (leading to 171 

thermophoresis) [38]. The relative contribution of gravity and Brownian diffusion to the deposition 172 

rate is described by the dimensionless number NG=4πr4(ρp-ρ)g/(3kBT) [39] where r is the droplet 173 

radius, g is the gravitational acceleration, ρp, ρ are the droplet and gas density respectively, kB is the 174 

Boltzmann constant and T is the temperature. Introduction in the equation for NG of representative 175 

sizes yields that for microbes of type (i) gravity plays a negligible to small role in the deposition 176 

efficiency (depending on microbe size). On the contrary, under terrestrial conditions, gravity 177 

completely dictates the deposition behaviour of microbes of type (ii). 178 

The second way of bulk transport is inside the liquid phase. It is noted that motility and several types 179 

of taxi motion may affect the bacteria transport in the bulk. In this section, only the passive bulk 180 
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transport is examined, see section 2.2 for microbial active mechanisms. The deposition rate of 181 

microbes depends not only on bulk transport but also on physicochemical interactions between the 182 

microbial cell and the substrate. These thermodynamic interactions have been described by the 183 

general colloidal model proposed by Derjaguin−Landau−Verwey−Overbeek (DLVO) and reviewed 184 

extensively elsewhere [40]. Some specific domains where the liquid phase bulk transport of microbes 185 

is of paramount importance are wastewater and potable water pipe networks, groundwater flows, deep 186 

bed filtration, and reverse osmosis membrane biofouling. Each particular application determines the 187 

geometry of the involved flow field (pipe, structured or unstructured porous media). In general, bulk 188 

transport is considered quite important for the generation of a biofilm which refers actually to a 189 

biofilm seeding process i.e., transport and deposition of microbes on a clean surface. On the other 190 

hand, bulk transport is not so important for the subsequent stage of biofilm growth (where sometimes 191 

[41] it is even ignored) which is a very complex process driven by its inherent dynamics. So after the 192 

aforementioned clarifications, it is apparent that the passive motion of non-motile microorganisms 193 

toward a surface is driven by similar processes to that of inert colloidal particles. There is an 194 

enormous amount of studies on the deposition of colloidal particles on surfaces [42]. The main bulk 195 

transport mechanism (similar to that discussed before in the context of aerosols) is the combination of 196 

diffusion (Brownian motion) and motion within the fluid (i.e. convective-diffusion mechanism). 197 

Further deposition can occur by causes leading to the deviation between microbe and fluid 198 

streamlines. Such causes are microbe inertia and gravity. The inertia effect is associated with the 199 

Stokes number which is proportional to the square of particle size. Although no detailed calculation of 200 

this number can be performed, as it depends on specific flow velocity and size scales, it can be argued 201 

that inertia is negligible for particle size of a few microns. An additional deposition mechanism can be 202 

found under the name "interception" [43]. This is simply due to the combination of the flow field and 203 

of finite particle size. The relative effect of gravity and diffusion on deposition is described by the 204 

number NG which is discussed before (where ρp, ρ are the microbe and the liquid density, 205 

respectively). Knowledge of the microbe density is required in order to calculate NG. Several values 206 

between 1.03 g/cm3 and 1.14 g/cm3 have been reported in the literature [44]. An average value of 207 

1.085 g/cm3 will be used herein for the calculations. The value of NG is 0.053 for r=0.5 μm and 4.4 for 208 
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r=1.5 μm which means that gravity has only a small contribution in the deposition for a microbe size 209 

of 1 μm but dominates it for a microbe size of 3 μm. Another interesting issue is that most microbes 210 

are not perfect spheres (ovoccoids, bacilli, filaments…). This makes their interaction with the flow 211 

field very complex. Usually, a spheroidal shape is considered [45] for which several hydrodynamic 212 

theoretical approaches can be found in the literature [46]. The shape effect typically leads to larger 213 

deposition rates compared to the theories based on a spherical shape. The above order of magnitude 214 

analysis has been supported by experimental studies on microbe deposition. In [47] it is argued that 215 

the measured deposition rate is higher than the theoretical one based on convective diffusion, due to 216 

gravitational contribution. More significantly, in [48] it was shown that for microbes with an aspect 217 

ratio of 1.91 and an equivalent diameter of 1.7 μm the deposition rate strongly depends on the 218 

direction of gravity with respect to the surface of deposition. In addition, the deposition rate differs 219 

from that taken in the absence of gravitational contribution (achieved by density matching). Finally, it 220 

is found that the microbe deposition rate is larger than that of spherical colloidal particles with a 221 

diameter close to the equivalent diameter of the microbes (attributed to their non-spherical shape 222 

discussed above). It is noted that in [48] the definition of NG is somewhat different than the original 223 

one in [39] having 2 as a constant parameter in the denominator instead of the correct 3. On obstacles, 224 

the interplay between fluid shear and microbial motility allows the accumulation of elongated bacteria 225 

in unattainable locations for passive particles [49]. The effect of gravity on microbe deposition has 226 

also been indirectly confirmed experimentally by observing the spatial distribution of microbes bulk 227 

concentration [50]. Furthermore, the use of fluorescence imaging in [50] allowed the measurement of 228 

increased deposition rates along with the flow. This behaviour is totally opposite to the one predicted 229 

by convective-diffusion, but is in accordance with a sedimentation-based model. In summary, it 230 

appears that gravity may be quite important at least at the stage of biofilm seeding and its absence 231 

would certainly yield different results in many cases. However, it must be stressed that increased 232 

deposition rates due to microbe-specific mechanisms (motility, several taxis) may reduce the 233 

contribution of gravity to deposition.      234 
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In addition to these passive movements, a large proportion of microorganisms can actively propel 235 

themselves into an environment governed by viscosity using different appendices. Microorganisms 236 

motion can be achieved by different mechanisms: swimming, swarming, gliding, twitching, and 237 

sliding [51]. Regardless of the type of motility machinery that is employed, most motile 238 

microorganisms use complex sensory systems to control their movements in response to stimuli, 239 

which allows them to migrate to optimal environments [51]. Of note, most of these surface motility 240 

mechanisms have never been studied in microgravity conditions. 241 

2.2 Swimming in the flow 242 

Microorganism swimming behaviour is possible through the flagella-driven motion. The structure and 243 

functioning of flagella are different between eukaryotic and prokaryotic cells. The prokaryotic 244 

flagellum on which we will focus in this review acts as a reversible rotary motor powered by 245 

transmembrane proton potential (a different proton concentration is a priority for its function). It is 246 

composed of an anchoring basal body, a hook and a long helical filament [52]. The anchoring basal 247 

body acts as the rotary motor of the structure, the hook is the junction structure that connects the 248 

motor and filament, and the flagellar filament is normally a left-handed helix of a length of 5 to 10 µm 249 

and a diameter of 20 nm. When motor rotation is counterclockwise (CCW) the cell body is pushed 250 

and starts its motion in a linear trajectory at an average speed that is for example about 40 µm/s in the 251 

case of E. coli. When motors rotate clockwise (CW), the filaments are placed under right-handed 252 

torsional stress, resulting in a filament poorly defined orientation resulting in tumbles and a phase of 253 

random reorientation. This type of behaviour can be mathematically characterized in an isotropic 254 

environment using the Persistence Random Walk model (PRW) described by Dickinson & Tranquillo 255 

[53]. In this model cells trajectories are described by a succession of uncorrelated movements of a 256 

characteristic duration (the times between two different tumbles). Motility is quantified by three 257 

parameters: root-mean-squared speed, directional persistence time, and random motility coefficient 258 

(analogous to a molecular diffusion coefficient) [54]. The random motility of microorganisms is lost 259 

in the case of an anisotropic environment where cells sense chemical and physical gradients resulting 260 
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in directional motility (taxes). These directional motions are categorized based on the stimuli 261 

depending on chemical (chemotaxis [55], aerotaxis, [56]), thermal (thermotaxis [57]), electromagnetic 262 

(magnetotaxis [58]), and light intensity (phototaxis [59]) special gradients. In an anisotropic 263 

environment, random reorientation after a tumble also occurs, but the different duration of motion 264 

phases is observed among different directions of motion with respect to the direction gradient. A 265 

motion toward the gradient persists for a longer time with respect to the case of motion in the opposite 266 

direction [60]. 267 

Another source of environmental anisotropy can be induced by mechanical stresses, that can be 268 

related to flow directionality or force fields, such as gravity. In particular hydrodynamic shear plays a 269 

key role in biofilm formation and morphology [61]. In recent work, Rusconi et al [62] demonstrated 270 

that shear flow produces spatial heterogeneity in bacterial distribution inside a microfluidic channel. 271 

Shear flow seems to affect bacteria accumulation at the channel wall boundary, in a so-called 272 

“trapping effect”. This effect is a function of the shear rate in a given range of shear. This flow effect 273 

hampers chemotaxis and promotes surface attachment. These results prove that flow influence can 274 

overcome taxes and directly affect the first step of biofilm formation (adhesion on surfaces). In other 275 

recent works, the effect of flow was evaluated not only for its contribution to cell swimming 276 

behaviour but also for its effect on biofilm morphologies [62] [63]. A common observation can be 277 

made from these studies: at low shears, biofilms present a lower cohesion resulting in loose top layers. 278 

Recent studies show that high shear causes a faster diffusion of nutrients and higher incorporation of 279 

bacteria, promoting the formation of more crosslinks in the EPS matrix and, ultimately, a more 280 

mechanically stable biofilm [64]. 281 

In space-relevant applications, specific conditions, such as microgravity, can impact swimming 282 

motility, and bacterial growth, but the research available so far seems to be controversial on this 283 

aspect. In the review of Benoit and Klaus [65], it is found that spaceflight and devices simulating 284 

microgravity enhanced non-motile microbial growth in a liquid medium. A common explanation of 285 

this phenomenon is related to two gravity-related effects: the sedimentation of cells, and the potential 286 

buoyant convection of less dense fluid in the proximity of the cell. In microgravity conditions, both 287 

Jo
urn

al 
Pre-

pro
of

https://www.zotero.org/google-docs/?hdwAqU
https://www.zotero.org/google-docs/?uuiOhD
https://www.zotero.org/google-docs/?hOiner
https://www.zotero.org/google-docs/?0wDP9q
https://www.zotero.org/google-docs/?q5TozS
https://www.zotero.org/google-docs/?H2YtH3
https://www.zotero.org/google-docs/?mpptxf
https://www.zotero.org/google-docs/?nSO1uz
https://www.zotero.org/google-docs/?yMx7iV
https://www.zotero.org/google-docs/?jfq9wq
https://www.zotero.org/google-docs/?Vf53yy
https://www.zotero.org/google-docs/?nqlwN4


 

12 

these phenomena are reduced and as a result, bacterial cells are more uniformly distributed in the 288 

liquid medium, in an environment governed by Brownian diffusion. Motile swimming bacteria seem 289 

to reduce this phenomenon, by actively agitating the surrounding quiescent fluid with flagella rotation 290 

and reducing the difference between 1g gravity and microgravity condition. In contrast with this 291 

hypothesis, a recent study [66] observed three different strains (non-motile Sphingomonas desiccabilis 292 

CP1D  and motile Bacillus subtilis NCIB 3610, Cupriavidus metallidurans CH34) exhibiting the same 293 

cell final concentration after 21 days in space growth, respect to standard ground controls. This 294 

controversy suggests that microgravity effects on bacterial growth and the role of cell motility related 295 

to this aspect are still not well understood, and deserve further investigation. The definition of a 296 

standard protocol to compare bacterial growth and biofilm formation in different gravity conditions is 297 

also still not defined. 298 

Bacterial motility deeply affects the colonization of surfaces both in no-flow and flow conditions, due 299 

to the forces generated by the flagellar-fluid motion at the microscale and the elongation of the cell 300 

body. In no-flow conditions, the surface accumulation of motile bacteria is promoted by the 301 

hydrodynamic interaction between the swimming cell with the solid surface [67]. This phenomenon, 302 

combined with stop events and transient surface adhesions, allows bacteria to attain optimal surface 303 

diffusivity [68]. In flow conditions, hydrodynamic interactions trigger bacterial motion in the 304 

direction opposite to the flow, leading to upstream flagellar swimming [69]. Upstream motility can 305 

also be achieved by surface motility with type IV pili, as shown in P. aeruginosa [70] and 306 

Mycoplasma mobile [71], with a lower velocity compared to upstream swimming. In both cases, the 307 

torque exerted by flow shear rotates the cells around the appendages-free extremity of the body and 308 

orients them facing upstream, resulting in a preferential direction of motion. Upstream migration 309 

grants an advantage in the colonization of flow networks [72] and promotes the segregation of 310 

bacterial species based on their surface motility [73]. Due to its significant implications for bacterial 311 

spreading on surfaces, upstream migration should be accounted for while evaluating the origin of 312 

bacterial contamination in technological settings.    313 

 314 
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2.3 Moving as a free cell or a group on the surface 315 

The multiple strategies employed by bacteria to move on surfaces (swarming, twitching, gliding, 316 

sliding) are important for survival since they govern the dispersal of progenies, and the way bacteria 317 

aggregate into microcolonies under unfavourable conditions, typically starvation or oxygen depletion. 318 

Twitching motility is a key mechanism for many pathogenic strains to propagate on surfaces, either as 319 

individual cells or collectively. This type of motility is found in many biofilm-forming species, such 320 

as Pseudomonas aeruginosa, Neisseria gonorrhea, Myxococcus xanthus or Acinetobacter baumannii 321 

[74] [75]. Twitching allows single cells to move on surfaces at typical speeds of the order of a fraction 322 

of a micrometre per minute and is powered by type-IV-pili (T4P). T4P are thin (~10 nm) contractile 323 

surface appendages, up to several micrometres-long and often polarly localized, with a terminal 324 

adhesin that can act like a hook and promiscuously bind surfaces. T4P are formed by the assembly of 325 

a protein subunit: polymerization/depolymerization cycles at the base of the appendage power 326 

motility, and pili extension-attachment-contraction-detachment cycles propel bacteria through 327 

surfaces [76]  [77][78]. By allowing bacteria to explore surfaces and efficiently colonize different 328 

microenvironments, twitching motility is one of the key strategies allowing bacterial dispersal, 329 

pathogenesis and is also an important ingredient of biofilm development [79] [80] [81]. In flow 330 

conditions, the polar localization of pili results in the upstream migration of adhered bacteria, a 331 

counter-intuitive effect that can provide a dispersal advantage for twitching species [70][73]. 332 

Recently, it has been shown that mechanical signals sensed and transmitted by T4P regulate virulence 333 

factors in P. aeruginosa [82] or direct twitching motility of individual bacteria [83], and suggested 334 

that substrate rigidity could modulate bacterial twitching, thus impacting colony morphogenesis [84]. 335 

Together these findings highlight the importance of mechanical interactions between T4P and their 336 

environment, which could be modified in space conditions.  337 

However, so far it is unclear whether pili-mediated motility is modified under microgravity 338 

conditions, and no experimental nor theoretical study has focused on this specific point.  339 

One basic question is to determine whether the direction of twitching bacterial displacement steps 340 

could be biased by gravity, and thus modified under zero-g conditions. If evaluating the forces at 341 
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stake, it appears very unlikely that gravity could impact the behaviour of a single twitching bacterial 342 

cell: T4P stall forces, which drive bacterial twitching on surfaces, have been measured to range from 343 

50 to over 100 pN. In contrast, the gravitational force on a cell (in air) of volume 3 x 2 x 2 𝛍m3and 344 

density 𝛒=1 g/ml is 𝛒Vg=0.1 pN and could therefore play no role in the twitching process. Following 345 

this reasoning, only cohesive colonies of a few dozen bacteria could be exposed to gravitational forces 346 

comparable to T4P contractile forces.   347 

However, it is entirely possible that microgravity conditions could modify pili expression levels or 348 

activity, thus impacting twitching motility. This is supported by several studies that showed that 349 

signalling pathways are modified under microgravity [85]. 350 

A modified twitching behaviour could have important consequences: twitching impacts surface 351 

colonization, and more generally the early spatial organization of bacteria into colonies, which can 352 

directly impact their tolerance to environmental stresses in general, and in particular to the action of 353 

antimicrobials [86]. Second, by translocating across substrates bacteria can actively modify the 354 

underlying surface by depositing extracellular polymeric substances [87]. This coupling between 355 

environmental conditions (shear flow, substrate mechanical and chemical properties), surface motility 356 

and EPS distribution governs microcolony formation and should thus be considered when designing 357 

space equipment. 358 

Surface motility and dispersal of individual bacteria can also take place through mechanisms that do 359 

not require any active surface appendage: gliding or sliding.  360 

Gliding is common among Myxobacteria and is also observed in a number of phylogenetically diverse 361 

gram-negative, non-flagellated bacteria [88]. It relies on the movement of adhesion complexes along 362 

helical tracks on the cell surface, powered by proton-activated molecular motors [89]. Gliding propels 363 

the cell body forward at several micrometres per minute. It is known that gliding cells deposit a layer 364 

of slime on the substrate, and the role of this thin slime layer as a lubricant for cell displacement is 365 

well-established. In addition, the trafficking of adhesion complexes on the helical MreB scaffold 366 

results in sinusoidal deformations of the cell surface. Recently, Tchoufag et al. proposed that these 367 

periodic deformations, when transmitted to the underlying elastic slime layer, result in local pressure 368 

gradients that generate the overall thrust force experienced by bacteria [90]. Interestingly, their 369 
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elastohydrodynamic model accounts for the known substrate-rigidity dependence of gliding motility, 370 

which decreases on soft substrates, similar to twitching [84].  Stall forces of gliding molecular motors 371 

were measured around 12 pN, resulting in total gliding forces up to 60 pN (with ~ 5 motors/bacteria) 372 

[91].  373 

In conclusion, the forces exerted by individual gliding bacteria are similar to the ones involved in 374 

twitching motility, and thus the physical mechanisms that govern these processes are unlikely to be 375 

directly influenced by gravity. However, indirect regulation of these phenomena could exist in space 376 

conditions, as a result of changes in bacterial phenotypes (e.g.  T4P or EPS expression levels).  377 

Once they form a microcolony, bacteria can collectively slide on surfaces thanks to division and 378 

growth: dividing bacteria at the centre of a colony generate pressure, pushing their neighbours 379 

outwards. The progression of the edge of the colony can be facilitated by the production of 380 

biosurfactants that reduce friction [92] [93], EPS that trigger osmotic swelling of the biofilm [94] or 381 

capillary forces at the air/liquid interface [95]. This gives rise to very diverse colony morphologies, 382 

including fingering instabilities [96]. To our knowledge, this phenomenon has not been specifically 383 

studied under microgravity or 0g conditions. Because bacteria adhere to each other and to the 384 

underlying substrate, growth gives rise to local stress build-up in the colony, which relaxes through 385 

rapid reorganization events. Maximal adhesion forces in these “focal adhesions” under spreading 386 

colonies have been measured experimentally of the order of  50 to 100 pN [97] -again in the same 387 

range as the forces involved in twitching or gliding motilities.  388 

Could the presence of gravity directly impact macroscopic biofilm spreading? The capillary length 389 

√(γ/(Δρg)) of a water droplet under 1g conditions is ~3mm, meaning that gravity would only deform 390 

droplets larger than this characteristic size. Considering that biofilms have a density close to water’s, 391 

and even if the production of biosurfactants decreased surface tension, the capillary length would not 392 

go under a few 100 µm. This means that only thick, mature biofilms could potentially be deformed by 393 

gravity under their own weight. The structural differences observed for P. aeruginosa biofilms in 394 

spaceflight conditions [] are most likely due to nutrient or oxygen availability, or changes in the 395 

motility of bacteria, rather than the absence of a direct deformation of biofilms by gravitational forces.   396 
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In specific conditions, billions of bacteria can migrate cooperatively from a colony across distances of 397 

centimetres in a matter of a few hours through a phenomenon called swarming [98]. Swarming 398 

motility is a process by which bacteria can rapidly advance on moist surfaces in a coordinated manner 399 

[99]. It is a multicellular, flagella-mediated surface migration of bacterial groups typically involving 400 

surfactant secretion and an increase in flagella numbers [100] [98]. In Bacillus subtilis, this 401 

developmental process is observed on semi-solid agar (0.6%–1% agar) and has been shown to be 402 

completely dependent on flagella and surfactin production [101]. Traditionally, dispersal by microbial 403 

swarm propagation has been studied in monoculture, but there is evidence that swarming 404 

microorganisms can transport other species by forming multispecies swarms with mutual benefits 405 

[102]. 406 

 407 

2.4 Active microbial movements in biofilm communities, dispersion 408 

and hitchhiking 409 

Biofilm structures were initially described as a sessile three-dimensional assemblage of 410 

microorganisms immobilized in an EPS organic glue [103]. The combination of new visualisation 411 

tools such as confocal laser scanning microscopy (CLSM) along with genetically engineered 412 

fluorescent reporter strains allowed the discovery of unexpected mobile subpopulations within 413 

biofilms. In the early 2000s, Tim Tolker-Nielson and his collaborators demonstrated in a series of 414 

articles on Pseudomonas aeruginosa the migration of a subpopulation of cells to the cap of 415 

mushroom-like biofilm structures [104]. These movements involved type IV pili and were observed 416 

on the interface between the biofilm and the bulk fluid [105]. The biological role of death and lysis in 417 

biofilm development and the existence of hollow voids containing cannibal swimming subpopulations 418 

of cells involved in active cell dissemination was also pinpointed [106] [107]. Several authors 419 

demonstrated that non-flagellated bacteria were also able to actively disperse the biofilm population. 420 

This is the case of the coccoid pathogen S. aureus for which the induction of the agr system in 421 

established biofilms detaches cells through a dispersal mechanism requiring extracellular protease 422 
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activity  [108] [109]. More recently, it was shown that flagella-propelled motile bacilli were able to 423 

swim and create transient pores within the biofilm matrix, increasing the macromolecular transfer 424 

with the bulk phase [110] [111] [112]. While these bacilli swimmers can deliver locally several types 425 

of effectors, it was shown that they can actively transport several types of adsorbed organisms taking 426 

advantage of a “free ride” inside the biofilm. Described “hitchhikers” on the flagella of motile bacilli 427 

comprise several families of non-motile organisms such as the bacterial pathogen Staphylococcus 428 

aureus [113], fungal spores [114] and bacteriophages [115] [116].   429 

 430 

3.  Emerging properties of surface-associated 431 

migrating communities 432 

 433 

Understanding how microorganisms adapt to stressful space conditions has been the focus of many 434 

studies. Most studies involved single bacterial species, often pathogenic, including various 435 

Pseudomonas, Enterobacteria such as E. coli and Salmonella, Actinobacteria, and bacteria of the 436 

Streptococcus and Enterococcus genera [117] [118] [119] [120] [121] [122] [30] [123] [124] [125]. 437 

Non-pathogenic species such as the soil bacteria Bacillus subtilis, the fermentative bacteria 438 

Lactococcus lactis or the nitrogen-fixating bacteria Rhodospirillum rubrum have been also sent to 439 

space [126] [127] [128] [129] [130]. Experiments conducted on spaceflight as well as on ground-440 

based simulators established that microgravity triggered various physiological responses by affecting 441 

bacterial cell growth, cell morphology, gene expression, gene transfer, virulence, drug resistance, 442 

biofilm formation, and secondary metabolism [117] [121] [130] [125] [131]. 443 

  444 
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3.1 Impact of spaceflight conditions on the adaptation of bacterial 445 

populations 446 

  447 

Phenotypic changes with potential implications for astronauts have been reported in various bacterial 448 

species exposed to low-sheared modelled microgravity (LSMM). Growth under simulated 449 

microgravity conditions increased the cell density of Stenotrophomonas maltophilia, Lactobacillus 450 

acidophilus and Pseudomonas aeruginosa [30] [130] [132]. Notably, several studies conducted under 451 

space flight conditions have linked growth rate to bacteria motility, suggesting that the effect of 452 

microgravity could be indirectly caused by a lack of convective flows altering the diffusional access 453 

to nutrient and affecting the immediate cellular metabolic environment [30] [131]. A direct 454 

consequence of this hypothesis is that this response should be counteracted by motility, as 455 

corroborated by a comparative study between a wild type and a ΔmotABCD motility-deficient mutant 456 

of P. aeruginosa exposed to a space flight environment [30] (Kim et al., 2013b). In Streptococcus 457 

mutans, it was shown that genes involved in carbohydrate metabolism, translation or stress responses 458 

were differentially expressed in simulated microgravity conditions, with potential effects on the 459 

cariogenic potential of this bacterial species [133]. Phenotypic changes were also observed in E. coli 460 

when cultured in space, along with an increase in cell size, cell counts, and cell envelope thickness. 461 

Compared to earth, E. coli cells challenged to microgravity also exhibited higher resistance to 462 

gentamicin sulfate coupled with a unique ability to generate numerous outer membrane vesicles 463 

(OMG), these two phenotypes being connected to a change in membrane fluidity [134] [125]. Long-464 

term exposure to microgravity indeed affects bacterial virulence as well as susceptibility to diverse 465 

antibiotics and drugs in many bacterial species. Increased virulence has been observed in bacteria 466 

pathogens grown in simulated microgravity and space conditions [135] [136] [137]. After exposure to 467 

simulated microgravity in rotating-wall vessel bioreactors, the pathogen Salmonella typhimurium 468 

became more virulent in mouse or cellular infection models [138]. In their study, Gilbert and al. 469 

revealed that the opportunistic pathogen Serratia marcescens was more lethal to Drosophilia 470 
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melanogaster after exposure to true spaceflight conditions [135]. Importantly, they also established 471 

that this characteristic did not persist after the cells resumed normal growth under ground conditions. 472 

This observation suggests that microgravity can induce transient physiological changes in 473 

microorganisms. 474 

Another major concern is that prolonged exposure to microgravity conditions triggers increased 475 

antibiotic resistance, as documented for E. coli, S. aureus, Streptococcus pyogenes, P. aeruginosa, or 476 

Enterococcus faecalis [139] [140] [137] [141] [125] [142]. It was proposed that adaptive resistance to 477 

antibiotics under low gravity in S. aureus and in E. coli could be associated with modifications of the 478 

cell envelope such as an increase in membrane fluidity and cell wall thickness [143] [144] [125]. 479 

Short-term microgravity (<50h) also demonstrated the potential to affect E. coli resistance to 480 

antibiotics from different families including gentamicin, ampicillin, nalidixic acid, penicillin G or 481 

chloramphenicol [145] [146] [147]. 482 

In addition to phenotypic changes, the question of the genetic evolution of bacterial populations under 483 

spaceflight and microgravity conditions and its role in the emergence of particular bacterial 484 

phenotypes, such as resistance to antimicrobials is particularly of concern in a spacecraft environment 485 

during long-term missions. Interestingly, mutation frequency and/or spectrum of mutations in the 486 

rpoB gene involved in rifampicin resistance was modified in Staphylococcus epidermidis and Bacillus 487 

subtilis cultures grown in spaceflight environments (ISS) by comparison to ground control cultures 488 

[148] [149]. That supports the idea that space environments can induce unique stresses on bacteria, 489 

leading to modulations in their mutagenic potential. Through a pangenomics meta-analysis of 189 490 

genomes of Bacillus cereus and Staphylococcus aureus from different origins, Blaustein et al. (2021) 491 

[150] identified genomic signatures specific to International Space Station (ISS) bacteria. Functions 492 

related to biosynthesis, materials transport, or stress response were enriched in ISS-derived strains 493 

suggesting their involvement in bacterial survival under ISS selective pressures. 494 

  495 
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3.2 The importance of biofilm lifestyle in adaptive migration of 496 

bacterial populations 497 

  498 

Biofilms are dynamic multicellular edifices and are recognized as a collective strategy for 499 

microorganisms to adapt and survive face changing environmental conditions [31]. It is now 500 

acknowledged that exposure to the space environment enhances biofilm biomass and thickness in 501 

most bacteria [120] [30] [151] [140] [132] [152] [131] [125]. The increased propensity to develop 502 

biofilms in space has been first discovered in P. aeruginosa [151]. The typical column-and-canopy-503 

like architecture revealed during the space shuttle Atlantis missions illustrated the complex selective 504 

forces at play that shaped the 3D structure of biofilms when exposed to microgravity [153] [151]. The 505 

formation of such structures requires flagella-driven motility but is not dependent on the carbon 506 

source [154]. Alteration of biofilm mass, composition, and architecture, combined with abnormal EPS 507 

distribution has been also reported for Streptococcus mutans grown under simulated microgravity 508 

[155]. Substantial modifications of biofilm architecture and colony morphology, associated with an 509 

increase in virulence and resistance to environmental stress and antifungal (amphotericin B), were 510 

also observed for Candida albicans, an opportunistic fungal pathogen, grown in low-shear modelled 511 

microgravity bioreactors [156] [157]. To illustrate the effect of microgravity on biofilm cell 512 

metabolism we simulated the growth of microalgae biofilms in both terrestrial and microgravity 513 

conditions (Figure 4). These simulations suggest that micro-gravity impacts the spatial structure of 514 

the biofilm and therefore the resulting substrate consumption and the overall biofilm growth. 515 

One key component of the survival strategy of the biofilm community is the ability to withstand 516 

externally applied mechanical stresses, thanks to the viscoelastic nature of the EPS matrix. When a 517 

force is applied, biofilms instantaneously undergo an elastic deformation as solids and then slowly 518 

flow as viscous fluids, further spreading on surfaces while maintaining their structural integrity [155] 519 

[156]. The viscoelastic behaviour increases the surface spreading [157] and allows the formation of 520 

biofilm filaments suspended in the bulk fluid, known as biofilm streamers [159]. The EPS matrix 521 
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supports the mechanical stability of the biofilm through physicochemical interactions, and EPS 522 

biochemical composition determines its mechanical behaviour [159] [160]. Biofilm mechanical 523 

behaviour is key to the impact of biofilms in technological contexts, including spaceflights. However, 524 

while the impact of microgravity on biofilm architecture and composition has been elucidated, the 525 

microgravity-induced changes in biofilm’s mechanical behaviour are still understudied. Measuring the 526 

ability of biofilms to withstand stress would provide information and indicates future directions for 527 

the design of biofilm-cleaning tools. Additionally, the mechanical protective role of the matrix is 528 

largely decoupled from the viability of the cells themselves, so even after successful antimicrobial 529 

treatment, the detrimental effects of biofilms due to fouling persist beyond the death of the cells. 530 

In multispecies communities, a consequence of microgravity-induced modification of biofilm 531 

structure is a modification of competitive interactions, resulting in a modification of ecological 532 

balance and an alteration of community functions. This was illustrated by the fitness increase of S. 533 

mutants over S. sanguinis when mixed under simulated microgravity compared to ground level [161] 534 

which would promote the initiation of dental caries in dental biofilms. Similarly, by performing a 535 

shotgun metagenomics analysis of ISS environmental surfaces, Singh et al. [162] demonstrated a 536 

specific composition of ISS microbial communities compared to earth analogous. Moreover, the 537 

authors reported an increase in antimicrobial resistance and virulence gene factors over the period 538 

sampled showing the specific adaptation of functional profiles of ISS microbial surface-associated 539 

populations [162]. Overall, these observations emphasize the close interplay between the three-540 

dimensional organization of biofilm, its plasticity and the modulation of functional properties in 541 

response to microgravity conditions. 542 

Furthermore, biofilm structural changes in spaceflight environments are likely to affect how bacteria 543 

evolve toward specific genotypes. Biofilms are considered incubators for microbial genetic diversity 544 

as they promote the process of diversity generation and protect genetic diversity [163]. This mainly 545 

arises from the multiple micro-environments produced by the chemical gradients and the protective 546 

three-dimensional structure. This phenomenon plays a central role in microbial adaptation and in the 547 

“migration” toward specific functions expressed at the scale of the whole community such as 548 
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antimicrobial resistance. This feature, in combination with the fact that spaceflight conditions can 549 

independently affect mutagenic potential in bacteria [148] [149] underlines the need to better 550 

understand the adaptation of surface-associated migrating communities to spaceflight environments. 551 

More generally, biofilms represent a spatial and structural advantage for cell-to-cell communication 552 

through both metabolic and genetic exchanges. Indeed, in bacterial populations, the emergence of 553 

functional traits is much associated with the horizontal transfer of genetic determinants. Considering 554 

antimicrobial resistance, the emergence of resistance at the community scale relies on their propensity 555 

to exchange plasmids, transposons and other genetic determinants considered reservoirs for antibiotics 556 

genes. In a recent study, Urnaniack et al. established that microgravity stimulated the horizontal 557 

transfer of two antibiotic resistance genes, blaOXA-500 and isaba1, from Acinetobacter pittii, in four 558 

S. aureus strains, thus posing the hypothesis that interspecies genetic transfer could also occur 559 

onboard of a space station [141]. This study points to the potential role of other modes of genetic 560 

transfer such as natural competence and phage transduction in spreading resistance genes and 561 

pathogenicity determinants in space. The facilitation of horizontal gene transfer in biofilms is 562 

proposed to be part of the mechanisms responsible for the dissemination of virulence and antibiotic-563 

resistance genes in space [164] [137]. 564 

The microbial stress response to microgravity is thus multifaceted. Understanding how microbes 565 

integrate information from a microgravity environment to elicit multiple and interconnected 566 

phenotypes requires understanding at a system level. Although the effect of microgravity in biofilm 567 

formation is well documented in the literature, knowledge remains to be gained to understand the 568 

decision-making genetic circuits underlying this lifestyle switch. 569 

 570 
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3.3 The effectors and what we know about their expression in space 571 

conditions  572 

Deciphering the principles underlying the cellular response to altered gravity is expected to provide 573 

important information for the development of countermeasures to control bacteria growth, virulence, 574 

antimicrobial resistance and biofilm formation in space. Whole-genome gene expression profiling 575 

offers the prospect of gaining insight into gene regulatory pathways and elucidates the effectors 576 

involved in adaptation to microgravity. In the last decade, advances in omics approaches have enabled 577 

the generation of data to identify potential microgravity-sensitive genes. Several studies made under 578 

real or simulated microgravity environments provided the differential-gene expression analysis of 579 

bacterial genomes, which partly supported the observed phenotypic changes [120] [165]. 580 

Transcriptomic analysis in various bacteria exposed to altered gravity highlighted the differential 581 

expression of genes involved in motility and transport, including multidrug efflux systems and metal-582 

ion transport and utilization. Confusingly, different E. coli strains exhibited either an increase or a 583 

decrease in the expression of flagellar and motility-associated genes as well as chemotaxis-associated 584 

genes under simulated microgravity [166] [167] [168]. These different responses were reflecting their 585 

distinctive motility capabilities, their physiological stages in the experiment, as well as the different 586 

nutrient composition of the medium tested [166] [167] [168]. In a different approach, whole-genome 587 

sequencing of E. coli cells exposed to LSMMG microgravity for up to 1000 generations revealed loss-588 

of-function mutations affecting genes of the flagellar, motility and chemotaxis regulons [169] [170]. 589 

Genes encoding proteins that compose the flagella apparatus were reproductively down-regulated in 590 

the pathogen Salmonella typhimurium when exposed to spaceflight or to simulated microgravity 591 

conditions [171] [172]. Real and simulated microgravity commonly elicited the differential expression 592 

of chemotaxis genes in the gram-negative pathogen P. aeruginosa [119] [173]. All these studies 593 

underlined the importance of motility and chemotaxis in bacterial adaptation to microgravity 594 

conditions. Lately, Su et al., used an integrated multi-omic approach combining transcriptomic and 595 

proteomic to investigate the impact of long-term exposure to microgravity on Stenotrophomonas 596 
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maltophilia physiology and metabolic responses [132]. Gene ontology enrichment analysis revealed 597 

that simulated microgravity conditions affect several processes related to cell adhesion, motility and 598 

biofilm formation. Most particularly, genes encoding proteins that compose the T4P pilus machinery 599 

and two-component systems (TCSs) are up-regulated, in keeping with the physiological changes 600 

observed under microgravity such as enhanced biofilm formation ability, and increase growth rates 601 

[132]. 602 

Transcriptomic study in the gram-positive bacteria Streptococcus pneumonia revealed that exposure 603 

to microgravity conditions up-regulated many genes involved in the cell envelope biogenesis, DNA 604 

replication, recombination and repair as well as ABC-type multidrug transport systems [120]. 605 

However, a unique comparative transcriptomic analysis from a B. subtilis strain grown under identical 606 

conditions aboard ISS in two separate spaceflight experiments BRIC-21 and BRIC-23, provided 607 

invaluable data on the bacterial response elicited under microgravity [165]. This study revealed higher 608 

levels of transcripts related to anaerobic respiration, the production of secondary metabolites (e.g; 609 

siderophores), the synthesis of antimicrobials (e.g. bacteriocins), as well as the utilization of various 610 

nutrients  [165] (figure 5a). These observations correlated with the limitation in oxygen and nutrient 611 

transport due to the lack of convection in the absence of gravity, as mentioned above. However, one 612 

of the most interesting outcomes of this comparative study was the overexpression of genes involved 613 

in biofilm and motility pathways [165]. Although the domesticated B. subtilis strain 168 used in these 614 

experiments was not prone to form strong biofilms, clusters of biofilm-related genes were 615 

significantly upregulated in the two experiments, such as parts of the epsA-O operon, encoding the 616 

exopolysaccharide production machinery, and genes of the tapA-sipW-tasA operon encoding 617 

important components of the biofilm matrix (figure 5a). Another regulatory function related to the 618 

biofilm lifestyle switch is also highlighted by the increased expression of the sivA, B and C genes 619 

encoding factors that modulate the activation of the sporulation master regulator Spo0A  [174]. 620 

Notably, sivB encodes the BslA protein, another component of the extracellular matrix of the B. 621 

subtilis biofilm [175]. Finally, illustrating another form of motility behaviour, the up-regulation of the 622 

srfAA-srfAD operon, involved in the production of surfactin, suggested an increased ability of Bacillus 623 
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to swarm across solid or semi-solid surfaces under microgravity. An effect of microgravity on 624 

swarming motility was also strengthened by the up-regulation of the entire yrkEFHIJ operon, 625 

encoding genes of unknown function but found to be specifically expressed during swarming 626 

conditions [176] [177]. 627 

 628 

3.4 The role of global regulators in the adaptive response to space 629 

conditions 630 

Global RNA-seq based gene expression and proteomic analysis uncovered hundreds of genes 631 

differentially expressed under low gravity compared to earth gravity conditions, part of them being 632 

involved in cellular pathways governing the observed physiological responses. Their role in bacterial 633 

adaptation to microgravity might be direct or indirect. Bacteria adapt to a stressful environment by 634 

reprogramming gene expression to produce the necessary effectors to cope with stress. Responses 635 

involved key regulators that allow the rapid modulation of the expression of a wide range of genes. In 636 

experiments on rotating HARV (high aspect ratio vessel bioreactors) in Salmonella, the LSMMG 637 

regulon comprises 163 genes, involved in various cellular processes, part of them known to belong to 638 

other specific regulons governed by global regulators [172]. The analysis identified two chromatin-639 

associated proteins, HimA and DPS, able to affect local gene expression by modulating DNA 640 

topology [178]. Among other transcriptional factors, the ferric uptake regulator Fur is also involved in 641 

the LSMMG response [172]. In P. aeruginosa, the alternative sigma factor AlgU controls genes 642 

involved in alginate biosynthesis and oxidative stress [179]. AlgU has been found to play a role in the 643 

adaptive response to LSMMG, in agreement with the observed enhanced biofilm and virulence 644 

phenotypes [119]. Recently, the global regulator Hfq has emerged as a recurring space-responsive 645 

gene in E. coli, S. typhimurium, Vibrio fischeri and P. aeruginosa [119] [173] [180] [29]. Hfq is a 646 

RNA-binding protein acting as a global post-transcriptional regulator of gene expression in bacteria. 647 

Hfq acts as a RNA-chaperone, stabilizing RNA-RNA interactions, such as those occurring between 648 
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small regulatory RNAs (sRNAs) and their messenger RNA (mRNA) targets, thus modulating their 649 

function by multiple mechanisms. Owing to its functional flexibility, Hfq participates in regulating 650 

various bacterial processes, including motility, biofilm formation and virulence [181] [29] [182]. Hfq 651 

expression was found consistently down-regulated in several space transcriptional studies [183] [119] 652 

[173] [180] [184] [29] [172]. Considering that most of the flagellar genes are regulated through Hfq-653 

dependent sRNA in many Gram-negative pathogens, Hfq is thus arising as a central player in motility 654 

behaviour under microgravity stress across gram-negative bacterial species [183] [173]. 655 

Contrastingly, Hfq was not identified in the transcriptomic profiling of B. subtilis in space conditions 656 

[165]. In this Gram-positive bacteria, the Hfq protein is not essential although it plays an important 657 

role in survival during the stationary growth phase [185] [186]. Compared to Gram-negative bacteria, 658 

Hfq in B. subtilis Hfq does not play a central role in post-transcriptional regulation and its absence 659 

alters the expression levels of only a limited number of genes. Most particularly, genes involved in the 660 

anaerobic respiration and fermentation pathways and belonging to the ResD/Rex regulons, are up-661 

regulated in a ∆hfq mutant [185]. Interestingly, the comparative analysis of the B. subtilis 662 

transcriptomes from the BRIC-21 and BRIC-23 spaceflight missions revealed a down-regulation of 663 

expression of many operons regulated by ResD (6 over 17) and Rex (5 over7) (figure 5b). This 664 

observation suggests a less direct role of the Hfq-mediated response to space conditions. Further 665 

studies are required to decipher the genetic regulatory network at play during the adaptation of a 666 

bacillus cell to microgravity stress. 667 

  668 

4.  Controlling microbial migrating communities on spaceflight 669 

habitats surfaces 670 

 671 

In an event of a spaceflight biocontamination outbreak, such as the fungal contamination of panel 672 

fronts in the “hygiene area” of a functional cargo module or clogged lines in SRV-K line of the 673 
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condensate recovery system (Figure 1), remediation actually relies on cleaning and disinfection with 674 

fungistat wipes, air filtration with POTOK 150MK system, or disassembly and replacement of 675 

contaminated payload [17]. However, these strategies are not feasible for extended long-term human 676 

missions to space and special concern is raised about microbial biofilms because of their difficulty to 677 

be eliminated due to their increased resistance to antimicrobials. Indeed, biofilms are the most 678 

resilient form on life on Earth and currently available coatings and antibiofilm technologies, are not 679 

yet able to permanently avoid biofilm growth. This limitation is relevant both on Space and Earth 680 

applications. A possible approach is to adopt combined strategies to delay as long as possible biofilm 681 

formation (coatings, biocides, shear stresses…). In a recent review, H.-C. Flemming concluded that to 682 

really solve biofouling problems, it is necessary to learn how to live with biofilms and mitigate their 683 

detrimental effects instead of trying to eradicate them [188]. Hence, new strategies are being 684 

investigated to prevent microbial migrating communities on surfaces in order to reduce microbial risk 685 

to crew health, safety, and performance during human exploration in space. In this regard, Zea et al. 686 

[3] summarized potential biofilm control strategies for extended human spaceflight missions 687 

including, biocides, coatings, ionizing radiation, biofilm detachment, biocontrol as well as chemical 688 

removal of nutrients. It was pointed out that solutions developed against biofouling of marine surfaces 689 

and medical devices could bring insights useful for biofilm control on spacecraft. The aim is to 690 

develop broad-spectrum antibiofilm surface treatments for confined space stations which would be 691 

easy to upscale. Representative coatings for biocontamination control are typically based on metal 692 

ions (silver(I), copper(II), tributyltin), titanium alloys and mixtures, synthetic polymers (e.g. 693 

polyethylene glycol PEG) that can be copolymerised with hydrophobic polydimethylsiloxane (PDMS) 694 

or biopolymers such as poly(3-hydroxybuyrate-co-3-hydroxyvalerate) [189] [190] (Table 1). The 695 

active molecules can be deposited or chemically grafted on the surface. It can also be formulated to be 696 

released progressively, locally or on-demand [191]. Special emphasis is put on the lack of toxicity and 697 

long-term stability under space station conditions. Wang et al [192] reported the strict standards that 698 

antimicrobial coatings must-have for space application, according to the European Cooperation for 699 

Space Standardization (ECSS). Forbidden powder (e.g. Cd, Zn, Hg, polyvinyl chloride and 700 

radioactive materials (European Cooperation for Space Standardization, https://ecss.nl) and key 701 
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parameters such as toxicity, flammability, stability, effectiveness for the application, maturity of use, 702 

program/user acceptability, and material compatibility are taken in the exam. A strong limitation in 703 

the validation of these antimicrobial surfaces is the distance between laboratory experiments (short-704 

time scale, monospecies contamination in rich synthetic media…) and environments existing in the 705 

real world [188]. Moeller and collaborators designed the ISS experiment “BIOFILMS” [193] [25] tol 706 

investigate the formation of biofilms on various antimicrobial surfaces in a real space station 707 

environment. These materials include inert surfaces such as stainless steel, as well as antimicrobial 708 

active surfaces such as copper-formulated materials. Antimicrobial compounds involved in those 709 

formulations raised major concerns as their continuous use may lead to the emergence of 710 

antimicrobial resistance (AMR) [194]. In this context, coatings free of heavy metals are now under 711 

investigation in the framework of ESA’s NBactSpace project implemented by the Luxembourg 712 

Institute of Science and Technology [192].  713 

 714 

A promising, biomimetic, method for biofilm prevention is based on the example of several natural 715 

super-repellent surfaces [195] which exhibit non-sticking properties by combining hierarchical 716 

micro/nano-structures with low surface energy agents. The most prominent example is the surface of 717 

the lotus (Nelumbo nucifera) leaf which corresponds to a very large water contact angle (>150°) and 718 

small sliding angle and contact angle hysteresis (<10°) [196] thus exhibiting both 719 

superhydrophobicity and extreme water repellency [197]. Lotus-like phenomena are typically studied 720 

in three-phase systems which include air, a liquid and a solid). However, the same concept can be 721 

applied on a three-phase system consisting of microbes, a liquid medium and a solid surface. Several 722 

methods have been developed to produce lotus leaf-like materials which have the potential to be used 723 

as surface coatings for biofilm prevention [198], according to a two-step process [199]: First, a non-724 

sticking surface can resist or prevent the initial attachment of microbes. Second, even if there are 725 

some microbes adhered to the surface, these can be easily removed by slight external forces e.g. 726 

wiping, wind, and water impact [199]. According to these concepts, superamphiphobic materials, 727 

which show extreme non-sticking properties as they have the ability to repel not only water but 728 
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virtually any liquid, may offer enhanced protection against biofilm formation [200]. It is stressed, 729 

however, that non-wetting conditions do not always promote microbe repulsion. For example, Yuan et 730 

al. [201] showed that polystyrene surfaces with a moderate water contact angle of about 90° produced 731 

the highest level of bacterial (E. coli) adhesion whereas limited bacterial binding was observed on 732 

both superhydrophobic and superhydrophilic structured polystyrene surfaces. Moreover, it is well 733 

known that superhydrophilic and underwater superoleophobic (SUS) materials have in general 734 

antifouling properties as they repel organic materials [202]. Prevention of biofilm formation by 735 

antiadhesive surfaces can be supplemented by a biocidal step. This is of particular interest in the case 736 

of brush coatings that have been shown to increase antimicrobial action in addition to reducing 737 

bacterial adhesion forces with the material [203]. Some specific material also exhibits strong 738 

antibacterial activity without being formulated with biocides. Ivanova et al. [204] showed that 739 

bacteria entering in contact with the array of pillars of the superhydrophobic surface of cicada 740 

(Psaltoda claripennis) wings are inactivated within a few minutes. Clearly, this bactericidal ability of 741 

the cicada wing surface is a physicomechanical effect as it does not involve the action of any biocide 742 

[204]. With similar biomimetic nanopatterned surfaces, Michalska et al. demonstrated the dependence 743 

upon pillar density and tip geometry on the mechanism of bacterial killing [205]. In a recent study, Pal 744 

et al. [206] produced a highly hydrophobic laser-induced graphene film that can be implemented on 745 

reusable surgical protective masks. Several reports described the combination of superhydrophobic 746 

coatings with biocidal agents embedded within the structured coatings [199] including quaternary 747 

ammonium compounds [207], metal oxydes [199], N-halamines [208] and natural antibacterial agents 748 

[209].  749 

Several papers reported the possibility to interfere with microbial processes involved in adhesion, 750 

migration and biofilm maturation. Many bacteria produce extracellular adhesins or appendages to 751 

mediate their adhesion to the surface. Several coatings containing pilicide molecules such as disperse 752 

red 15 or verstatin were found efficient to interfere with the pili function and reduce pathogen fixation 753 

[210] [211]. Drugs specifically interfering with flagellar motor assembly and function (agaric acid, 754 

phenamil, amiloride) were also reported and could be integrated into such targeted approaches [212] 755 
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[213]. A very exciting direction in these applications is to interfere with microorganisms signalling 756 

systems and decision-making. Each cell at a specific period integrates hundreds of environmental 757 

signals to adopt a specific cell fate. Coatings integrating molecules perturbating the Quorum-sensing 758 

(QS) response are already available (Table 1) and [214]. By preventing the biofilm QS-maturation, 759 

several important mechanisms of persistence could be bypassed. The cyclic-di-GMP pathway could 760 

be similarly targeted to prevent the physiological transition from planktonic to biofilm in many 761 

bacterial species. In recent years, several plant metabolites and their formulations (resveramax, 762 

cinnamic acid,…) have been identified in motility-swarming-biofilm inhibitors with the advantage of 763 

being environmentally friendly and poorly toxic for humans in contact [213].    764 

A microbe-based preventive strategy to protect surfaces from being colonized by unwanted 765 

microorganisms is based on guided microbial ecology and interspecies competition. The concept here 766 

is to consider that if any surface supports microbial life it is worth settling selected beneficial 767 

organisms able to exclude unwanted microorganisms. This positive biofilm approach is applied in a 768 

One Health context to limit microbial pathogens on the surface of livestock buildings [215]. This 769 

biological approach has shifted from labs to farms in recent years with various commercial products 770 

now on the market in several countries paving the way for applications in spatial missions [216].  771 

When preventive approaches failed and a biofilm is formed, the presence of the extracellular cellular 772 

matrix, the spatial organisation of the communities and the associated diversification of cell types will 773 

generate emergent properties of the community and recalcitrance to the action of most conventional 774 

disinfection treatments [4] [32]. It is frequently stated in scientific publications that microorganisms in 775 

a biofilm are typically 1000 times more resistant to biocide action than their planktonic counterparts. 776 

While the mode of action of disinfectants depends on the type of biocide employed [224], the low 777 

efficiency on surface-associated biofilm communities is still not fully understood. It is now evident 778 

that biofilm tolerance to disinfectant is intimately related to the three-dimensional structure of the 779 

biofilm, heterogeneous within the biostructure and multifactorial, resulting from an accumulation of 780 

different mechanisms [4]. To overcome these disinfection limitations, an attractive strategy is to re-781 

sensitive the biofilm population by targeting the matrix. EPS-degrading enzymes can help disrupt the 782 

Jo
urn

al 
Pre-

pro
of

https://www.zotero.org/google-docs/?EFSRTu
https://www.zotero.org/google-docs/?umkeUW
https://www.zotero.org/google-docs/?qK4HPK
https://www.zotero.org/google-docs/?g5yeKh
https://www.zotero.org/google-docs/?D2gG4L
https://www.zotero.org/google-docs/?WPRX6C
https://www.zotero.org/google-docs/?IZtxk5
https://www.zotero.org/google-docs/?JdySGr
https://www.zotero.org/google-docs/?VSFFHF


 

31 

matrix for more effective removal and disperse bacteria in biofilms for more effective killing when 783 

combined with antimicrobial agents [225]. Enzyme treatments are mainly used in the medical context 784 

to target recalcitrant biofilm infections by undermining the protective role of the matrix and thus 785 

increasing the effectiveness of traditional antimicrobial therapies [226]. Exopolysaccharide-degrading 786 

enzymes, such as glycoside hydrolases and glucanohydrolases, have been used to degrade a mixed-787 

species S. aureus and P. aeruginosa biofilm grown in a mouse model of chronic wounds [227] and to 788 

prevent the formation of pathogenic oral biofilms [228]. Since eDNA is a broadly conserved EPS 789 

component [228], DNases have also proven to be effective in disrupting biofilms [229], both in vivo 790 

and in vitro [230]. In particular, human-derived DNase I is exploited to treat pulmonary infections in 791 

cystic fibrosis patients [231] [232]. Moreover, enzyme-based biofilm impairment treatments are 792 

finding increasing applications in the food [233] [234] and paper [235] industries, potentially opening 793 

the doors for their increased use in the technological sector. In particular, since enzymes require 794 

specific physicochemical conditions to maximize their efficacy, their use in the spaceflight context 795 

would require studies to assess longevity and effectiveness in the application conditions. It was also 796 

demonstrated that tunneling the biofilm matrix by selected bacilli swimmers could resensitize bacteria 797 

to the action of biocides by creating a transient vascularization network [110]. Matrix destabilisation 798 

is also possible by magnetic disturbance. In a recent paper, magnetic iron oxide nanoparticles were 799 

successfully used to disrupt a recalcitrant biofilm upon exposure to a controlled magnetic field [236].      800 

Among promising strategies to cope with biofilm development, the use of bacteriophages regained 801 

consideration in the last decade. By exploiting their ability to kill their bacterial host, phages have 802 

been successfully applied to eradicate biofilm from within [237]. Phage treatments can be based on 803 

the use of the whole phage particles, but also on phage-derived antibacterial activities. The main 804 

phage-encoded bactericidal enzymes are the depolymerases, lyases and hydrolases, externally 805 

associated with the virion tail and able to degrade EPS [238]. Phages also encode lysins acting from 806 

inside the bacterial cell and are responsible for cell wall degradation [239]. Similarly to DNase 807 

treatments targeting extracellular DNA, endolysins and depolymerases-based treatments have been 808 

used to overcome the biofilm matrix barrier. The biocidal potential of these phage-encoded enzymes 809 

Jo
urn

al 
Pre-

pro
of

https://www.zotero.org/google-docs/?TwmnVS
https://www.zotero.org/google-docs/?C9W4Dp
https://www.zotero.org/google-docs/?9ujYIW
https://www.zotero.org/google-docs/?R0eYu2
https://www.zotero.org/google-docs/?JdBbTC
https://www.zotero.org/google-docs/?fE5prk
https://www.zotero.org/google-docs/?CmVlAF
https://www.zotero.org/google-docs/?p2ldgI
https://www.zotero.org/google-docs/?CdQvPq
https://www.zotero.org/google-docs/?d87ikb
https://www.zotero.org/google-docs/?BwYi5g
https://www.zotero.org/google-docs/?ZXS9Ie
https://www.zotero.org/google-docs/?YSOfic
https://www.zotero.org/google-docs/?BTGpKi
https://www.zotero.org/google-docs/?fTXUkN
https://www.zotero.org/google-docs/?lphpDp
https://www.zotero.org/google-docs/?bOKQ2o


 

32 

has been demonstrated to prevent the biofilm formation of pathogens in vitro as well as in vivo [240]. 810 

The use of integral lytic bacteriophages for bacterial biofilm control has been proven a safe alternative 811 

approach to antibiotics and chemical biocides [241]. Although most studies assessing the ability of 812 

bacteriophages to reduce biofilm biomass are performed in laboratory conditions, the successful 813 

application of phages and phage cocktails has been reported in several medical cases as a last 814 

alternative to combat drug-resistant bacterial infections [242] [243]. The narrow-host range specificity 815 

of phages combined with the ability of bacteria to rapidly develop defense mechanisms to survive 816 

infection could be considered as a limitation of this approach. However, the use of phage cocktails 817 

with a broader spectrum of infection has already proved to be very efficient in complement to 818 

antibacterial treatments in combating pathogen biofilms within medical devices [244]. We can 819 

anticipate that similar strategies could be also used successfully in a spacecraft environment. 820 

Furthermore, phages are not motile and the structure as well as the composition of the biofilm matrix 821 

acting as a diffusion barrier interfere with their penetration and dispersal within biofilm [245]. The 822 

recent discovery that phage could be passively transported by motile carrier bacteria sheds new light 823 

on the importance of the role of non-host bacteria–phage interactions on biofilm dynamics [115][116]. 824 

This behavior, called “hitchhiking”, opens new avenues to improve phage delivery within biofilms. In 825 

addition, a growing number of studies highlight the synergistic action of phages combined with other 826 

antimicrobials for the effective eradication of biofilms [246] [247] [248]. Emergent approaches are 827 

now combining phages and/or phage-derived products with other nano weapons or bactericidal agents 828 

to combat biofilms on earth. Phage-based biocontrol could be used in support of other biofilm 829 

eradication strategies to delay corrosion and biofouling in space and more generally mitigate biofilm 830 

formation on future missions (ICES-2019-271). How the lack of gravity could influence their 831 

diffusion and their interaction with their host is currently under investigation 832 

(www.issnationallab.org/iss360/phageevolution-rhodium-scientific-studying-viruses-microgravity/). 833 

The efficiency of similar treatment applied to biofilm control in the context of spaceflight remains to 834 

be studied.  835 
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The chemical, physical and biological toolbox to control biofilms migrating communities is constantly 836 

increasing with innovative prevention and curative strategies. However, their efficacy is not universal 837 

and synergetic combined approaches will be needed to prevent biofilm deleterious effects during 838 

long-term spatial missions [249]. 839 

 840 

5. Conclusions & perspectives 841 

The vibrant microbiota migrating and settling on surfaces of spaceflight habitats could jeopardize 842 

long-term spatial missions by altering surface and equipment functions and   threaten astronauts' 843 

health. The most conventional hygienic procedure to control surface-associated microbiota on earth is 844 

cleaning and disinfection with highly reactive chemicals [4]. This approach is hardly compatible at 845 

large scale with long-term space missions in terms of the quantity of water needed, the absence of 846 

drainage in microgravity conditions, the cost of transport of the biocides as well as their potential 847 

corrosive, toxic and explosive properties. Space agencies intensify their effort in preventive strategies 848 

mostly relying on hygienic design and maintenance and the use of anti-biofilm material in a sensitive 849 

part of the spaceflight (e.g. WRS). Most of the activity of those materials and coatings relies on 850 

antiadhesive or antimicrobial properties [192]. With our better understanding of the specific 851 

physiology of microorganisms living in a biofilm in microgravity conditions, we could envision 852 

activating those materials with effectors targeting molecular determinants of biofilm 853 

initiation/stability/dispersion (pili, flagella, EPS…) or the regulations pathways involved in the shift 854 

between planktonic and biofilm cell fate (cyclic di-GMP pathway, Quorum-sensing signaling…). 855 

Physical decontamination procedures based on the intensive exposition of surface to antimicrobials 856 

beam (UV, blue light, pulsed light, plasma) are also interesting alternatives to chemical disinfection 857 

[250]. Another family of control strategies are based on biological organisms (biological warfare). In 858 

several areas, microorganisms are used to kill specific unwanted organisms or to guide the ecology of 859 

the surface (microbiota editing). This is the case of phages which are viruses killing specifically a 860 
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group of (pathogenic) bacteria or of positive biofilm that is composed of bacteria recognized as safe 861 

that are settled on purpose on a surface to prevent unwanted colonisation. Both these microbe-based 862 

strategies are already in use in the biomedical, agricultural and food industries. A point of interest is 863 

that they can be propagated indefinitely very easily in the space habitat.        864 

The first demonstration of DNA sequencing in space was performed recently by NASA with the 865 

portable MinION device (Oxford Nanopore Technologies) on the ISS. Successful sequencing of 866 

mouse microbiota (bacterial and viral DNA) was demonstrated, showing potential for monitoring of 867 

microbes in food, water and environment [14] [251]. This opens doors to on-site analysis and 868 

monitoring of the biofilm species composition and ecological diversity evolution, but also in terms of 869 

functional potential through shotgun metagenomics analysis [252]. Thereby, astronauts will be able in 870 

a near future to detect unwanted species in spaceflight habitats in real-time, but also catalogues of 871 

genes associated with unwanted microbial functions independently of the hosting species (genes 872 

involved in material degradation, biofilm persistence, virulence…). These metagenomic approaches 873 

have been developed with success in other biotopes such as the human gastrointestinal tract allowing 874 

for stratification of the population (e.g. enterotypes) in different responding groups and identifying 875 

biomarkers associated with specific functions [253] [254]. 876 

Microbial biofilms can also be used for some of their positive effects on crew health [255]. They are 877 

envisioned as a source of safe, fresh and valuable food to improve astronauts' health for long-term 878 

spatial missions. Several solid fermentation processes involving biofilms are/could be explored in this 879 

context e.g. miso and natto resulting from the biofilm formation of Aspergillus oryzae or Bacillus 880 

subtilis on cooked beans [256]. Kefir granules and relatives products are centimetre natural symbiotic 881 

communities composed of lactic acid bacteria and yeasts embedded in a dense and complex 882 

extracellular matrix [257]. Described as functional “super-organisms”, these spatially organised 883 

consortia are highly tolerant to environmental stress and could be multiplied for years during long-884 

term missions with low resource requirements. Astronauts do not receive the same replenishment of 885 

microbes on a space flight as they do on earth [34]; fermented food along with probiotics can be used 886 

to prevent or restore gut microbiota dysbiosis. Another possible source of fresh food is the cultivation 887 
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of microalgae with nutritive interest (lipids, vitamines…). In order to limit the use of water and 888 

energy, biofilm-based microalgae cultivation systems on surfaces are developed [158]. Alternatively, 889 

bioprinting of microalgae cells with controlled patterns in hydrogels could allow the formation of a 890 

synthetic biofilm with optimum exposure to light and nutrients [258] [259]. An important advantage 891 

of these microorganism based-processes involving biofilms is that they could be adapted to recycle 892 

organic matter from waste. More generally, biofilms are envisioned in various in-situ resource 893 

utilization (ISRU) procedures in space travel such as biomining or bioregenerative life-support 894 

systems [260]. 895 
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Legends to Figures 1655 

 1656 

Figure 1. Biofilms in spaceflight habitats. A) Mold-stained panels in the ISS hygiene area 1657 

resulting from mould growth following contact with wet towels. Image: Mold species in 1658 

dust from the International Space Station identified and quantified by mould-specific 1659 

quantitative PCR [24]; B) Biofilm formation inside the condensate plumbing at the inlet 1660 

to the Russian SRV-K condensate processor [25]. 1661 

 1662 

Figure 2. Different 3D structures obtained in terrestrial or microgravity induce different 1663 

molecular diffusion. To illustrate this difference, we computed a reaction-diffusion 1664 

process based on confocal microscopy images of Pseudomonas aeruginosa grown under 1 1665 

g or microgravity taken in [30]. A chemical component diffuses from a bulk source 1666 

located in the upper boundary of the image with a heterogeneous diffusion coefficient 1667 

that depends on the biofilm density: the higher the local bacterial density, the lower the 1668 

local diffusion coefficient. The reactive process corresponds to the chemical consumption 1669 

by the biofilm bacteria, the rate of which also varies according to the local bacterial 1670 

density with Monod dependency. The steady state of the chemical density map is 1671 

displayed, with isolines every 0.05 to better represent the distribution gradients. These 1672 

different concentration maps induce different nutrient availability which in turn may 1673 

impact the 3D biofilm structure and physiology. 1674 

 1675 

Figure 3: Schematic view of surface colonisation by microorganisms. Microorganisms from 1676 

the bulk are transported toward a surface through passive and active processes. After 1677 

contact with the surface, cells can migrate individually or collectively and initiate the 1678 

formation of a 3D structure called biofilm associated with emergent properties such as 1679 
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extreme environmental stress tolerance. Subpopulations of cells can disseminate from this 1680 

primary structure to initiate secondary biofilms with potential phenotypic and genetic 1681 

evolution. Those microbial processes were formally described on earth and there is rising 1682 

scientific evidence that many of them could be strongly affected under hyper- or micro-1683 

gravity conditions encountered in spaceflight missions.        1684 

 1685 

Figure 4. We simulated the growth of a micro-alga biofilm subject to terrestrial or micro-1686 

gravity. The model is a mixture model [158] coupling a fluid dynamics model to a 1687 

reaction-diffusion-convection model of biofilm dynamics including biomass growth and 1688 

consumption of diffusive nutrients and CO2. Compared to [158], an additional force is 1689 

added to the movement conservation equation modelling the gravity-dependent 1690 

sedimentation as a net force between a gravitational force and a buoyant force [154]. We 1691 

can observe that micro-gravity impacts the spatial structure of the biofilm and therefore 1692 

the resulting substrate consumption and the overall biofilm growth. 1693 

 1694 

Figure 5: (A) Cluego representation of common biological process grouping genes involved 1695 

in similar pathways from BRIC-21 and BRIC-23 datasets. Each node corresponds to a 1696 

GO (Gene ontology) term. Blue and red colours illustrated the contribution of genes 1697 

upregulated in BRIC21 and BRIC23, respectively.  The size of the node represents the 1698 

term enrichment significance. The visualization was obtained with the Cluego Plugin for 1699 

Cytoscape 3.9.1. (10.1093/bioinformatics/btp101, 10.1101/gr.1239303). (B) Venn 1700 

diagram showing genes of the ResD and Rex regulons significantly downregulated in the 1701 

BRIC-21 and BRIC-23 missions (data from [187]). 1702 

Jo
urn

al 
Pre-

pro
of



Table 1: Surface modifications to prevent biofilm formation and their mode of action.  

Coating type Coating agent Description Action mechanism References 

Polymeric films 

(organic, 

synthetic, 

mixed) 

Poly(2-alkylacrylic 

acids), layer by layer 

(LdL) 

Agents released in 

response to 

environmental 

acidification due to 

bacterial metabolism 

Release-killing     [217]  

Metal ions 

(copper, argent, 

titanium) 

  

Octadecylamine 

capped Cu/reduced 

graphene oxide 

Enhancing surface 

hydrophobicity 

Anti-adhesion [218] 

Metal ions 

(copper, argent, 

titanium) 

Silver oxide film Photocatalytic 

antimicrobial surfaces 

Contact-killing [219] 

Liquid films Liquid-infused 

structured surfaces 

Imbibition of porous 

surfaces with surfactants 

Anti-adhesion [220] 

 

Antimicrobial 

peptides 

(AMPs) grafting  

Polydopamine peptide 

coating 

Polydopamine coating to 

immobilize AMPs on 

surfaces  

Contact-killing [221] 

 

Quorum 

Quenching 

enzymes 

grafting 

Acylase and α-

amylase coating 

Degradation of Quorum 

Sensing signals 

Anti-adhesion [222] 

Nanoparticles 

grafting 

Zinc oxide 

nanoparticle 

Immobilization of 

antibacterial 

nanoparticles on 

surfaces 

Contact-killing [223] 
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