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A B S T R A C T   

In the context of increasing soil degradation worldwide, spatially explicit soil information is urgently needed to 
support decision-making for sustaining limited soil resources. Digital soil mapping (DSM) has been proven as an 
efficient way to deliver soil information from local to global scales. The number of environmental covariates used 
for DSM has rapidly increased due to the growing volume of remote sensing data, therefore variable selection is 
necessary to deal with multicollinearity and improve model parsimony. Compared with Boruta, recursive feature 
elimination (RFE), and variance inflation factor (VIF) analysis, we proposed the use of modified greedy feature 
selection (MGFS), for DSM regression. For this purpose, using quantile regression forest, 402 soil samples and 
392 environmental covariates were used to map the spatial distribution of soil organic carbon density (SOCD) in 
Northeast and North China. The result showed that MGFS selected the most parsimonious model with only 9 
covariates (e.g., brightness index, mean annual temperature), much lower than RFE (22 covariates), VIF (30 
covariates), and Boruta (76 covariates). The repeated validation (50 times) showed that the MGFS derived model 
performed better (R2 of 0.60, LCCC of 0.74, RMSE of 13.80 t ha− 1) than these using full covariates, Boruta, RFE 
and VIF (R2 of 0.48–0.57, LCCC of 0.64–0.72, RMSE of 14.24–15.79 t ha− 1). Despite the similar performance of 
the uncertainty estimate (PICP), the model using MGFS and RFE had the lowest global uncertainty (0.86) as 
indicated by the uncertainty index. In addition, MGFS had the best computation efficiency when considering the 
steps of variable selection and map prediction. Given these advantages over Boruta, RFE and VIF, MGFS has a 
high potential in fine-resolution soil mapping practices, especially for these studies at a broad scale involving 
heavy computation on millions or billions of pixels.   

1. Introduction 

Soil is one of the Earth’s most essential and finite resources. It en-
ables life on Earth by delivering crucial ecosystem services, including 
the provision of food, fibre and fuel, water purification, contaminant 
reduction, nutrient cycling, carbon sequestration, climate and flood 
regulation, and biodiversity conservation (McBratney et al., 2014; 

Adhikari and Hartemink, 2016; Baveye et al., 2016; Pereira et al., 2018). 
Under the tremendous pressure of population growth, economic devel-
opment and climate change, global soils are continuously degraded (e. 
g., erosion, salinization, fertility decline). FAO (2015) reported that 33 
% of the Earth’s soils are already degraded, and over 90 % could become 
degraded by 2050. For sustaining soil resources for the next generation, 
there is an urgent demand to improve management practices which 

* Corresponding author at: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China. 
E-mail address: chensongchao@zju.edu.cn (S. Chen).  

Contents lists available at ScienceDirect 

Geoderma 

journal homepage: www.elsevier.com/locate/geoderma 

https://doi.org/10.1016/j.geoderma.2023.116383 
Received 27 October 2022; Received in revised form 9 January 2023; Accepted 12 February 2023   

mailto:chensongchao@zju.edu.cn
www.sciencedirect.com/science/journal/00167061
https://www.elsevier.com/locate/geoderma
https://doi.org/10.1016/j.geoderma.2023.116383
https://doi.org/10.1016/j.geoderma.2023.116383
https://doi.org/10.1016/j.geoderma.2023.116383
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2023.116383&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Geoderma 432 (2023) 116383

2

require spatially explicit soil information to support decision-making. 
However, many conventional soil maps do not provide relevant infor-
mation for the current global challenges, and most of the data for 
creating the soil maps is outdated (Sanchez et al., 2009; Arrouays et al., 
2014, Arrouays et al., 2017). A digital revolution has taken place in soil 
mapping in the last 20 years, which resulted in the concept of digital soil 
mapping (DSM, McBratney et al., 2003). 

DSM has emerged as a fast-growing sub-discipline of soil science by 
integrating soil surveys, geostatistics, geographic information system, 
remote sensing and machine learning (Minasny and McBratney, 2016). 
DSM has been widely used in delivering fine-resolution maps of soil 
information across scales with a focus switching from “primary” soil 
properties (e.g., soil organic carbon, particle size fractions, pH, soil 
depth) to “secondary” soil properties (e.g., available water capacity, 
carbon sequestration potential, carbon vulnerability) in the last decade 
(Padarian et al., 2014; Hengl et al., 2017; Chen et al., 2018; Román 
Dobarco et al., 2019; Viscarra Rossel et al., 2019; Liu et al., 2022). 

The number of environmental covariates used for DSM has rapidly 
increased due to the growing volume of remote sensing data (Chen et al., 
2022a). Therefore, variable selection is increasingly used before fitting 
the final predictive model. It has several advantages, such as (1) cali-
brating the predictive model faster; (2) reducing model complexity; (3) 
increasing model performance; (4) avoiding multicollinearity; (5) pro-
ducing the map faster (Wadoux et al., 2020). Currently, there are 
mainly-two strategies for variable selection in DSM (Wadoux et al., 
2020): (1) covariate reduction as a pre-processing step (before cali-
brating a machine learning model), such as selecting the most relevant 
covariates by Pearson’s correlation coefficient between soil properties 
and covariates, discarding the covariates which are highly correlated 
with other covariates, or keeping the first several components using 
principle component analysis (Mosleh et al., 2016; Hamzehpour et al., 
2019; Poggio et al., 2021; Taghizadeh-Mehrjardi et al., 2021); (2) 
wrapper methods which rely on inference made by calibrating a ma-
chine learning model to assess covariate importance (Xiong et al., 2014; 
Brungard et al., 2015; Nussbaum et al., 2018; Amiri et al., 2019; Keskin 
et al., 2019; Poggio et al., 2021). In addition to the limitation of not 
being applicable to categorical variables, most of the first strategy only 
accounts for the linear relationship between soil properties and cova-
riates or even omits their correlations, so it can potentially neglect these 
covariates non-linearly correlated to the soil properties and thus 
decrease model performance (Camera et al., 2017; Zeraatpisheh et al., 
2019). In addition, though machine learning models can be affected by 
multicollinearity (Strobl et al., 2008; Drobnič et al., 2020), they are still 
more robust than traditional multiple linear regression (Dormann et al., 
2013); therefore, the second strategy is more appropriate for machine 
learning based DSM studies. Among these wrapper methods for variable 
selection, the most popular ones are Boruta (Xiong et al., 2014; Amiri 
et al., 2019; Keskin et al., 2019; Rasaei et al., 2020; Xu et al., 2022, 
Zeraatpisheh et al., 2022) and recursive feature elimination (RFE, 
Brungard et al., 2015; Nussbaum et al., 2018; Gomes et al., 2019; Chen 
et al., 2021; Poggio et al., 2021; Yang et al., 2022). Previous studies 
commonly chose either Boruta or RFE in variable selection, and only a 
few studies compared RFE and Boruta in DSM practices (Chen et al., 
2022b; Luo et al., 2022). In addition, all these relevant studies only 
focused on the impact of variable selection on the model performance 
while ignoring its effect on the uncertainty estimate. Therefore, it re-
mains unclear which variable selection method is superior in model 
performance and uncertainty estimates. From our previous experience 
with Boruta and RFE, we also found that they can potentially ignore 
some useful variables so as to decrease model performance (Xiao et al., 
2022). Therefore, based on the recently proposed greedy feature selec-
tion (GFS, Drobnič et al., 2020), a modified variable selection algorithm 
is expected to solve this problem for mapping soil properties. 

Addressing the current knowledge gap and limitation, the objectives 
of this study are twofold: (1) apply a modified GFS algorithm to DSM 
regression problem; (2) compare the modified GFS algorithm to 

commonly used variable selection methods on model performance, un-
certainty estimate and computation efficiency in soil organic carbon 
density (SOCD) mapping. 

2. Materials and methods 

2.1. Soil data 

The study area is located in Northeast and North China, covering a 
total area of 56.30 × 104 km2 in which 37.67 × 104 km2 are used as 
cropland (Fig. 1). It has a temperate continental monsoon climate with 
mean annual precipitation (MAP) between 400 and 1200 mm and mean 
annual temperature (MAT) between − 1.1 and 16 ◦C. According to the 
Genetic Soil Classification of China, the main soil types are Black 
(Phaeozems), Chernozem and Brown Earth (Luvisols) in Northeast Plain, 
and Fluvo-aquic (Eutric Cambisols), Shajiang Black (Vertisols), and 
Cinnamon (Eutric Luvisols) in Huai-Hai Plain (Zhuo et al., 2022). The 
single cropping system (i.e., spring corn, spring wheat, soybean) domi-
nates in the Northeast Plain, and the double cropping system (winter 
wheat and summer corn) is the main farming system in the Huai-Hai 
Plain. Accounting for around 30 % of the national grain production, 
the study area is a crucial agricultural region in China. 

A total of 402 sampling sites were selected in the cropland by 
stratified random sampling representing the major soil types, clay con-
tent and agricultural system. For each sampling site, three soil cores 
were collected at four depth intervals (0–10, 10–20, 20–30, and 30–40 
cm) using an undisturbed soil sampler (diameter of 5.1 cm and height of 
10 cm) between April and May in 2017. All the composite soil samples 
were air-dried and sieved to < 2 mm, and SOC content (g kg− 1) was 
determined by the dichromate oxidation–external heating method (Bao, 
2007). Soil bulk density (BD, g cm− 3) was determined by the mean of 
three replicates of undisturbed soil cores (100 cm3 in volume). More 
details about sampling design and laboratory analysis can be found in 
Zhuo et al. (2022). In this study, we focused on the topsoil (0–30 cm) by 
integrating the soil information from the first three depth intervals 
(0–10, 10–20, 20–30 cm) using the weighted average method. SOCD (t 
ha− 1) was calculated by the equation below: 

SOCD = SOC × BD × Depth × 10 (1)  

where Depth is the soil depth (cm) which is 30 cm. In this study, coarse 
fragments did not present in the topsoil (0–30 cm) of cropland, so it was 
not considered in this equation. 

2.2. Environmental covariates 

Following the Scorpan framework (McBratney et al., 2003), 392 
environmental covariates relevant to SOCD were investigated and listed 
in Table 1. The environmental covariates were derived from multiple 
sources: Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced The-
matic Mapper (ETM + ), Landsat 8 Operational Land Imager (OLI), 
Shuttle Radar Topography Mission (SRTM) digital elevation model 
(DEM), products from Moderate Resolution Imaging Spectroradiometer 
(MODIS), and legacy digital soil maps. 

All available Landsat 5, 7 and 8 surface reflectance images at 30 m 
resolution covering the entire study area in the Collection 2 Tier1 Level 
2 database were collected from 2003 to 2017 (https://www.usgs.gov/). 
These images received radiometric, geometric and atmospheric correc-
tions with Landsat Ecosystem Disturbance Adaptive Processing System 
(Landsat 5 TM and Landsat 7 ETM+) and Land Surface Reflectance Code 
(Landsat 8 OLI). To ensure the image quality, we filtered the image 
collection with the criteria of cloud cover < 20 %, root mean square 
error (RMSE) of geometric residuals measured on the ground control 
points < 10 m, and the best image quality level. Afterwards, the CFmask 
algorithm was used to identify and remove the dilated cloud, cirrus, 
cloud and cloud shadow (Zhu et al., 2015; Foga et al., 2017). 
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Considering the difference in the spectral characteristics of Landsat TM, 
ETM+ and OLI, we harmonized blue, green, red, near-infrared, short-
wave infrared 1, and shortwave infrared 2 in Landsat TM, ETM+ to OLI 
with the ordinary least square regression coefficient (Roy et al., 2016). 
The products of MODIS from 2003 to 2017 were also used as environ-
mental covariates. 

The Geospatial Soil Sensing System (GEOS3) algorithm was used to 
detect the bare soil pixels in all available Landsat images from 2003 to 
2017 (Demattê et al., 2018), and then a median composite image of all 
bare soil pixels was used to calculate 11 soil indices such as Brightness 
Index (BI), Hue Index (HI) and Saturation Index (SI). Additionally, leg-
acy digital soil maps such as soil erosion (SE) and soil particle size 
fractions were included (Hengl et al., 2017; Teng et al., 2019). 

The climate covariates mainly originated from WorldClim2, 
including 7 climatological and 16 bioclimatic (BIO) variables at 1 km 
resolution for the period of 1970–2000 (Fick and Hijmans, 2017). 
Moreover, the average of Day-time and Night-time Land Surface Tem-
perature (LSTD, LSTN) at 1 km resolution were calculated using 
MOD11A1 (Wan et al., 2021). As for Normalized Difference Snow Index 
(NDSI), we used Landsat (2003–2017) to calculate the intra-annual and 
intra-quarterly mean and standard deviation (10 variables), mean of the 
intra-annual and intra-quarterly maximum and minimum (10 variables), 
and averaged intra-quarterly standard deviation (1 variable), resulting 
in 21 variables to better represent its temporal change (Zhou et al., 
2019a). As for Potential Evapotranspiration (PET) and Evapotranspira-
tion (ET), we used MOD16A2 at 500 m resolution to calculate the mean 
and standard deviation of the intra-annual and intra-quarterly aggre-
gation (10 variables), and averaged standard deviation of intra- quar-
terly aggregation in 2003–2017 (1 variable) (Running et al., 2017). 

A total of 253 covariates related to organisms were calculated by 
Landsat and MODIS products (Loveland and Dwyer, 2012; Myneni et al., 
2021; Running et al., 2015). Leaf Area Index (LAI), Enhanced Vegetation 
Index (EVI), Normalized Difference Vegetation Index (NDVI) and eight 

other indices were calculated in the same way as NDSI (21 variables for 
each). The calculation of Gross Primary Production (GPP) and Net Pri-
mary Production (NPP) from MOD17A2H was consistent with PET and 
ET (11 variables for each) (Running et al., 2015). 

The DEM at 90 m resolution was derived from SRTM of National 
Aeronautics and Space Administration (NASA) (Andy et al., 2008). 
Based on the elevation, we used SAGA GIS to derive 45 relief derivatives 
(Conrad et al., 2015), such as Analytical Hillshading (AH), Slope (SLO), 
Channel Network Base Level (CNBL), Plan Curvature (PLC), Multi-
resolution Index of Valley Bottom Flatness (MRVBF) and Topographic 
Wetness Index (TWI). 

Based on the latitude and longitude, oblique geographic coordinates 
(OGC) were calculated at 15◦, 30◦, 45◦, 60◦, 75◦, 105◦, 120◦, 135◦, 150◦

and 165◦ angles, with the following equation (Møller et al., 2020): 

OGC =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Lat2 + Lon2

√
× cos

(
α − tan− 1(Lat/Lon)

)
(2)  

where Lon and Lat are the longitude and latitude, α is the angle (in 
degrees) of the titled axis relative to the x axis. 

All environmental covariates were resampled to 250 m resolution 
using the bilinear method for spatial modelling and map prediction. The 
collection and pre-processing of remote sensing data were performed in 
Google Earth Engine (Gorelick et al., 2017). All covariates were unified 
into the CGCS WGS 1984 geographic coordinate system, and predicted 
maps were projected into the Albers Conic Equal Area coordinate 
system. 

2.3. Variable selection methods 

2.3.1. Boruta 
The Boruta algorithm is one of the widely used variable selection 

methods in DSM (Xiong et al., 2014; Xu et al., 2017; Keskin et al., 2019; 
Rasaei et al., 2020). Proposed by Kursa and Rudnicki (2010), Boruta first 

Fig. 1. The location of study area (a) and the distribution of soil sampling sites (b).  
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Table 1 
List of environmental covariates used in this study. The number in the columns 
of Scorpan factor and Covariate indicates the number of variables within each 
group.  

Scorpan 
factor 

Covariate Abbreviation Scale Reference 

Soil (15) Soil Erosion (1) SE 1000 
m 

Teng et al. 
(2019) 

Clay, Silt and Sand 
Content (3) 

Clay, Silt, Sand 250 
m 

Hengl et al. 
(2017) 

Brightness Index (1) BI 30 m Abbas and 
Khan (2007) 

Carbonate Index (1) CarI 30 m Boettinger 
et al. (2008) 

Coloration Index (1) Coll 30 m Escadafal 
(1994) 

Ferrous Minerals (1) FM 30 m Imbroane 
et al. (2007) 

Gypsum index (1) GI 30 m Boettinger 
et al. (2008) 

Hue Index, Saturation 
Index (1) 

HI, SI 30 m Mandal 
(2016) 

Iron Oxide (1) IO 30 m Hewson 
et al. (2001) 

Reflectance 
Absorption Index (1) 

RAI 30 m Ghaemi 
et al. (2013) 

Redness Index (1) RI 30 m Madeira 
et al. (1997) 

Stress Related (1) SR 30 m Foody et al. 
(2001) 

Climate 
(68) 

Bioclimatic Variables 
(Mean Diurnal Range, 
Isothermality, 
Temperature 
Seasonality, 
Temperature Annual 
Range, Mean 
Temperature Of 
Wettest Quarter, Mean 
Temperature of Driest 
Quarter, Mean 
Temperature of 
Warmest Quarter, 
Mean Temperature of 
Coldest Quarter, 
Annual Precipitation, 
Precipitation of 
Wettest Month, 
Precipitation of Driest 
Month, Precipitation 
Seasonality, 
Precipitation of 
Wettest Quarter, 
Precipitation of Driest 
Quarter, Precipitation 
of Warmest Quarter, 
Precipitation of 
Coldest Quarter) (16) 

BIO02, 03, 04, 
07, 08, 09, 10, 
11, 12, 13, 14, 
15, 16, 17, 18, 
19 

1000 
m 

Fick and 
Hijmans 
(2017) 

Wind Speed, Vapor 
Pressure, Solar 
Radiation, Average 
Precipitation (4) 

Wind, VP, Sol, 
Prec 

1000 
m 

Fick and 
Hijmans 
(2017) 

Temperature 
(Average, Maximum, 
Minimum) (3) 

Tavg, Tmax, 
Tmin 

1000 
m 

Fick and 
Hijmans 
(2017) 

Day-time and Night- 
time Land Surface 
Temperature (2) 

LSTD, LSTN 1000 
m 

Wan et al. 
(2021) 

Potential 
Evapotranspiration 
(11)a and 
Evapotranspiration 
(11)a 

PET, ET 500 
m 

Running 
et al. (2017) 

Normalized Difference 
Snow Index (21)b 

NDSI 30 m Riggs et al. 
(1994) 

Organisms 
(253) 

Canopy Index (21)b CANI 30 m  

Table 1 (continued ) 

Scorpan 
factor 

Covariate Abbreviation Scale Reference 

Vescovo and 
Gianelle 
(2008) 

Differenced 
Vegetation Index (21)b 

DVI 30 m Richardson 
and 
Wiegand 
(1977) 

Enhanced Vegetation 
Index (21)b 

EVI 30 m Huete et al. 
(2002) 

Green 
Atmospherically 
Resistant Vegetation 
Index (21)b 

GARI 30 m Gitelson 
et al. (1996) 

Normalized Difference 
Red/Green Redness 
Index (21)b, Ratio 
Vegetation Index (21)b 

NDRI, RVI 30 m Bannari 
et al. (1995) 

Normalized Difference 
Vegetation Index (21)b 

NDVI 30 m Tucker 
(1979) 

Normalized Difference 
Water Index (21)b 

NDWI 30 m Gao (1996) 

Soil Adjusted 
Vegetation Index (21)b 

SAVI 30 m Huete 
(1988) 

Gross (11)a and Net 
Primary Production 
(11)a 

GPP, NPP 500 
m 

Running 
et al. (2015) 

Fraction of 
Photosynthetically 
Active Radiation 
(21)b, Leaf Area Index 
(21)b 

FPAR, LAI 500 
m 

Myneni 
et al. (2021) 

Relief (46) Elevation, Analytical 
Hillshading, Aspect, 
Slope, Catchment 
Area, Total Catchment 
Area, Channel 
Network Base Level, 
Channel Network 
Distance, Closed 
Depressions, Clusters, 
Landform, 
Morphometric 
Features, Convergence 
Index, Flow 
Accumulation, Flow 
Path Length, 
Generalized Surface, 
Geomorphons, 
Gradient, Curvature 
(Cross-Sectional, 
Classification, 
Downslope, Local, 
Local Downslope, 
Local Upslope, 
Longitudinal, 
Maximum, Minimum, 
Plan, Profile, 
Upslope), Slope 
Length Factor, Slope 
Length, Relative Slope 
Position, Melton 
Ruggedness Number, 
Multiresolution Index 
of Ridge Top Flatness, 
Multiresolution Index 
of Valley Bottom 
Flatness, Stream 
Power Index, 
Topographic Position 
Index, Topographic 
Wetness Index, 
Upslope Height,, 
Valley Depth, Vector 
Terrain Ruggedness, 
Diurnal Anisotropic 

ELE, AH, ASP, 
SLO, CA, TCA, 
CNBL, CND, CD, 
CLU, LAN, MF, 
CGI, FA, FPL, 
GS, GEO, GRA, 
CSC, CVC, DSC, 
LC, LDC, LUC, 
LTC, MAC, MIC, 
PLC, PRC, UC, 
LSF, SL, RSP, 
MRN, MRRTF, 
MRVBF, SPI, 
TPI, TWI, UH, 
MAH, VD, VTR, 
DAH, WE, SI 

90 m Jarvis et al. 
(2008) 

(continued on next page) 
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duplicates the data set and then shuffles its predictors in each column 
(which are called shadow predictors). Afterwards, it trains a Random 
Forest (RF) model using the original and shuffled data sets combined 
and evaluates the variable importance (Z score) for each predictor. In 
each iteration, it checks whether a real predictor has higher importance 
(RMSE) than the best of its shadow predictors and marks the predictor as 
either confirmed (important) or rejected (unimportant). Finally, it stops 
when all the predictors are confirmed or rejected. The Boruta algorithm 
was performed in R package “Boruta” (Kursa and Rudnicki, 2010). 

2.3.2. Recursive feature elimination 
The RFE algorithm is commonly used to select the most relevant 

predictors for machine learning methods (Gomes et al., 2019; Chen 
et al., 2021; Poggio et al., 2021; Hounkpatin et al., 2022). Based on the 
backward selection, RFE works as follows: (1) fit a model using all the n 
predictors, calculate model performance by k-fold cross-validation 
(RMSE) and the variable importance; (2) remove the least important 
predictor from the pool, refit the model, assess model performance and 
remove the least important predictor again; (3) repeat the second pro-
cedure down to a pool from n to 1 with a step of 1; (4) determine the 
optimal number of predictors by taking the model with the best per-
formance (RMSE). The RFE was implemented in R package “caret” using 
RF as an internal model (Kuhn, 2021). 

2.3.3. Variance inflation factor analysis 
The VIF analysis is a commonly used method to evaluate the multi-

collinearity among predictors and select the optimal subset of predictors 
that are not correlated (Curto and Pinto, 2011). During the VIF process, 
each predictor is regressed against the remaining predictors by a linear 
model using ordinary least squares regression. After the determination 
of the coefficient of determination (R2) from the fitted linear model, the 
VIF is calculated by equation 3: 

VIFi =
1

1 − R2
i

(3)  

where R2
i is the R2 for predictor i. 

According to previous studies, predictors with VIF > 10 were 
determined to be highly correlated with other predictors and were 
therefore removed from the final DSM model (Odhiambo et al., 2020; 
Taghizadeh-Mehrjardi et al., 2021). The R package “car” was used to 
perform VIF analysis (Fox and Weisberg, 2019). 

2.3.4. Modified greedy feature selection 
Based on the GFS algorithm (Drobnič et al., 2020), a modified greedy 

feature selection (MGFS), is proposed for DSM regression problem. 
Opposite to RFE, MGFS adopts a forward selection strategy which in-
cludes steps (Fig. 2): (1) fit a model using all the n predictors, and 
calculate the variable importance; (2) select the most important pre-
dictor (only one) to fit an initial model, and calculate the model per-
formance (RMSE) by k-fold cross-validation (note that there is only one 
predictor in the pool); (3) fit a list of models using 2 predictors (the 
combinations of predictor(s) in the pool and one of the remaining pre-
dictors), calculate their model performance, and record the model with 
the best performance; (4) update the pool by taking the predictors from 
the best model in the previous step; (5) repeat steps 3 and 4 by 
increasing the number of predictors from 3 to n. The predictors in the 
model with the best performance (RMSE) are selected for the final 
model. It is possible to set an early stop when the model performance 
starts to decrease for a large number of predictors (>50). Since Boruta 
and RFE both used RF, the same internal model was used in MGFS for a 
fair comparison in this study. The differences between original GFS and 
MGFS are in two aspects: 

(1) GFS adds an additional constraint (least-trees-used criterion) 
when adding predictors to the model. This additional constraint likely 
has little impact since a tie would be required between 2 predictors, 
which is highly unlikely, and therefore it is not adopted in MGFS; 

(2) Inspired by RFE, MGFS started with the most important predictor 
based the fitted model using all the predictors, while GFS tested all the 
single predictor in the first iteration. Therefore, MGFS should be slightly 

Table 1 (continued ) 

Scorpan 
factor 

Covariate Abbreviation Scale Reference 

Heating, Wind 
Exposition and Shelter 
Index (46) 

Position 
(10) 

Oblique geographic 
coordinate at 15◦ , 30◦, 
45◦, 60◦, 75◦, 105◦, 
120◦, 135◦, 150◦ , 165◦

(10) 

OGC15, 30, 45, 
60, 75, 105, 
120, 135, 150, 
165 

30 m Møller et al. 
(2020)  

a Mean and standard deviation of the intra-annual and intra-quarterly ag-
gregation in 2003–2017 (10 variables), and averaged standard deviation of 
intra- quarterly aggregation in 2003–2017 (1 variable). 

b Intra-annual and intra-quarterly mean and standard deviation in 2003–2017 
(10 variables), mean of the intra-annual and intra-quarterly maximum and 
minimum in 2003–2017 (10 variables), and averaged intra-quarterly standard 
deviation in 2003–2017 (1 variable). 

Fig. 2. Diagram of modified greedy feature selection (MGFS).  
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more efficient than GFS. 
In summary, VIF and Boruta are fundamentally different from RFE 

and MGFS. VIF operates independently from the dependent predictor 
and deals primarily with multicollinearity, and Boruta is based on in-
dividual predictor importance with regards to shadow predictors. Solely 
based on the variable importance, RFE and MGFS are equivalent. 

2.4. Calibration model 

Quantile regression forest (QRF) has seen increased use in DSM 
studies, especially at a broad scale, because it provides calculation of 
uncertainty and good model performance (Meinshausen and Ridgeway, 
2006; Vaysse and Lagacherie, 2017; Loiseau et al., 2019; Kasraei et al., 
2021; Poggio et al., 2021). 

We define X and Y as the predictor variables and target variables, 
QRF generates a large number of trees (b) using bootstrapping (random 
sampling with replacement) from p training samples (Xi,Yi), i = 1,…, p. A 
random subset of the predictor variables is then used to select split-point 
for each node of the bootstrap tree. For a new sample N = Xn, its pre-
diction for each bootstrap tree is the conditional mean estimate of Y, 
which can be formulated as below: 

X̂ =
∑p

i=1
wiYi (4)  

where wi is the weight for the sample (Xi,Yi) in the same leaf within the 
same bootstrap tree. 

The mean prediction of b bootstrap trees is used to represent the final 
prediction of the new sample N. Using the weighted samples, QRF can 
also derive a conditional distribution from which the probability of Y 
being lower than a given percentile can be determined and thus calcu-
late the prediction intervals. We refer to Meinshausen and Ridgeway 
(2006) for more details relevant to the calculation of conditional dis-
tribution. The variables to possibly split at each node (mtry) were 
optimized by 5-fold cross-validation with grid searching, and other pa-
rameters were set to default values as suggested by (Kuhn, 2021). The 
“caret” (Kuhn, 2021) and “quantregForest” (Meinshausen, 2017) pack-
ages were used for optimizing and running QRF in R (R Core Team, 
2021). Predictions at mean, 5th and 95th percentiles can be derived 
from the fitted QRF model directly (Vaysse and Lagacherie, 2017; 
Poggio et al., 2021). 

2.5. Evaluation of model performance and computation efficiency 

The whole dataset (402 samples) was randomly split into calibration 
(281 samples) and validation (121 samples) sets at a ratio of 70 % to 30 
% with 50 repeats. The R2, Lin’s concordance correlation coefficient 
(LCCC), and RMSE were used to evaluate model accuracy on the vali-
dation set. Higher R2 and LCCC close to 1 and a lower RMSE close to 
0 mean better model accuracy. 

R2 = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
(ŷi − yi)

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
(yi− y)2

√ (5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
(ŷi − yi)

2

n

√
√
√
√
√

(6)  

LCCC =
2ρσyσŷ

(y − ŷ)2
+ σ2

y + σ2
ŷ

(7)  

where yi and ŷi are observation and prediction for sample i, y and ŷ are 
the mean of all the observations and predictions, n is the number of 

samples, ρ is the correlation coefficient, σy and σ ŷ are the variances of all 
the observations and predictions. 

The 90th prediction interval coverage probability (PICP90), calcu-
lated by the proportion of observations that fall within the 90 % pre-
diction intervals (PIs), was used to determine the performance of the 
uncertainty estimate on the validation set (Malone et al., 2016). A 
PICP90 close to 0.9 (or 90 %) means the uncertainty estimate is effica-
cious. To determine the magnitude of uncertainty, we calculated the 
uncertainty index (UI) by equation 8 (Viscarra Rossel et al., 2014; Zhou 
et al., 2019b). A greater UI indicates higher model uncertainty. 

UI =
1
n
∑n

i=1

(
Q95i − Q5i

Mean

)

(8)  

where Mean, Q95i and Q5i are the prediction at mean, 95th and 5th 
percentiles for sample i in the validation set. 

The computation efficiency was determined by the computation time 
using a DELL Precision 3650 Tower Workstation (Intel i9-10900 K CPU 
with 10 cores and 64 GB RAM). Here we recorded the computation time 
in two steps, variable selection and map prediction, which are the most 
time-consuming. The total number of pixels to be predicted was about 
8.7 million for the cropland in the study area, and parallel computation 
was not adopted in map prediction. 

3. Results 

3.1. Statistical summary of soil properties 

Table 2 shows the statistical summary of SOCD in all, calibration and 
validation datasets. For all dataset, SOCD ranged from 10.41 to 149.04 t 
ha− 1. The median and mean of SOCD were 41.29 and 46.26 t ha− 1 at 
0–30 cm. According to the coefficient of variation (47.65 %), SOCD had 
high heterogeneity. The skewness of 1.61 and kurtosis of 6.36 indicated 
that SOCD had a slightly positive and leptokurtic distribution in all 
dataset. The calibration and validation for SOCD had similar distribu-
tions to all dataset, showing that the repeated random data split (50 
times) was reasonable for proper model calibration and validation. 

3.2. Number of covariates selected by variable selection methods 

Table 3 indicates the number of final covariates selected by the four 
variable selection methods. The optimal covariates were determined by 
Z score for Boruta, VIF score (<10) for VIF, and best model performance 
(RMSE) for RFE and MGFS (Figures S1, S2, S3 and S4). Among 392 
environmental covariates, Boruta retained 76 covariates, within which 
3, 26, 36, 6 and 5 covariates were related to soil, climate, organisms, 
relief and position. VIF kept 30 covariates linked to soil (3), climate (4), 
organisms (21), and relief (2). RFE selected 22 covariates, including 3, 5, 
10, and 4 covariates relevant to soil, climate, organisms, and position, 
respectively. Selecting the minimum number of covariates, MGFS only 
kept 9 covariates for the final modelling, including BI (Brightness Index, 
soil), Tavg (Mean annual temperature, climate), UH (Upslope height, 
relief), OGC105 (Oblique geographic coordinate at 105◦, position), 
NDVI3Min (Minimum NDVI at 3rd quarter, organisms), LAI2Min 
(Minimum LAI at 2nd quarter, organisms), NDRI1Avg (Average NDRI at 
1st quarter, organisms), GARI3Max (Maximum GARI at 3rd quarter, 
organisms) and GPP3Avg (Average GPP at 3rd quarter, organisms) 
ranked descending by importance. 

3.3. Model performance of four variable selection methods 

The model performance using all 392 covariates and selected cova-
riates by the four variable selection methods is presented in Fig. 3. VIF 
had the lowest model performance with R2 of 0.48, LCCC of 0.64, and 
RMSE of 15.79 t ha− 1. The R2, LCCC and RMSE for the model using all 
the covariates (named Full hereafter) were 0.54, 0.70 and 14.79 t ha− 1 
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in SOCD prediction. Compared to the Full model, RFE performed slightly 
better with R2 of 0.57, LCCC of 0.72, and RMSE of 14.23 t ha− 1, while 
Boruta had a lower model performance with lower R2 (0.55), LCCC 
(0.71) and greater RMSE (14.66 t ha− 1). Among all the models, MGFS 
performed best with R2 of 0.60, LCCC of 0.74 and RMSE of 13.80 t ha− 1. 
Regarding the PICP, all the models were around 0.90 (0.88–0.92), 

indicating a similar quantification ability of 90 % PIs. The UI indicated 
that MGFS had the lowest global uncertainty (0.86) while the VIF model 
had the highest global uncertainty (0.98). 

3.4. Computation efficiency of three variable selection methods 

Table 4 shows the computation efficiency of variable selection and 
map prediction using the Full model and four variable selection 
methods. Since the Full model did not involve variable selection, the 
total computation time was 364 min which was equal to the time of map 
prediction. In the step of variable selection, Boruta (17 min) was the 
most efficient method, followed by MGFS (67 min), VIF (100 min) and 
RFE (150 min). In the step of map prediction, MGFS (34 min) performed 
much more efficient than RFE (51 min), VIF (59 min) and Boruta (102 
min). Summing up two procedures, MGFS was the most efficient model 
(101 min), followed by Boruta (119 min), VIF (159 min), RFE (201 min), 
and the Full model (364 min). 

Table 2 
Descriptive statistics for SOCD (t/ha) in the all, calibration and validation datasets. The statistics for calibration and validation datasets are the mean of 50 replicates.  

Dataset No Min Q1 Median Mean Q3 Max SD %CV Skew Kurt 

All 402  10.41  31.89  41.29  46.26  53.66  149.04  22.04  47.65  1.61  6.36 
Calibration 281  10.82  31.83  40.97  46.08  53.07  144.69  21.82  47.34  1.60  6.33 
Validation 121  11.98  32.36  41.56  46.67  53.99  136.01  22.28  47.64  1.52  6.00 

Number of samples (No), minimum (Min), first quantile (Q1), third quantile (Q3), maximum (Max), standard deviation (SD), coefficient of variation (%CV), skewness 
(Skew) and kurtosis (Kurt). 

Table 3 
Number of covariates after variable selection.  

Category  Number of covariates 

RFE Boruta VIF MGFS 

Whole 22 76 30 9 
Soil 3 3 3 1 
Climate 5 26 4 1 
Organisms 10 36 21 5 
Relief 0 6 2 1 
Position 4 5 0 1  

Fig. 3. Boxplots of QRF model performance with 50 repeats using all the predictors (Full), Boruta, recursive feature elimination (RFE), variance inflation factor 
(VIF), and modified greedy feature selection (MGFS). 
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3.5. Spatial distribution of SOCD and associated uncertainty 

The spatial distribution of SOCD and 90 % PIs are shown in Fig. 4 and 
Figure S5. A general increasing gradient was observed in all the SOCD 
maps from the south-western part (20–50 t ha− 1) to the north-eastern 
part (>70 t ha− 1), and the difference among the four SOCD maps was 
relatively small. The lower and upper limits (5 % and 95 % PI) of 90 % 
PIs had a similar spatial pattern, while the lower limits were general-
ly<50 t ha− 1 and upper limits were commonly>57 t ha− 1 over the whole 
study area. 

Fig. 5 presents the spatial prediction of UI. The general spatial pat-
terns of UI using five models were similar and the area with a lower 
density of calibration samples had greater UI (Fig. 1). It was also evident 
from the frequency plots that MGFS had fewer pixels with UI > 1.6 and 
more pixels with UI < 0.7, indicating a low global uncertainty. 

4. Discussion 

4.1. Comparison of variable selection methods 

Our results showed that MGFS selected the most parsimonious model 
with only 9 covariates from a total of 392 covariates compared to Boruta 
(76 variables), VIF (30 variables), and RFE (22 variables) (Table 3). 
Among 9 covariates selected by MGFS, BI was the most important one 
sensitive to the brightness of soils. Liu et al. (2020) noted that soil colour 
is dominated by SOC in Northeast and North China due to the cold 
continental semi-humid temperature regime. Therefore, being a proxy of 
soil colour, BI can provide crucial information in SOCD modelling. The 
good correlation between BI and SOC (or SOCD) was also confirmed by 
previous studies (Gholizadeh et al., 2018; Ayala Izurieta et al., 2021; 
Wang et al., 2021). Mean annual temperature was the second important 
covariate in SOCD modelling. Previous studies have demonstrated the 
importance of temperature in SOC variation because temperature pre-
dominantly affects the microbial decomposition of SOC (Wiesmeier 
et al., 2019). A low temperature leads to low SOC decomposition, so 
numerous studies indicated an increase in SOC with decreasing tem-
perature (e.g., Koven et al., 2017; Chen et al., 2019). The latitude of the 
study area expands from 30◦N to 48◦N, leading to an apparent tem-
perature gradient from the south-western part (16 ◦C) to the north- 
eastern part (-1.1 ◦C) that influences SOC decomposition. The upslope 
height (relief factor) is relevant to the potential energy entering the 

Table 4 
Computation efficiency of feature selection and map prediction (in minutes). 
The most efficient method is shown in bold font for each procedure.  

Method Feature selection Map prediction All procedures 

Full / 364 364 
Boruta 17 102 119 
RFE 150 51 201 
VIF 100 59 159 
MGFS 67 34 101  

Fig. 4. Spatial distribution of SOCD produced by QRF using modified greedy feature selection (MGFS) and its associated 90% prediction intervals.  
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surface and indirectly affects the carbon input into the soil (Thompson 
et al., 2012). The importance of OGC at 105◦ indicates a spatial trend of 
SOCD at 105◦ relative to the × axis (Møller et al., 2020). The remaining 
5 covariates (NDVI3Min, LAI2Min, NDRI1Avg, GARI3Max, GPP3Avg) 
were related to the organisms factor. It is interesting to note that all 
these covariates were calculated within a given quarter. This finding 
suggests that the remote sensing derived indicators calculated within a 
shorter time window (e.g., month, quarter) can capture more helpful 
vegetation phenology information related to soil properties than annual 
ones. This finding is in line with previous results from Hengl et al. 
(2017), Keskin et al. (2019) and Kempen et al. (2019). 

Being the most parsimonious model, MGFS also performed best 
among four variable selection methods with R2 of 0.60, LCCC of 0.74, 
and RMSE of 13.80 t ha− 1 (Fig. 3, Table 3). Compared to the Full model 
(R2 of 0.54, LCCC of 0.70, RMSE of 14.49 t ha− 1), MGFS increased 11.1 
% and 5.7 % in R2 and LCCC, and decreased 6.8 % in RMSE. RFE and 
Boruta performed slightly better than the Full model while VIF had the 
lowest model performance. The unsatisfactory result of VIF is rooted in 
the fact that VIF only accounted for the correlation between predictors 
and neglected their relationships to the target variable. In addition, VIF 
eliminates multicollinearity but it also removed part of the useful in-
formation between correlated variables, leading to a lower model per-
formance. The implication of this result is that highly correlated 

variables are not mandatory to be removed before fitting a machine 
learning model (i.e. QRF) because part of their uncorrelated information 
can provide useful information for modelling. Our result demonstrates 
that variable selection methods can efficiently decrease the number of 
covariates, but they do not ensure improving model performance 
simultaneously (Chen et al., 2022b; Luo et al., 2022). Therefore, digital 
soil mappers should compare the Full model with the parsimonious 
model derived from the selected variable selection method and then 
decide whether the latter is preferable. There was no considerable dif-
ference in 90 % prediction intervals since all the PICP were around 0.9 
(0.88–0.92), indicating all these uncertainty estimates were efficacious. 
The UI indicated that MGFS and RFE had the lowest global uncertainty 
(0.86) when compared to Boruta (0.88), Full model (0.91) and VIF 
(0.98). These results indicated that we need to include UI for reporting 
the magnitude of uncertainty in DSM studies since it is beyond the ca-
pacity of PICP (e.g., Viscarra Rossel et al., 2014; Zhou et al., 2019b; 
Poggio et al., 2021). 

From the aspect of computation efficiency, MGFS was the most 
efficient variable selection method (101 min) when considering the 
variable selection (392 variables, 67 min) and map prediction (8.7 
million pixels, 34 min) together (Table 4). When improving the map 
resolution from 250 m to 30 m, it can be expected that the superiority of 
MGFS in computation efficiency would be amplified. As noted by Chen 

Fig. 5. Uncertainty index of SOCD produced by QRF using all the predictors(Full) (a), Boruta (b), recursive feature elimination (RFE) (c), variance inflation factor 
(VIF) (d) and modified greedy feature selection (MGFS) (e). 
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et al. (2022a), benefiting from rapidly growing remote sensing data and 
new soil observations obtained from multiple platforms, the DSM studies 
are moving forward to a broader spatial extent with a finer spatial res-
olution. For fine-resolution DSM at a broad scale, map prediction is the 
most time-consuming step. Take SoilGrids 2.0 for example, the total 
computation time (RFE, model training and map prediction) for a single 
soil property was 1500 CPU hours of which map prediction accounted 
for about two-thirds (Poggio et al., 2021). MGFS can efficiently promote 
computation efficiency by constructing a parsimonious model with a fair 
model performance, so it has a high potential for broad-scale DSM 
studies at a fine resolution. 

4.2. Comparison SOCD product with SoilGrids 2.0 

We compared our SOCD product with SoilGrids 2.0 mapped for the 
globe at 250 m resolution in Fig. 6 (Poggio et al., 2021). After evaluating 
the map accuracy using the same validation sets, we found that SoilGrids 
2.0 had R2 of 0.24, LCCC of 0.60 and RMSE of 18.84 t ha− 1, which 
indicated a poor accuracy of SOCD estimation compared to our product 
(R2 of 0.60, LCCC of 0.74, RMSE of 13.80 t ha− 1). The spatial distribu-
tion maps showed that our SOCD estimate was generally higher than 
SoilGrids 2.0, especially in the northern part and the centre of the south- 
western part as illustrated in the difference map between our SOCD 
product and SoilGrids 2.0. The frequency plot indicated that>88 % of 
the region was underestimated by SoilGrids 2.0. The estimated SOC 
stock was 2.89 Pg for the study area in our product while the SOC stock 
estimation from SoilGrids 2.0 product was 24.2 % lower (2.19 Pg). The 
poor SOCD estimate of SoilGrids 2.0 resulted from the fact that the soil 
database (>140,000 locations) used for producing SoilGrids 2.0 only 
had<80 sampling sites in the study area, leading to a limited weight in 
the spatial predictive model to represent the unique pedo-climatic 
condition for the study area. Therefore, when using the global soil 
maps for regional or national studies, it is necessary to correct them by 
the regional or national soil observations, especially for these regions 
with limited soil observations in producing the global soil maps. For this 
purpose, previous studies have proved that model averaging was a po-
tential solution for producing more accurate “local” digital soil property 
maps by coupling “global” soil maps and “local” soil observations 

(Malone et al., 2014; Clifford and Guo, 2015, Caubet et al., 2019; Chen 
et al., 2020). 

4.3. Limitations and perspectives 

One limitation of MGFS is that it may take a long time to select the 
optimal variables for a large number of covariates (e.g., n > 50) as it 
needs to run the model (n2 + n)/2 times. Therefore, the early stop is 
suggested in this study (see details in section 2.3.3) when using MGFS 
for a large set of covariates. It should be noted that the use of early stop 
may result in a local optimum which can be slightly different from the 
global optimum. From our personal experience, the local optimum was 
quite close to the global optimum but it still needs to be confirmed by 
other datasets (Xiao et al., 2022). 

From theory, MGFS method can work on all the machine learning 
methods, such as RF, support vector machine, gradient boosted ma-
chine, XGBoost. In this study, we only evaluated its performance on RF, 
so its applicability remains to be tested for other machine learning 
methods in future studies. 

5. Conclusions 

In this study, we proposed the use of a modified greedy feature se-
lection (MGFS), to improve model parsimony and keep model accuracy 
simutanouly for digital soil mapping (DSM) regression. Taking soil 
organic carbon density (SOCD) mapping of cropland in Northeast and 
North China as a case study, we evaluated the model performance, un-
certainty estimate and computation efficiency on MGFS together with 
most currently used variable selection methods Boruta, recursive feature 
elimination (RFE), and variance inflation factor (VIF). Our results 
showed that MGFS selected the most parsimonious model with only 9 
covariates from a list of 392 covariates while RFE, VIF and Boruta 
retained 22, 30 and 76 covariates, respectively. The repeated validation 
(50 times) indicated that the model using MGFS selected covariates 
performed much better (R2 of 0.60, LCCC of 0.74, and RMSE of 13.80 t 
ha− 1) in SOCD mapping than VIF, Boruta and RFE. When compared to 
the model using all 392 covariates (R2 of 0.54, LCCC of 0.70, RMSE of 
14.79 t ha− 1), MGFS had an increase of R2 and LCCC at 11.1 %, 5.7 % 

Fig. 6. Spatial distribution of SOCD produced by modified greedy feature selection (MGFS) (a) and SoilGrids 2.0 (b), and difference between MGFS and SoilGrids 
2.0 (c). 
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and decrease of RMSE at 6.8 %. In addition, MGFS had the lowest global 
uncertainty (UI of 0.86) and the highest computation efficiency among 
all the models. Accordingly, we concluded that MGFS was superior to 
RFE, Boruta, VIF, and Full model in terms of model parsimony, model 
performance, map uncertainty and computation efficiency; therefore, it 
has a high potential in fine-resolution DSM studies at broad scales. 
Theoretically, MGFS can work on all machine learning methods; how-
ever, further tests on other datasets and machine learning models are 
still needed to evaluate its robustness. 
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