
RESEARCH ARTICLE

Automatic detection, identification and

counting of anguilliform fish using in situ

acoustic camera data: Development of a

cross-camera morphological analysis

approach

Azénor Le QuinioID
1,2*, Eric De Oliveira2, Alexandre GirardID

3, Jean GuillardID
4, Jean-

Marc Roussel1,5, Fabrice Zaoui2, François Martignac1,5

1 UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, Rennes, France,

2 EDF R&D LNHE - Laboratoire National d’Hydraulique et Environnement, Chatou, France, 3 EDF R&D

PRISME - Performance, Risques Industriels et Surveillance pour la Maintenance et l’Exploitation, Chatou,

France, 4 INRAE, CARRTEL, University Savoie Mont Blanc, Thonon-les-Bains, France, 5 Pole MIAME,

Management of Diadromous Fish in Their Environment, OFB, INRAE, Institut Agro, University Pau & Pays

Adour/E2S UPPA, Rennes, France

* azenor.le-quinio@edf.fr

Abstract

Acoustic cameras are increasingly used in monitoring studies of diadromous fish popula-

tions, even though analyzing them is time-consuming. In complex in situ contexts, anguilli-

form fish may be especially difficult to identify automatically using acoustic camera data

because the undulation of their body frequently results in fragmented targets. Our study

aimed to develop a method based on a succession of computer vision techniques, in order

to automatically detect, identify and count anguilliform fish using data from multiple models

of acoustic cameras. Indeed, several models of cameras, owning specific technical charac-

teristics, are used to monitor fish populations, causing major differences in the recorded

data shapes and resolutions. The method was applied to two large datasets recorded at two

distinct monitoring sites with populations of European eels with different length distributions.

The method yielded promising results for large eels, with more than 75% of eels automati-

cally identified successfully using datasets from ARIS and BlueView cameras. However,

only 42% of eels shorter than 60 cm were detected, with the best model performances

observed for detection ranges of 4–9 m. Although improvements are required to compen-

sate for fish-length limitations, our cross-camera method is promising for automatically

detecting and counting large eels in long-term monitoring studies in complex environments.

Introduction

Active acoustic methods are widely used to study and monitor fish in marine and freshwater

ecosystems [1,2]. Acoustic devices emit acoustic waves and record the echoes reflected by
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fish that pass nearby. The nature of the echoes depends on fish species and sonar specifica-

tions. Acoustic devices thus continuously record data in a non-invasive manner even at

night or in turbid water, and at a long detection range (i.e. distance from the device) [2,3].

Many technical improvements have been made over time [4], among which acoustic cameras

(i.e. imaging sonar) are key [5,6]. Due to their multiple beams and high frequency, these

devices can project the echoes that they detect in a large volume, as 2-dimensional images.

Unlike echograms produced by other types of sonar, acoustic cameras can provide high-res-

olution acoustic videos due to their high rate of emission-reception [5]. Therefore, fish can

be visualized as they pass into the acoustic field, during which swimming behavior can be

described [5,7] and morphological characteristics such as length can be measured accurately

[8,9]. This provides information that is useful for identifying species [10,11]. Recently, in

addition to the most commonly used models of acoustic camera–DIDSON and ARIS (Sound

Metrics Corp., Bellevue, WA, USA)–new and less expensive models have become available

that can scan a larger volume but have lower resolution, such as BlueView (Teledyne Tech-

nologies Inc., Thousand Oaks, CA, USA) and Oculus (Ulverston, Cumbria, United King-

dom). Based on these advantages, acoustic cameras are useful for studying long-term

migration dynamics in rivers, assessing information on stock and population, and providing

new insights for fish-conservation policies [6].

However, continuous recording with acoustic camera produces a large amount of data.

Analysis of acoustic video by an operator is a time-consuming process that requires a degree of

expertise to distinguish fish from other objects and to identify fish species. Multiple automatic

or semi-automatic methods have been developed to detect and describe fish using acoustic

camera datasets, listed and described in a recent review [6]. Among the studies quoted, a few

authors focused on the distinction of species of interest, such as anguilliform fish, from other

species [12–14]. Indeed, an operator can easily distinguish the particular body shape and

swimming undulation of anguilliform fish from those of most other fish species [15–18].

Besides, the conservation status of several of anguilliform migratory species, such as the Euro-

pean eel (Anguilla anguilla [19]), American eel (Anguilla rostrata [20]) and Japanese eel

(Anguilla japonica [21]), all listed on the IUCN Red List of Threatened Species, make them

species of high ecological interest.

Image-processing algorithms, especially computer-vision techniques such as traditional

image analysis, machine learning and deep learning, can detect objects automatically in large

datasets and extract their morphological characteristics to classify them [22]. Recall and preci-

sion rates allow quantifying the ability of those algorithms to identify all target objects (recall)

and distinguish them from non-target objects (precision rates). Using videos from acoustic

cameras, Bothmann et al. [12] demonstrated the feasibility of using computer-vision tech-

niques to classify European eels automatically according to their body shape and motion,

highlighting promising results (recall = 91%; precision = 96%; n = 134 eels). However, the data

were recorded using a DIDSON acoustic camera with a short detection range (i.e. 1–6 m),

which is rarely used in long-term monitoring studies [7,17,23]. The distance of the fish from

the acoustic camera, as well as its body length and orientation may decrease its detectability,

because it may lead to the image of its body into distinct disconnected fragments [13,24].

Among recent studies, the deep-learning models of [14] and [25] obtained a recall of 85%

when identifying American eels using ARIS sonar recorded under stable flow conditions. The

authors recommended that future studies investigate the method’s detection ability over long-

term monitoring periods. Another recent study that used high-variability training datasets

recorded under natural conditions confirmed that eels are among the most difficult fish spe-

cies to identify using convolutional neural networks, a deep learning method, due to the frag-

mentation of eel targets in acoustic videos [26].
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Based on the results and recommendations of these studies, our objective was to develop a

transferrable and new method to detect anguilliform fish automatically from acoustic camera

data recorded in situ during long-term monitoring surveys, by pairing computer-vision tech-

niques with morphological analysis approaches to correct detection problems caused by frag-

mentation of fish echoes. To evaluate the effectiveness of the method and identify its potential

limitations, we applied it to two datasets recorded in different rivers that had different distribu-

tions of silver eel length. The first population is mainly composed by female (body length from

50 to 100 cm [27] although males dominate the second population [28]. Body lengths of Euro-

pean eel male usually range from 35 to 46 cm [27]. In addition, we assessed its effectiveness in

being the first cross-camera method, i.e. a method that may automatically detect and identify

eels on videos recorded by two models of acoustic cameras, the ARIS and the BlueView, whose

resolution and video dimension differ.

Materials and methods

Datasets

The datasets were recorded at two monitoring sites. One site (Mauzac, MZC) was located in

the Dordogne River (France) at a 50-m wide inlet canal of hydropower plant (S1 Fig). The

second site (Port-La-Nouvelle, PLN) was located in the 50-m wide channel between the

Bages-Sigean lagoon (France) and the Mediterranean Sea [17]. At both sites, cameras were

set perpendicular to the flow with the field of view (FOV) parallel to the river bottom (i.e.

scanning horizontally across the channel), covering up to 10 meters from the camera at MZC

and up to 14.2 meters at PLN (Table 1). The recorded images represented a top view of the

water, with the X and Y dimensions corresponding to the direction of fish movement

(upstream or downstream) and the detection range, respectively [5,29]. European eel popula-

tions differ between the two sites, with that at MZC containing a large proportion of large

individuals (70–90 cm long, according to local fisheries and acoustic datasets) and that at

PLN containing mainly small eels (30–60 cm, according to acoustic datasets). More informa-

tion about the monitoring sites, their eel populations and the sonar settings can be found in

[17,30,31].

Two distinct models of acoustic cameras were used to record the datasets: ARIS Explorer

1800 (at MZC and PLN) and BlueView M900-2250-130 2D (at MZC). Recording parameters

Table 1. Description of the datasets characteristics: Camera model, recording parameters and composition of the datasets, recorded at the two monitoring sites,

Mauzac (MZC) and Port-La-Nouvelle (PLN).

Dataset Development MZC-ARIS PLN-ARIS MZC-BV

Monitoring site MZC PLN MZC

Acoustic camera ARIS Explorer 1800 ARIS Explorer 1800 BlueView P900-2250

Frequency (kHz) 1 800 1 800 2 250

Pixel vertical dimension (mm) 6.8 13.7 7.9

Image resolution (px) 1276×664 926×498 1238×2302

Frame rate (frames per sec.) 7 6 5

Field of view width x height (degrees) 28×14 28×14 130×20

Window length limits, from start to stop ranges (m) 0.7–9.4 1.5–14.2 0.2–10.0

Number of eels counted 24 759 788 198

Eel length (cm) 70–90 70–90 30–60 70–90

Recording duration (h) 4.0 548.5 47.5 76.0

Month recorded Dec. 2018 Nov. 2014; Dec. 2018 Nov. 2018 Dec. 2018

https://doi.org/10.1371/journal.pone.0273588.t001
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differed between cameras and sites, especially the window length and image resolution

(Table 1). All data were recorded in high-frequency mode (1.80 and 2.25 MHz for ARIS and

BlueView, respectively) to maximize video resolution and thus eel detection (Fig 1).

Data processing

All video datasets were watched in their entirety by experienced operators using ARIS Fish

software 2.6.3 (ARIS files) or the VLC media player (BlueView files). Each European eel was

counted and described by the time that it passed (both MZC and PLN), its detection range

(PLN only) and its length, which was measured manually using the most representative frame

Fig 1. Example screen captures from ARIS video data recorded at (a, b) Mauzac and (c) Port-La-Nouvelle and (d,

e) from BlueView video data recorded at Mauzac. Red arrows point to eels of different lengths (a: 90 cm; b: 78 cm; c:

30 cm; d: 90 cm; e: 80 cm).

https://doi.org/10.1371/journal.pone.0273588.g001
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chosen by the operator (PLN only, [16]). These visual counts, usually considered the most reli-

able way to count fish in acoustic camera data [32,33], were used as the reference count (RC)

throughout the study. The data were divided into a development dataset (4 h of ARIS data

from MZC, with 24 eel passes), one ARIS evaluation dataset from each site (MZC-ARIS, 759

eel passes; PLN-ARIS, 788 eel passes) and one BlueView evaluation dataset from MZC

(MZC-BV, 198 eel passes) (Table 1).

Automatic analysis pipeline

The following method has been developed using Python programming language and especially

the opencv [34] and skimage [35] packages.

Our automatic analysis was decomposed in successive steps that used configuration and

decision thresholds to carry out the detection, identification, and count of anguilliform fish.

Those thresholds were defined empirically from the development dataset. They are adjustable

and were based on four metrics: mean pixel intensity ~I of the reference image (i.e. an empty

image without any object passing through), pixel resolution r (mm), the frame rate fps (both

imported from the recording settings) and the minimum length of the fish studied Leel_min

(cm), which was set by the operator before the analysis.

Step 1: Conversion to AVI. Each raw file of the datasets was converted from its proprietary

format (.ARIS or.SON) into a standard video format (.AVI) using a homemade program writ-

ten in Python.

Step 2: Detection of the frames of interest. Intervals of frames of interest were then

extracted from the videos, i.e. the frames on which moving discontinuities were passing

through the camera FOV. The discontinuities correspond to moving objects that disturb the

initial background of the frames. Detection of those frames was carried out from echograms

(Fig 2) based on ratios of singular values (SV, [36]) of which detailed calculation is available in

S1 File. These echograms were generated by analyzing the video frame-by-frame. The aim was

to reduce the method computation time by carrying out the next steps of the analysis only on

these targeted frames. They were an alternative to that calculated by the ARIS Fish software,

which uses the maximum intensity of echoes [37]. Our use of SV instead of maximums allows

us to focus only on elongated shapes, corresponding to anguilliform ones. Hence, our tests on

the development dataset videos highlight that the second and third SV explain the main part of

Fig 2. Workflow of the second step of the method carrying the detection of the intervals of frame of interest from

the calculation of echogram based on singular values ratios.

https://doi.org/10.1371/journal.pone.0273588.g002
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the discontinuities. The third SV explains fewer discontinuities than the second one but

focuses on the elongated property of the discontinuities. Analyzing the second and third ratios

in a complementary way (Fig 2), thus allow us to get the precise intervals of time where elon-

gated discontinuities were passing through and thus to target the corresponding frames.

Step 3: Detection of the candidates. Objects corresponding to the discontinuities

highlighted at the previous step are extracted from the frames using a combination of image

processing filters (Fig 3). A mean filter (kernel = (40 mm/r) x (30 mm/r)) followed by a Gauss-

ian Mixture-based Background/Foreground Segmentation Algorithm

(variance threshold ¼ 1:5 � ~I , history = 14�fps, [38,39]) are applied to the frame in order to

smooth local variations to reduce noise before isolating moving objects from the background.

A dilation (kernel = 15x15 pixels [40] is then performed on the whole resulting image. The

aim is to group the objects that are close to each other making it possible to identify and isolate

the regions to be studied. It will prevent an object from appearing on several regions of interest

and thus prevent it from being analysed several times.

These successive treatments led to the generation of a binary image of the frame on which

the different objects of interest are represented by distinct pixel regions. Objects whose main

axis length was less than 25% of Leel_min, i.e. global length of its body main axis which may be

different from its body length in case of curved body, were removed because they were consid-

ered too short to be an eel. The rest, called “candidates”, were individually extracted in a

thumbnail (i.e. a square image centered on the object with a dimension of Leel_min + 30 cm).

Step 4: Morphological analysis. In order to classify those candidates as eels or not, each of

them was further processed by studying its physical characteristics. Its area (mm2), orientation

and overall eccentricity were calculated. The eccentricity is a measure of the non-circularity of

the ellipse fitting the candidate shape and is corresponding to the ellipse focal distance divided

by the length of its major axis. Its body length was estimated from its “skeleton” image, which

was reconstructed for fragmented targets (see S2 File). Because the defining characteristic of

anguilliform fish is their serpentine shape, with a uniform body distribution, the shape of its

body was quantified by segmenting it using k-means clustering [41]. This method minimized

the squared-error function based on the position of body pixels and cluster centroids. The

body of the object was divided into three sections (k = 3), as a simplistic representation of the

undulation of anguilliform fish with a minimum number of divisions of their body (Fig 4b and

4e). The eccentricity of each section was calculated (Fig 4c and 4f) describing the shape of the

body over its entire length.

Step 5: Tracking from frame to frame. The candidates were then tracked frame-by-frame

during their entire pass through the camera FOV. It was essential to avoid counting the same

Fig 3. Workflow of the third step of the method carrying the detection of the candidates.

https://doi.org/10.1371/journal.pone.0273588.g003
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candidate more than once. Tracking also provided new and valuable information by identify-

ing changes in the physical characteristics of the object in the successive frames in which it was

detected, as well as its trajectory (S3 Fig) and velocity, among other information. To handle the

tracking, the candidate’s neighborhood (circle of diameter 1.5� Leel_min) as well as the consis-

tency of its orientation from one detection to another (θdiff < 25˚), were analyzed for a short

period after its last detection to determine whether an object that appeared in subsequent

frames was the same candidate (S2 Fig).

Step 6: Classification process. Finally, candidates were classified as “anguilliform” or

“non-anguilliform” based on characteristics calculated throughout the process (Table 2). Each

candidate was first classified in each frame before considering its entire track. A candidate was

classified as an anguilliform fish if it met all of the decision rules in at least five frames of its

track. As for other decision rules, the minimum of five frames was set up from the develop-

ment database. It corresponds to the trade-off between allowing very short passage to be con-

sidered while having enough information to carry out a reliable classification. It could be

modified by the user depending on how restrictive he or she wants the classification to be.

All candidates classified as eels were listed in a.CSV output file in the directory that con-

tained the raw dataset and correspond to the automatic counting (AC). Several characteristics

Fig 4. Steps used to calculate the shape of an echo of an eel (top) or non-eel fish (bottom) pass extracted from an

ARIS camera image: (a, d) binary image, (b, e) segmentation using k-means clustering and (c, f) division of the

fish body into three sections to calculate eccentricity.

https://doi.org/10.1371/journal.pone.0273588.g004

Table 2. Decision rules for characteristics used to distinguish an eel from another object as a function of the

length interval of the eel population.

Scale Characteristic 30–60 cm 60–90 cm

Frame Length (mm) � 0.40 × Leel_ref

Area (mm2) � 0.75 × Athumbnail

Eccentricity � 0.90

Track Mean travel distance per frame (mm) �
Leels ref

fps

Velocity (mm/s) Track direction was always positive along

the axis of the current

Eccentricity � 0.85 � 0.90

Mean eccentricity � 0.90 � 0.92

Leel_ref, the minimum length of the fish studied, and, Athumbnail, the area of the image centered on the object to be

classified.

https://doi.org/10.1371/journal.pone.0273588.t002
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were listed for each predicted anguilliform fish (each line): the video filename, mean time of

passage, detection frames, detection ranges, total number of detections and the measured

length of one fish per detection frame.

Evaluation of the effectiveness of the automatic eel counting method

Each video was entirely read by one experienced operator involved in data collection to com-

pare his eels’ counting to the predicted eel in the.CSV output file. Operator assessments were

consequently used to calculate the number of true positives (TP, a true eel that was predicted

correctly), of false positives (FP, a non-eel object incorrectly predicted as an eel) and of false

negatives (FN, a true eel that was not detected/predicted). If the automatic method counted

the same eel more than once, only the first count was considered a TP, while the others were

considered FP, since the method also needed to accurately count the number of eels that

passed into the camera FOV. Each FP was categorized to investigate the errors that occurred

frequently.

The method was applied to the three evaluation datasets, and its effectiveness and the reli-

ability of its results were assessed by calculating the recall, precision, and F1-score, as well as

generating confusion matrices. Recall (Eq 1) highlights the method’s ability to identify all eels

that passed into the camera FOV. Precision (Eq 2) evaluates the method’s ability to distinguish

eels from other fish or other objects. The F1-score (Eq 3) summarized recall and precision to

assess overall performance of the model. The confusion matrices (Eq 4) determined the TP, FP

and FN in the three evaluation datasets. True negatives (i.e. a non-eel object that was predicted

correctly) could not be counted, since the operators did not list objects other than eels when

reading the videos.

Recall ¼
TP

TP þ FN
ð1Þ

Precision ¼
TP

TPþ FP
ð2Þ

F1 score ¼
2� Recall� Precision
Recallþ Precision

ð3Þ

ConfusionMatrix ¼
�TP FN

FP �

�

ð4Þ

Linear regressions were calculated to evaluate the relationship between AC and RC and

between the number of TP and RC, at an hourly resolution. The slopes of these regressions,

their 95% confidence interval and their coefficient of determination (R2) were calculated. For

each pair, 70% of the data were bootstrapped 100 times to decrease bias. The slope of the linear

regression of each replicate was calculated and Student’s t-test was applied to the mean of the

100 slopes to determine whether it differed significantly from 1 (i.e. the slope of the 1:1 line).

Differences with p<0.05 were regarded as statistically significant. The two regressions were

compared to illustrate the benefit of having an operator validate each prediction to assess the

accuracy of the eel count.

Finally, factors that may have influenced the method were evaluated to assess its genericity

(i.e. ability to operate well, regardless of the monitoring site and the acoustic camera model).

The influence of three factors on the recall, precision and F1-scores were qualitatively studied.

The first was the acoustic camera model, for which we analyzed the confusion matrices and
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metrics for a 73-hour period common to the MZC-ARIS and MZC-BV datasets (RC = 56 and

174, respectively). The second factor was the eel’s detection range, based on TP and FN distri-

butions, and the change in recall and precision as detection range increased for PLN-ARIS.

The third factor was the eel’s measured length, based on the relationship between the recall

and eel length for PLN-ARIS.

Results

Performance of the method

Confusion matrices showed differences between predicted eel detection and the eels observed

by operators for the three evaluation datasets (Table 3). MZC datasets had higher F1-scores

(72–78%) than the PLN dataset (43%) (Table 4). ARIS and BlueView had similar recall (74%

and 70%, respectively), but ARIS had higher precision (84%, vs. 74% for BlueView).

Regression slopes between RC and AC differed significantly (p< 0.001) from 1 for all three

datasets, but large positive linear association are observed for MZC-ARIS (R2 = 0.93) and

MZC-BV (R2 = 0.95), and weaker for PLN-ARIS (R2 = 0.41), with a slope of 0.47 (Fig 5a–5c).

Regression slopes between the number of TP and RC also differed significantly (p< 0.001)

from 1 for all three datasets, and the correlations for all datasets were stronger than those

between RC and AC but differed more between monitoring sites (Fig 5d–5f). The correlations

were strong for PLN (R2 = 0.79), which highlighted a large number of FP at this site and were

slightly stronger for MZC-ARIS and MZC-BV (R2 = 0.97 and 0.96, respectively), with similar

slopes (0.72) and a small 95% confidence interval (0.01 and 0.02, respectively).

One source of errors for MZC-ARIS and PLN-ARIS (37% and 75% of the FP, respectively)

(Table 5) was misidentification due to confusion with other fish species (S4c Fig) or debris. It

was the second-largest source of errors (42%) for MZC-BV, while the largest source was track-

ing errors that resulted in counting the same eel more than once (50%). Other sources of errors

Table 3. Confusion matrices obtained for the Mauzac site/ARIS camera (MZC-ARIS), Mauzac site/BlueView camera (MZC-BV) and Port-La-Nouvelle site/ARIS

camera (PLN-ARIS) datasets.

MZC PLN

ARIS MZC-ARIS Pred. Eels Pred. Others Total PLN-ARIS Pred. Eels Pred. Others Total
Eels 556 197 753 Eels 349 439 788

Others 110 � - Others 485 � -

Total 666 - - Total 832 - -

BV MZC-BV Pred. Eels Pred. Others Total
Eels 139 59 198

Others 48 � -

Total 187 - -

Lines are true eels and true other species fish, columns are eels and other species fish predicted by the method � True negatives were not counted.

https://doi.org/10.1371/journal.pone.0273588.t003

Table 4. Performance metrics for the Mauzac site/ARIS camera (MZC-ARIS), Mauzac site/BlueView camera (MZC-BV) and Port-La-Nouvelle site/ARIS camera

(PLN-ARIS) datasets.

Metric MZC-ARIS MZC-BV PLN-ARIS

Recall 73.8% 70.2% 44.3%

Precision 83.5% 74.3% 41.9%

F1-score 78.3% 72.2% 43.1%

https://doi.org/10.1371/journal.pone.0273588.t004
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were arcing effects (S4a Fig), artefacts of high intensity resulting of returning echoes, which

deform fish by giving them a more streamlined shape [13], which was observed in MZC-ARIS

and PLN-ARIS (36% and 5%, respectively), but not in MZC-BV. Additionally, small fish swim-

ming near each other (S4b Fig) were sometimes detected as one larger individual (20% and 8%

of the FP in MZC-ARIS and PLN-ARIS, respectively). Because tracking errors were not con-

sidered errors when identifying species, a modified precision (i.e. identification precision) was

calculated that excluded them from the FP. Identification precision on MZC-BV was similar

to the precision for the ARIS datasets, but was much larger than the precision for identification

and counting for MZC-BV (85% for identification and 74% for identification and counting).

Analysis of factors that influenced performances of the method

The two acoustic camera models at MZC had similar recall and precision (Table 6). For

PLN-ARIS, performances peaked 4–9 m from the camera, for which the F1-score exceeded

Fig 5. The method’s (a, b, c) true positives and (d, e, f) automatic count of eels as a function of the reference count

for (a, d) Mauzac site/ARIS camera (MZC-ARIS), (b, e) Mauzac site/BlueView camera and (c, f) Port-La-Nouvelle

site/ARIS camera. Each plot represents the number of eels counted in one hour (MZC-ARIS: n = 199; MZC-BV:

n = 55; PLN-ARIS: n = 60). Ic,slope is the 95% confidence interval of the slope.

https://doi.org/10.1371/journal.pone.0273588.g005

Table 5. Percentage of false positives (FP) in each error category observed, total precision and identification precision (i.e. excluding tracking errors) for each data-

set: Mauzac site/ARIS camera (MZC-ARIS), Mauzac site/BlueView camera (MZC-BV) and Port-La-Nouvelle site/ARIS camera (PLN-ARIS). Bold text indicates the

largest percentage per dataset.

MZC-ARIS MZC-BV PLN-ARIS

Error category Arcing effect 36.3% (n = 40) 0% (n = 0) 4.9% (n = 24)

Merged fish 20.0% (n = 22) 8.3% (n = 4) 3.1% (n = 15)

Other type 37,3% (n = 41) 41.7% (n = 20) 75.3% (n = 365)

Tracking 6.4% (n = 7) 50% (n = 24) 16.7% (n = 81)

Total precision 83.4% 74.3% 41.9%

Identification precision 84.4% 85.3% 44.3%

https://doi.org/10.1371/journal.pone.0273588.t005
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40% (Fig 6a). Beyond 9 m, the precision progressively decreased, with more than 50% of the

FP recorded beyond this distance (Fig 6b). Similarly, only 35% of eels that passed more than

10 m and 20% of those that passed within 4 m from the camera were detected (Fig 6c), which

resulted in a decrease in recall for these ranges. Eel length also influenced the method’s perfor-

mance. Despite a recall of 44.3% for PLN-ARIS, eel length distributions from TP records and

RC were similar (Fig 7). The method’s recall decreased below a threshold length of 37 cm but

remained near 60% above it. Only one eel larger than the targeted range of 30–60 cm was

detected at PLN (78 cm long).

Table 6. Confusion matrices and performance metrics obtained for a common 73-hour period at Mauzac recorded by ARIS and BlueView cameras.

ARIS Pred. Eels Pred. Others Total BlueView Pred. Eels Pred. Others Total

Eels 38 18 56 Eels 122 52 174

Others 13 � - Others 46 � -

Total 51 - - Total 168 - -

Recall 67.9% Recall 70.1%

Precision 74.5% Precision 72.6%

F1-score 64.8% F1-score 68.9%

� True negatives were not counted.

https://doi.org/10.1371/journal.pone.0273588.t006

Fig 6. Performance metrics of the method as a function of the detection range (m) for the PLN-ARIS dataset: a)

cumulative true positive and false negative distributions and recall, b) false positive distribution and precision,

and c) F1-scores.

https://doi.org/10.1371/journal.pone.0273588.g006

Fig 7. Performance metrics (cumulative false negative and true positive distributions and recall values) of the

method as a function of the measured length of eels (cm) for the PLN-ARIS dataset.

https://doi.org/10.1371/journal.pone.0273588.g007
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Discussion

The method developed to identify anguilliform fish using acoustic camera records performed

well compared to those in previous studies [12,14]. The method was able to automatically

identify 74% of the large European eels that passed into the ARIS sonar field of view (recall)

with 84% precision (i.e. 16% FP). For the same species, Bothmann et al. [12] obtained a higher

performance (recall = 91%, precision = 96%) with a DIDSON camera but on a 5m long detec-

tion range, i.e. 2–3 times shorter than our study. With better image resolution, the fragmented

targets were likely not a serious problem for their dataset. Zang et al. [14] also obtained a simi-

lar good performance (recall = 84%) on a few individuals of American eels, with no other fish

species in their dataset. Moreover, both studies [12,14] used data from a single acoustic camera

model at a single monitoring site. The method developed in the present study was tested with

two common and different models of acoustic camera and aims to be transferable to other

models of acoustic camera. Following the pioneer DIDSON and ARIS cameras, other high-fre-

quency multibeam sonars are now available, notably BlueView and Oculus [42]. These devices

are less expensive and compensate their lower resolution by having a wider FOV: they thus

cover more than four times as much volume as DIDSON or ARIS. When ARIS was compared

to BlueView at MZC, the latter counted three times as many eels during the same recording

period. Despite BlueView’s lower resolution, the method developed obtained similar recall and

precision with it as with ARIS, which highlights the method’s genericity. In our study site

where both camera types were set up, the BlueView wider FOV increased the capacity of the

camera to detect large European eels despite its poorer resolution. Furthermore, our method

of counting and detection performed similarly as on ARIS camera for the same population of

eel. Previous studies have already shown the potential of the BlueView camera in similar set-

tings [42].

However, more than 50% of the FP recorded in MZC-BV resulted from multiple counting

of eels. Considering only the method’s ability to distinguish eels from other species or objects,

and not the counting accuracy, the precision for MZC-BV was 85.3%, which was similar to

that of MZC-ARIS (84.4%). This highlights the method’s strong ability to distinguish eels from

other objects using either camera model. Because the method also aims to count eels accu-

rately, multiple counts are considered an error, and they decreased the precision for BV-MZC

slightly to 74.3%. The larger number of multiple counts in BlueView videos than in ARIS vid-

eos was due to the greater difficulty in accurately and continuously tracking the same eel along

its path. This error in BlueView videos could have come from two sources: (a) structural noise

that appears every 21˚, which prevents capturing an accurate image of objects in the impacted

frame quadrants, and (b) the much larger field of view, which makes it more likely to lose an

object as it moves and to find it again a little further in the FOV. Post-processing the paths

using post-tracking reconstruction to exclude the noise quadrants could help remove dupli-

cates from the eel count.

Despite these frequent errors, the method underestimates the eel count to a similar

degree in MZC-ARIS and MZC-BV, with a regression slope of 0.72, a small 95% confidence

interval and a strong correlation, despite the differences in the beam formation process of

both cameras and in the consecutive resolutions of their images. Those correlations between

the number of eels counted by an operator and the eels automatically detected highlight that

a constant percentage of eels is efficiently identified by our method on both datasets on the

datasets recorded by both camera models even if slopes are significantly different from

the 1:1 line. This information could help future studies determine a correction factor site-

dependent for the method’s count to reach a similar efficiency than an entire reading by an

operator.
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During their downstream migration, European silver eels display a wide range of body

lengths, as well as sexual dimorphism (i.e. males are shorter than females [31]). Overall, sex

determination in the European eel is partly related to the local environmental conditions they

encounter during their freshwater phase, such as eel density, recruitment and watershed char-

acteristics [43,44]. Our method was more effective for sites dominated by females (recall = 74%,

precision = 83%) and performed moderately well when the eels were shorter than 60 cm

(recall = 44%, precision = 42%). This limitation was likely due to the camera resolution and

fish length. Information about morphology is severely limited when an anguilliform fish is

characterized by only a few pixels. Fernandez Garcia et al. [26] obtained similar results with

conventional neural networks: their results showed that length had a clear influence on eel

recall, decreasing from 65% for eels longer than 60 cm to 22% for those shorter than 60 cm.

Despite length-biased performance, we found that the predicted length distribution was con-

sistent with that observed by the operators (Fig 6).

In acoustic camera videos, the horizontal dimension of pixels, or cross-range resolution [6]

depends on the detection range, which influences an operator’s visualization of fish [45] and

may decrease measurement accuracy [46,47]. Our results for the PLN-ARIS dataset highlight

the method’s robust performances for eels 4–9 m from the camera. Eels closer to the camera

were not detected well since their echoes were sometimes hidden or corrupted by arcing

effects. These errors are a known issue in DIDSON videos due to fish or highly reflective tar-

gets moving near the camera [13,46], but they were not observed in BlueView videos. Mitigat-

ing the signal intensity on the recorded videos may decrease the influence of those arcing

effects but may also affect the efficiency of automatic fish detections. The specific shape of

these artifacts (i.e. the arc of a circle) could be addressed by specific pre-processing of each

frame. The ability to identify all eels that passed in the camera FOV peaked 4–10 m from the

camera, with a recall of ca. 60%. Similarly, the precision (i.e. the ability to distinguish eels from

other objects) also depended on the detection range. Precision peaked 4–9 m from the camera,

with a precision of 60%. The number of FP increased greatly beyond 9 m, with errors due

mainly to misidentifying other species or debris as eels. This was likely because the increase in

the pixel dimension prevented effective identification of small eels. Future studies should focus

on whether our model is more effective for detecting and identifying larger eels beyond 9 m.

Unlike the frame resolution of the DIDSON camera, that of ARIS can be set by the operator

by adjusting the number of samples along the vertical axis. The vertical resolution can thus

range from 3–19 mm, which causes differences in width for fish that move perpendicular to

the sonar FOV. Theoretically, we assume that fish identification will improve at a higher reso-

lution. The difference in resolution between MZC and PLN may also have influenced perfor-

mances at PLN, making it more difficult to distinguish eels from other objects, especially those

further from the camera (63% of FP in the PLN dataset). An overly low resolution may also

increase the fragmentation of eel echoes that cause discontinuities and the need to rebuild the

eel skeleton. In addition to camera recording parameters, future studies should focus on envi-

ronmental conditions during recording and their influence on identification. Among other

factors, water flow can influence the migration activity of silver eels [48] as well as influencing

image quality via the number and speed of objects that pass in the camera FOV. Thus, it could

have influenced the method’s performance by increasing the number of objects detected and

shortening the interval of frames of each pass.

Conclusion

Our study demonstrates the feasibility of using computer vision and morphological analysis to

automatically identify large anguilliform fish in situ, using two acoustic camera models with
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different characteristics, up to a range of 10 m, even when images of fish become fragmented.

Unless fish length emerges as a limitation of this method–and future studies should be per-

formed to define its operational boundaries more clearly. Our innovative method can provide

relevant ecological data from acoustic cameras during long-term monitoring, in a faster way

compared to reading of the entire dataset by a human operator, pushing further the advantage

of using acoustic cameras to monitor migratory fish populations without any disturbance on

their behavior and health conditions face to more intrusive methods as stow nets.

The results reveal that the automatic method with no post-processing could be useful for

monitoring migration dynamics of a large anguilliform fish population. Although it tends to

underestimate the total number of fish, it can identify their migration peaks and serve as a

proxy of the total number of fish passing through the camera FOV. In a semi-automated appli-

cation, an experienced operator could validate each predicted anguilliform fish, which would

increase the accuracy of the fish count and avoid FP detections. Having a proxy of eel passes is

especially useful for the operation of hydropower plants. Future development could include a

user-friendly application to monitor in situ eels in real time, which could encourage more pre-

cise management of turbine shutdowns that optimizes production costs while hurting fewer

eels. Besides, the problem of large acoustic data storage can be alleviated by running the analy-

sis right after recording and before archiving the data; the use of higher resolution settings

should be much easier too.

Although the method was successful for large silver eels, remaining issues could be investi-

gated to improve it further. Machine learning could be applied to improve the accuracy of the

empirically defined thresholds used in the morphological analysis. Fish length, detection range

and resolution influence the method’s performance. Better understanding the influence of

each factor as well as their interactions is a potential area for improvement. Currently, caution

is required when using our approach since the automatic detection of small (< 60 cm long)

eels does not perform very well and counting might be undervalued. Finally, the method was

designed and tested only for European eels, but it could be tested for other species with similar

undulation and a serpentine body shape, such as the American eel and sea lamprey (Petromy-
zon marinus). Morphological analysis of moving fish is a promising and timesaving approach

for using acoustic cameras to identify and count other fish species.

Supporting information

S1 Fig. Figure of the installation of the two acoustic cameras at MZC site.

(TIF)

S2 Fig. Workflow of the reconstruction process of skeleton in case of fragmented object. a)

Binary image of the candidate’s body after background subtraction; b) Binary image of the

candidate skeleton; c) Binary image of the candidate reconstructed skeleton.

(TIF)

S3 Fig. Tracking conditions between two detections of an eel at n frames interval.

(TIF)

S4 Fig. Successive positions and shape of an eel along its movement in the camera beam.

(TIF)

S5 Fig. Examples of three of the main categories of errors made by the method. a) Example

of an arcing effect; b) Example of the method misidentification due to fish swimming closely

to each other, c) Example of the method misidentification as an eel of another fish species.

(TIF)
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S1 File. Calculation of the echograms of singular values ratios.
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S2 File. Reconstruction and extraction of skeleton characteristics.

(PDF)
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