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Understanding the mechanisms of viral 
and bacterial coinfections in bovine respiratory 
disease: a comprehensive literature review 
of experimental evidence
Maria Gaudino, Brandy Nagamine, Mariette F. Ducatez*   and Gilles Meyer* 

Abstract 

Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting 
in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves 
during transport when they are most susceptible to developing disease. Despite years of extensive study, manag-
ing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental 
and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by 
bacterial infections (“bovine pasteurellosis”), we now know that viruses play a key role in BRD induction. Mixtures 
of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory 
illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD 
development. In this review, we aim to comprehensively examine experimental evidence from all existing studies 
performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has 
not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clini-
cal significance of interactions between different pathogens. The most studied model of pneumonia induction has 
been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence 
suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies 
indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a 
possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coin-
fections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity 
of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of 
BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not 
limited to a primary viral infection followed by a secondary bacterial superinfection.
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1  Bovine respiratory disease: the prelude 
of a respiratory outbreak

Bovine respiratory disease (BRD) is a general term for a 
range of respiratory disorders that can affect the lower 
respiratory tract in cattle. BRD is the second most com-
mon disease impacting the global beef industry, after 
neonatal calf diarrhoea [1], being a particular burden 
in young cattle and pre-weaned calves. Economic loss 
due to treatment costs, reduced performance (i.e. loss 
of weight or absence of weight gain, lighter carcass at 
slaughter or reduced milk production in dairy farms) 
and animal death can be substantial for producers [2]. 
Moreover, the high consumption of antibiotics to treat 
BRD causes concern over the emergence of antimicrobial 
resistance in cattle and also in humans, indirectly via the 
food chain, water, air, and manured and sludge-fertilized 
soils [3], thus threatening both animal and human health.

Early BRD manifestations include general signs, such 
as lack of appetite, self-isolation, depression and fever. 

These signs can evolve to more severe respiratory signs 
including nasal and eye discharge, salivation, rapid 
breathing, dyspnoea and prominent coughing [4]. BRD 
is known to be a multifactorial syndrome, triggered by 
a combination of environmental factors and infectious 
agents. Among environmental factors, events such as 
transportation and handling (i.e. for dehorning) are the 
most important stressful experiences for animals, as well 
as weaning or changes of feed [5, 6]. Cattle transportation 
alone is an important trigger in BRD, causing an increase 
in mortality during respiratory outbreaks, especially 
when following secondary bacterial infection [7]. Other 
environmental factors include the combination of insuf-
ficient ventilation, wet and dirty bedding, dust exposure 
and overcrowding, which can increase the possibility of 
pathogens transmission [8]. Also, the general microbial 
pressure in the environment due to lack of good hygiene 
practice can increase the risk of infections. Elements 
such as good colostrum quality and management, normal 
level of essential nutrients and adequate rest (especially 
after shipping) are essential for calves to maintain a nor-
mal immune function in response to challenging patho-
gens [9], as well as minimum stress exposure (i.e. good 
care when handling and using low stress techniques). 
Biosecurity measures (i.e. isolating new or sick animals 
and avoiding housing animals of mixed ages together) 
can also significantly decrease the risk of pneumonia out-
breaks in cattle herds [9]. Lastly, routine feedlot vaccina-
tion can reduce the likelihood of primary viral infection, 
significantly reducing mortality [10]. In this review we 
will focus on the principal infectious agents involved in 
BRD and how the interactions between these pathogens 
impact pathogenesis.

2  Most common infectious agents involved in BRD: 
from the twentieth century up to now

At the beginning of the twentieth century, BRD was 
believed to be solely caused by bacterial infections and 
thus referred to as “bovine pasteurellosis” or, as reported 
in the first descriptions of the disease in late nineteenth 
century, as “haemorrhagic septicaemia” [11]. Around the 
30 s’, scientists started to observe that beside Pasteurella 
spp. infection, other factors played a role in the disease 
development [12]. Animals experimentally inoculated 
with bacteria alone failed to reproduce the typical pneu-
monia signs [11, 13]. In addition, these bacteria could be 
cultured from apparently healthy animals after they were 
stressed such as during shipping (for this reason BRD 
was often referred as “shipping fever” during the last cen-
tury) but also overcrowding, weaning and weather vari-
ations [14, 15]. In the 50 s’, the theory of viral causation 
gained support in North America, when bovine herpesvi-
rus-1 (BoHV-1), the etiological agent of infectious bovine 
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rhinotracheitis (IBR) [16], and bovine parainfluenza virus 
type 3 (BPIV-3), known as myxovirus parainfluenza 3 at 
that time, were isolated from cattle with shipping fever 
[12, 17]. During experimental infection, BPIV-3 mim-
icked natural pneumonia [18] with bacterial superinfec-
tions often accentuating the clinical signs and lesions in 
animals (Figures 1, 2).

BRD is now globally recognized as a polymicrobic 
disease, with bacterial coinfections known to affect the 
morbidity and mortality during viral respiratory infec-
tions [19]. Although the majority of pneumonia out-
breaks are predominantly caused by bacteria and viruses, 
some fungi belonging to Aspergillus spp. genus [20] and 
parasites, commonly known as “lungworms” [21], can 

also trigger respiratory disease. Bacteria are generally 
isolated at higher prevalence in cattle with respiratory 
signs and because of this, antibiotic treatment is often the 
first choice made by veterinarian practitioners to avoid 
a rapid progression to severe BRD [22]. The most com-
mon bacteria isolated from cattle with respiratory signs 
belong to the Pasteurellaceae family, the most prevalent 
being Pasteurella multocida, Mannhemia haemolytica 
and Histophilus somni [23]. These three pathogens are 
also commensals of the upper respiratory tract (naso-
pharynx and tonsils) in healthy calves but can subse-
quently become opportunistic when host defences are 
compromised, leading to colonization of the lower res-
piratory tract [24]. Another class of bacteria that plays an 

Figure 1 Timeline showing examples on the history of BRD pathogens discovery and adopted countermeasures throughout the years. 
An emphasis on vaccine countermeasures taken in Europe was given.
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important role in BRD belongs to the Mycoplasmataceae 
family, specifically the Mycoplasma spp. genus. Among 
these, Mycoplasma bovis is one of the most widespread, 
leading to the highest morbidity [25]. Mycoplasma dispar 
and Mycoplasma bovirhinis can be isolated from sick cat-
tle as well [26, 27]. On the other hand, viruses also play 
an important role in BRD. Some viruses have been well 
known BRD agents for years and their pathogenesis is 
well characterized, whereas others have less clear roles. 
This list of viruses includes bovine respiratory syncytial 
virus (BRSV), bovine coronavirus (BCoV), bovine her-
pesvirus 1 (BoHV-1), BPIV-3 and bovine viral diarrhea 
virus (BVDV) [28]. Also, thanks to the advent of new 
generation of sequencing technologies (next generation 
sequencing (NGS)) new viruses have been discovered 
and could now be part of the official list of BRD patho-
gens, i.e. influenza D virus (IDV) [29–31]. Some viruses 
are thought to be more benign with an incidental find-
ing during coinfection, but others such as BRSV can 
have a major pathogenic potential and can be the only 

etiological agent responsible for a respiratory outbreak in 
cattle herds, especially during the winter season [32].

To better understand the dynamic interactions between 
the various cattle respiratory pathogens, we will discuss 
the most common BRD-associated pathogens in the fol-
lowing paragraphs. Treatment options and preventive 
measures (i.e. vaccines) will also be covered for each 
pathogen.

2.1  Pasteurella multocida
Pasteurella multocida is a Gram-negative bacterium that 
can infect a wide range of mammals and domestic birds. 
It was first discovered by Louis Pasteur around 1881 dur-
ing the investigation of the etiological agent of fowl chol-
era [33]. Since the same bacteria could produce disease in 
different animal species, in 1939, scientists proposed to 
classify all these bacterial strains under the same genus 
and species, thereafter named Pasteurella multocida 
[34]. It is currently classified into five capsular groups 
(named from A to E) and 16 somatic serotypes (1 to 16). 
In cattle, P. multocida A:3 is the most common serotype 
isolated from animals displaying BRD and its pathogenic-
ity has been confirmed in experimental studies [35]. In 
addition, serogroups B, E and F can be pathogenic in this 
species [36]. P. multocida infection in cattle can cause dif-
ferent types of bronchopneumonia, ranging from suba-
cute to chronic fibrinopurulent but also fibrinous and 
fibro-necrotizing, which can be accompanied by a vari-
able amount of intra-alveolar haemorrhage with moder-
ate to severe neutrophils and macrophages infiltration in 
bronchi and bronchioles [37]. Vaccines to prevent P. mul-
tocida infection consist of bacterins (killed bacteria) [38] 
and the only available treatments are antibiotics, despite 
rising antibiotic resistance, as recently reported [39].

2.2  Mannheimia haemolytica
M. haemolytica is another important Gram-negative 
bacterium involved in calf pneumonia. It was previously 
known as “Pasteurella haemolytica” but a revisitation of 
the Pasteurellaceae classification based on genetic simi-
larity suggested its removal from the Pasteurella genus 
and thus the creation of a new genus named Mannhe-
imia [40]. Hence, in this review, some scientific studies 
from before 1999 still contain the ancient nomenclature 
“Pasteurella haemolytica”. Currently, M. haemolytica is 
classified based on 12 capsular serotypes (named A1, A2, 
A5, A6, A7, A8, A9, A12, A13, A14, A16 and A17) [41]. 
Serotypes associated with respiratory disease in cattle 
are prevalently A1 and A6 [42]. Infected animals can first 
display general clinical signs such as fever along with loss 
of appetite and weight loss but also respiratory signs such 
as cough, nasal discharge and respiratory distress. The 

Figure 2 Heat map showing the impact of sequential 
coinfections on respiratory pathology in cattle on in vivo 
experiments. On the y-axis, the virus used for the primary viral 
infection is represented. On the x-axis, the pathogen used for the 
secondary superinfection is listed. The severity of coinfections 
on in vivo studies (compared to single pathogens) was given a 
score from 1 to 4 (colour code for the score is given in function 
of the increase in clinical signs, light orange to dark orange). The 
description of the scoring system that we used to describe the 
impact of coinfection in vivo is available as Additional file 1. Cell 
values represent the mean between the scores given to different 
in vivo studies performed with the same pathogens. The value in 
parentheses represents the number of trials carried out for each 
couple of pathogens that were used to calculate the mean score. 
White cells indicate an absence of in vivo studies for that specific 
couple of pathogens. *: the two pathogens were simultaneously 
inoculated in some studies.
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principal cause of death is acute fibrinous pleuropneu-
monia due to the obstruction of bronchioles and alveoli 
with fibrinous exudate [43]. Necropsy commonly reveals 
fibrinosuppurative pneumonia, necrotizing inflammatory 
response and alveolar damage and necrosis due to neu-
trophil and macrophage infiltration in the lung and fibrin 
deposition in the alveoli [41]. Vaccines containing M. 
haemolytica leucotoxin, its main virulent factor [44], are 
currently available. However, there is still a lack of data in 
the scientific literature to reinforce the full efficacy of this 
preventive measure [45]. Intranasal probiotic administra-
tion of Lactobacillus strain in order to prevent M. haemo-
lytica colonization of the upper respiratory tract has been 
evaluated in a clinical trial and could represent a future 
possibility for the prevention of cattle pneumonia [46].

2.3  Histophilus somni
H. somni is a Gram-negative bacterium that mainly 
affects cattle but can occasionally also infect small rumi-
nants [47]. Unlike P. multocida and M. haemolytica, the 
circulating strains of H. somni are not currently classified 
into specific serotypes and no comprehensive nomen-
clature is available to date. It was first isolated in 1956 
from cattle with meningitis [48]. Animals of all ages can 
be affected but recently, it was shown that weaned calves 
seem to be at higher risk of infection [49]. Although H. 
somni is considered, like the other mentioned Pasteur-
ellaceae, a commensal bacterium of the nasal tract, dif-
ferent strains have also been isolated from urogenital 
secretions, which can be responsible for venereal spread 
[50]. When the bacterium colonizes lungs and gains 
access to the blood stream, it can cause systemic disease 
that is not limited to the respiratory tract. H. somni infec-
tion can thus also cause encephalitis, myocarditis and 
sudden death due to acute septicaemia [51]. Post-mortem 
findings in the lungs include bronchopneumonia and 
fibrinous pleurisy [52]. Diagnosis based on gross lesions 
is accompanied by bacterial culture and molecular test-
ing. Treatment options include large-spectrum antibiot-
ics such as florfenicol but, similarly to M. haemolytica, 
bacterins are currently available as preventive measure, 
although they have failed to demonstrate effective pro-
tection in vaccinated animals [53].

2.4  Mycoplasma bovis
M. bovis is a particular type of bacteria that greatly dif-
fers from those we previously described. Its represents 
one of the most challenging bacterial BRD pathogens. 
First isolated in 1961 [54], M. bovis causes pneumonia 
outbreaks in calves and young cattle but also mastitis in 
dairy cows, as well as otitis and abortion [55]. Like all 
the other members of the Mycoplasmataceae family, it 

is the smallest known bacteria. It lacks a cell wall, mak-
ing it naturally resistant to several classes of antibiotics 
[56]. Clinical signs of infected animals can include fever, 
depression, nasal discharge, shallow breathing and cough. 
Post-mortem findings include bronchopneumonia with 
characteristic caseous necrotic lesions and also fibrino-
suppurative bronchopneumonia [57]. Once introduced to 
a farm (i.e. through contaminated animals), eradication 
is difficult due to its strong environmental resistance [58] 
and widespread herd dissemination through direct con-
tact [57]. Being a persistent intracellular bacterium lack-
ing a cell wall reduces the choice for antibiotic treatment, 
representing another obstacle for its elimination. In addi-
tion, other major challenges include high antigenic vari-
ability of surface glycoproteins and the ability to evade 
host immune system [59]. Treatment efficacy is question-
able with treated animals relapsing after a few weeks, in 
part due to increased antibiotic resistance over time [60]. 
A few vaccines are currently commercialized in North 
America, consisting of bacterins which offer limited pro-
tection [59].

2.5  Bovine respiratory syncytial virus
BRSV (also known as bovine orthopneumovirus) is one 
of the most important viral pathogens involved in BRD. 
It is a single-stranded RNA virus belonging to the Pneu-
moviridae family (order Mononegavirales) [61]. Although 
it is similar to the human respiratory syncytial virus 
(around 40% of nucleotide identity) [62], BRSV has only 
been diagnosed in cattle as well as wild and domesti-
cated small ruminants [63] and it is not considered a 
zoonotic pathogen. The first report of BRSV infection in 
cattle dates from 1967 in Geneva, Switzerland [64], after 
which it spread to other countries. There are currently 
ten circulating lineages [65], as based on genotyping of a 
small immunogenic region in the glycoprotein G which is 
important for antibody recognition. The biological signif-
icance of the antigenic variation in this region might thus 
be relevant for vaccine efficacy [32]. BRSV has the high-
est pathogenic potential among all circulating viruses in 
cattle with clinical signs ranging from mild-moderate to 
subclinical. Less frequently, BRSV infection can progress 
to respiratory acute distress syndrome including fever, 
depression, decreased food intake, and dyspnoea with 
open-mouth breathing that can exacerbate during late 
stage infection [66]. In some cases, up to 80% of morbid-
ity is reported, with mortality reaching up to 20% [67]. 
Emphysematous and haemorrhagic lung lesions, as well 
as necrotizing bronchiolitis and interstitial pneumonia, 
especially in the cranial lobes, are characteristics of BRSV 
infection at necropsy [66]. The infection can also pro-
duce the typical multi-nucleated syncytial cells formed by 
the fusion of several cells caused by the fusion protein F. 
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Several vaccines are available on the market as a prophy-
lactic measure against BRSV infection [68, 69].

2.6  Bovine coronavirus
BCoV is a single-stranded RNA virus belonging to the 
Coronaviridae family (Coronavirinae subfamily, order 
Nidovirales), and is classified within the Betacoronavi-
rus 1 subgroup (Embecovirus) [70]. It was first isolated 
in 1972 from diarrheic calves [71] and in 1982 from BRD 
calves [72]. Endemic in cattle worldwide, it is known for 
its pneumo-enteric tropism, causing both enteric dis-
ease (especially calf diarrhoea) and pneumonia outbreaks 
[73]. After experimental BCoV inoculation, colostrum-
deprived calves develop cough, nasal discharge, respira-
tory distress and diarrhoea [74]. Treatment for the enteric 
disease associated with BCoV infection is largely limited 
to supportive care (i.e. rehydration, electrolyte adminis-
tration, and the use of nonsteroidal anti-inflammatory 
drugs [75, 76]). Several vaccines against the enteric form 
are currently available [77]. Vaccines protecting against 
BCoV respiratory-associated disease are still missing.

2.7  Bovine herpesvirus type 1
BoHV-1 is a DNA virus belonging to the Herpesviridae 
family (subfamily Alphaherpesvirinae, order Herpes-
virales) and the known etiological agent for infectious 
bovine rhinotracheitis (IBR) [78]. It is believed to have 
been first isolated from German cattle with venereal dis-
ease in the nineteenth century and later associated with 
respiratory disease during a 1954 outbreak in California 
[79–81]. BoHV is divided into two circulating subtypes, 
BoHV-1.1 and BoHV-1.2 [82], which are both charac-
terized by acute inflammation of the upper respiratory 
tract but can also sporadically cause abortion in cat-
tle, as well as conjunctivitis, vaginitis and enteritis [83]. 
In particular, respiratory signs associated with BoHV-1 
infection include mucopurulent nasal discharge (some-
times accompanied by ulcers in mouth and nose), con-
junctivitis, coughing, sneezing, and difficult breathing 
[84]. BoHV-1 in cattle is characterized by lifelong latent 
infection with sporadic viral reactivation and shedding 
when immune defences are compromised (i.e. following 
a stressful event such as shipping) [85]. Commercially 
available vaccines are broadly used in various European 
countries to prevent BoHV-1 associated syndrome lead-
ing to progressive eradication of the disease as part of a 
monitoring program for control maintenance and eradi-
cation [86].

2.8  Bovine parainfluenza type 3
BPIV-3 is a single-stranded RNA virus belonging to the 
Paramyxoviridae family (genus Respirovirus, order Mon-
onegavirales) [87]. It was first isolated in 1959 from cattle 

with shipping fever and named “myxovirus shipping fever 
4” (SF-4) [17, 88, 89]. BPIV-3 is now endemic, with three 
circulating genetic groups worldwide, named A, B, and 
C [90]. Infection with BPIV-3 usually leads to mild res-
piratory signs, such as fever, dry cough, nasal and ocular 
discharge, increased respiratory rate and dyspnoea [91, 
92]. Infection of the upper respiratory tract can also lead 
to a transient immunosuppression, creating an opportu-
nity for secondary bacterial superinfections [87], a com-
ponent of calf enzootic pneumonia. Several vaccines are 
commercially available, often in association with BRSV 
[68].

2.9  Bovine viral diarrhea virus
BVDV is a single-stranded RNA virus belonging to the 
Flaviviridae family [93]. It is a member of the genus Pes-
tivirus, first discovered in North America during the 40 s’ 
and later isolated in 1957 [94, 95]. Two different Pesti-
virus species are currently in circulation, Pestivirus A 
(formerly known as BVDV-1) and Pestivirus B (formerly 
known as BVDV-2) [93]. Infection with BVDV often 
manifests as respiratory and gastrointestinal disease, the 
latter being associated with diarrhoea and mucosal dis-
ease (when a cytopathic strain is involved), especially 
during persistent infections [96, 97]. BVDV induces 
lesions of mucosal (especially intestinal) and lymphoid 
tissues that can result in acute diarrhoea, thrombocyto-
penia and respiratory signs [98, 99]. Its main role during 
BRD is immunosuppressive, paving the way for subse-
quent superinfections by other viral or bacterial respira-
tory pathogens. Vaccine prophylaxis via maternally 
derived antibodies has been shown effective at protecting 
cows and newborn calves but efforts are still to be made 
to eradicate the disease [100].

2.10  Influenza D virus
Influenza D virus (IDV) is a single-stranded RNA virus 
belonging to the Orthomyxoviridae family (genus Del-
tainfluenzavirus, order Articulavirales). Like Influenza 
C (ICV), it has a segmented genome consisting of seven 
genomic segments, unlike Influenza A and B viruses (IAV 
and IBV) that harbour eight segments [29]. IDV was dis-
covered in 2011, making it the most novel bovine res-
piratory pathogens to date [29]. Unlike the other genera 
of the Orthomyxoviridae family, IDV is most prevalently 
found in cattle, which is considered its primary host 
[101]. To a lesser extent, IDV can also infect small rumi-
nants, swine and feral swine, camelids, horses and hedge-
hogs [102]. Several lines of evidence suggest that IDV can 
be zoonotic but to what extent is currently being investi-
gated [101].

Different circulating IDV genotypes have been charac-
terized through sequence analysis of the hemagglutinin 
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esterase-fusion (HEF) segment, the most prevalent being 
“D/OK” and “D/660” with divergent lineages present in 
Japan, Canada and the United States of America [8, 103, 
104]. IDV also seems to undergo genetic reassortments 
among its different lineages which is a common feature 
of influenza viruses [8]. Pathogenic differences amongst 
the different circulating strains remain questionable as 
IDV can be isolated from both sick and healthy animals 
and is often found alongside other pathogens in cattle 
with BRD signs [8]. Calves experimentally infected with 
IDV display mild to moderate signs of repeated sponta-
neous coughing, abdominal dyspnoea with increased 
respiratory rates, and abnormal lung sounds [105]. Upon 
necropsy, the lung tissue reveals subacute bronchointer-
stitial pneumonia with neutrophils in bronchial lumens, 
neutrophilic and macrophagic alveolitis, as well as micro-
scopic alveolar lesions [105]. A vaccine that confers par-
tial protection in cattle was developed in a research study 
but has not been commercialized [106].

2.11  Other influenza viruses
The role of other influenza viruses in BRD still remains 
unclear to date. Natural infections of IAV virus in cattle 
have been reported, as well as few studies showing low 
seroprevalence of IAV infection in this species [107]. In 
addition, experimental challenges showed that cattle can 
develop moderate to severe clinical signs and serocon-
version following IAV infection [107]. Despite all these 
pieces of evidence, cattle is not considered a host for IAV, 
unlike swine and avian species. Several reports described 
ICV detection in samples from sick cattle [108–110], sug-
gesting its circulation in cattle population, similarly to 
IDV. However, studies of experimental infections in cattle 
are currently missing in literature and convincing proof 
of its pathogenicity and role in BRD in cattle are still to 
be provided.

3  Prevalence of coinfections in cattle herds: 
an interplay between viruses and bacteria

RT-qPCR commercial kits and decreased NGS costs 
have made the detection of multiple respiratory patho-
gens from clinical samples simpler and cost effective. 
Today, BRD is recognized as a polymicrobial disease with 
numerous studies acknowledging the high frequency of 
coinfections. 50.73% of nasal swabs taken over a four-
year period from Canadian cattle (n = 883) showing res-
piratory signs were positive for at least two respiratory 
pathogens [8], supporting a 2018 study, that detected at 
least two pathogens in 41% of the nasal swabs (n = 23) 
collected from steers during a respiratory outbreak in 
Brazil [111]. Bronchoalveolar lavages collected in Den-
mark from 46 healthy calves and 46 sick calves tested 
for respiratory pathogens revealed similar coinfecting 

pathogenic abundance. However, H. somni was the only 
pathogen that was positively associated to cattle with 
BRD [112]. In another study, lungs from Irish cattle with 
BRD were submitted for post-mortem examinations and 
dual infections were detected in 58% of lungs, with a high 
prevalence especially for M. haemolytica and H. somni 
coinfection [49]. The authors reported that P. multocida 
was the pathogen identified alone with the greatest fre-
quency and the most frequently detected virus/bacte-
ria coinfections were P. multocida/BPIV-3, H. somni/ 
BPIV-3, or H. somni/BRSV. Studies using metagenomics 
approaches on respiratory samples also confirmed that 
presence of multiple pathogens is more associated with 
illness than mono-infections. In a first study, the virome 
found in nasal swabs of 50 young dairy cattle with BRD 
was compared to 50 location-matched healthy control 
animals [30]. Viruses were detected in 68% and 16% of 
sick animals and healthy control animals, respectively. In 
addition, 38% of sick animals (versus 8% of controls) were 
infected with multiple respiratory viruses. Similar results 
were reported in another case–control study [110]. How-
ever, in another study that used a similar metagenomic 
approach, the authors failed in finding differences in 
terms of viral presence between sick and healthy animals 
in nasal swabs from feedlot cattle [31].

4  Impact of coinfections on respiratory pathology 
in cattle: what is the experimental evidence?

4.1  Viral and bacterial coinfections: the importance 
of primary viral infections preluding secondary 
bacterial superinfection

The occurrence of a primary viral infection followed by 
a secondary bacterial superinfection is the most com-
mon and well documented coinfection model of respira-
tory syndrome complex applied to cattle, swine [113], 
and humans [114]. Over the past 60 years, several stud-
ies have investigated the clinical ramifications of different 
bacterial and viral pathogenic interactions. The majority 
of the studies describes in vivo challenges during which 
young calves were inoculated with a viral pathogen fol-
lowed by a bacterial superinfection a few days later. Most 
of the bacterial strains used belonged to the Pasteurel-
laceae family (M. haemolytica, P. multocida or H. somni), 
the classical etiological agents causing pneumonia in cat-
tle. In two studies, M. bovis was concomitantly or sub-
sequently inoculated after a viral strain. In this section, 
we comprehensively review the underlying mechanisms 
leading to enhanced pathogenicity during mixed respira-
tory infections in cattle. Table 1 summarizes the in vivo 
studies that were performed in calves to study the viral/
bacterial respiratory coinfections. The description of the 
scoring system used to describe the impact of coinfection 
in vivo is available as Additional file 1.
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The first mixed infection studies were from 1960 to 
1983, the majority being in vivo challenges using BPIV-3 
or BoHV-1, the two viruses first associated with BRD, for 
the primary infection followed by inoculation with M. 
haemolytica [15, 92, 115–120]. In Jericho et  al., two- to 
five-month-old calves exposed to aerosolized BoHV-1 
then to M. haemolytica developed pneumonia when 
the delay between the viral and the bacterial infection 
was > 4  days. Calves infected solely with M. haemolyt-
ica did not develop severe pneumonia, underlining the 
importance of a viral pre-infection for the development 
of severe respiratory disease [118]. In Yates et al., six- to 
eight-month-old calves were exposed to BoHV-1 before 
being subsequently infected with M. haemolytica four 
to thirty days later. Although fibrinous pneumonia and 
pleuritis occurred in all four groups, animals exposed 
to the virus and bacteria four days apart had the most 
extensive and severe pathologic findings including foci 
of necrosis and/or focal areas of mucopurulent exudate 
on mucosal surfaces of the upper respiratory tract, with 
the pharyngeal tonsillar surfaces being most severely 
affected. Moreover, fibrinous pneumonia in coinfected 
calves resulted in the persistence of the viral antigen in 
the respiratory tract despite the resolution of the necrotic 
virus-induced lesions [119]. In contrast, a study by Car-
rière et  al., did not observe any synergy in calves coin-
fected with the same pathogens, noting only mild lung 
lesions in all infected groups [120]. Similar findings were 
published by Saunders et al., where calves infected with 
BPIV-3 followed by different Pasteurellaceae species did 
not display increased respiratory disease severity, except 
increased nasal discharge [92].

Other experiments noted enhanced clinical signs when 
animals were pre-exposed to BVDV or BRSV before M. 
haemolytica or H. somni bacteria [121–126]. In Pot-
gieter et  al., two groups of six-month-old calves were 
inoculated at day 0 with either BVDV or M. haemolytica 
while a third coinfected group was inoculated first with 
BVDV and the subsequent bacterial pathogen 5 days later 
[121]. The authors reported pneumonic lesions reaching 
2 to 15% of the total lung volume in the BVDV and M. 
haemolytica groups while the coinfected group devel-
oped severe fibrinopurulent bronchopneumonia and 
pleuritis comprising 40% to 75% of the total lung volume. 
In Gånheim et  al., nine- to eighteen-month-old calves 
inoculated with either BVDV or M. haemolytica or coin-
fected with BVDV at day 0 and M. haemolytica 5  days 
later all had increased body temperature and depression, 
but the coinfected group had the most severe clinical 
signs with some animals not able to fully recover post-
experimentation. The authors reported that both mono- 
and coinfected groups had similar magnitudes of acute 
phase proteins (AAPs) responses, particularly fibrinogen, 

haptoglobin and serum amyloid A, but the duration of 
elevated APPs expression was significantly longer in the 
BVDV/M. haemolytica group than in the BVDV group, 
reflecting the duration of clinical signs [122].

The first in vivo report of BRSV experimental infection 
in combination with Pasteurellaceae strains was actually 
performed in four-week-old lambs mono- or coinfected 
with BRSV or M. haemolytica at the same time. Pneu-
monic lesions were more frequent, extensive, and severe 
in coinfected lambs than in lambs inoculated with either 
agent alone. The authors postulated that BRSV compro-
mised the lungs through the formation of lesions, pro-
moting M. haemolytica establishment and subsequently, 
more severe pneumonic lesions than it could produce 
alone [127]. In the same animal model, similar findings 
were reported by Trigo et  al. [124]. Later, in Gershwin 
et  al., 9-month-old calves inoculated with a virulent 
strain of BRSV and H. somni 6  days later demonstrated 
significant mean clinical score differences compared to 
the groups infected with a single pathogen alone. Nec-
ropsy revealed severe bilateral consolidation in the ante-
rior ventral lung lobes only in the coinfected group [128]. 
These results are in accordance to a similar coinfection 
study where calves pre-infected with BRSV and H. somni 
eight days later showed significantly more severe clini-
cal signs and pneumonic lesions than animals inoculated 
with one pathogen alone [129].

In Prysliak et  al., the pathogenicity of M. bovis was 
studied in six- to eight-month-old calves pre-exposed 
to BVDV or BoHV-1. Animals challenged with BoHV-1 
prior to M. bovis inoculation 4  days later displayed 
weight loss, increased body temperature, and signifi-
cantly shorter survival. At necropsy, the lungs of the 
BoHV-1/M. bovis group had extensive areas of broncho-
pneumonia, consolidation, and multifocal white nodules 
containing caseous material, whereas those from the 
M. bovis group displayed small consolidations without 
white nodules. No body weight loss was recorded for the 
BVDV/M. bovis group and there were no typical M. bovis 
pneumonia lesions found at necropsy [126].

As IDV was recently discovered to be a cattle patho-
gen, researchers started to investigate its possible role 
in BRD onset, assessing if IDV infection could worsen 
respiratory signs when co-inoculated with other patho-
gens in a manner similar to the viruses mentioned above. 
Four- to six-month-old calves infected with IDV at day 
0 and M. haemolytica at day 5 had similar overall clini-
cal scores as calves infected with IDV alone, while calves 
only infected with M. haemolytica had more severe gross 
lung lesions compared to the negative control group. M. 
haemolytica severe bronchopneumonia signs could not 
be reproduced in the coinfected calves suggesting that 
IDV and M. haemolytica coinfection does not alter the 
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respiratory pathology of calves [130]. In another study, 
six-week-old calves were infected with either IDV, M. 
bovis, or IDV and M. bovis together [131]. Although the 
M. bovis group did not present bronchopneumonia and 
caseonecrotic lesions typical of M. bovis infection, the 
authors reported that the coinfected group had a shorter 
time span of presented clinical signs and significantly 
increased clinical score, as well as increased severity of 
trachea and lung macroscopic and microscopic lesions. 
Starting at 2  days post-infection, upregulated IFNγ lev-
els were found in bronchoalveolar lavages from the coin-
fected group, reflecting increased leukocyte recruitment 
in the airway lumen. The authors also noted that M. bovis 
colonization of the lower respiratory tract was aided by 
the viral infection.

4.2  In vitro approaches to further elucidate viral 
and bacterial coinfection pathogenicity mechanisms

Several studies attempt to explain the mechanisms 
underlying the enhanced pathology often observed dur-
ing coinfection, mostly through in  vitro approaches. 
One of the most well studied mechanisms of bacterial 
superinfection is the enhancement of bacterial adher-
ence resulting from prior viral infection. In Sudaryatma 
et  al., trachea, bronchus and lung primary cell lines 
were infected with BRSV before P. multocida [132]. The 
authors noticed that P. multocida adherence was greatly 
increased in pre-infected cells derived from the lower 
respiratory tract compared to cells that were not previ-
ously exposed to BRSV, together with an up-regulation of 
IL-6 mRNA expression. The same authors later reported 
an increased accumulation of the platelet-activating fac-
tor receptor (PAFR) in vitro and also demonstrated that 
P. multocida adherence depended on PAFR expression 
[133]. This work highlights a possible mechanism of bac-
terial superinfection caused by P. multocida following 
BRSV infection, that is often observed in field conditions 
[8]. In another recent work, the same authors observed 
an increase in P. multocida adherence following BCoV 
infection, noticing an increase in intercellular adhe-
sion molecule-1 (ICAM-1) and PAFR, thus highlighting 
that the same mechanism could be shared among other 
BRD viruses [134]. In Agnes et al., infections with BRSV 
and superinfections with H. somni were carried out in 
BAT2 alveolar type 2 cell model [135]. The coinfection 
resulted in enhanced cytotoxicity for alveolar epithe-
lial cells, increased transmigration of H. somni across 
the alveolar cell barrier, and matrix metalloproteinases 
MMP1 and MMP3 increased expression and activity. 
This could explain the observed results in their previ-
ous in vivo experiment, where they showed that H. somni 
and BRSV act synergistically in vivo to cause more severe 

bovine respiratory disease than either agent alone [128]. 
The same authors also reported, that BAT2 cell treatment 
with H. somni infected supernatants up-regulated antivi-
ral genes and dramatically reduced a subsequent BRSV 
replication, showing once again that the timing of each 
pathogen infection is an important factor for the overall 
impact on pathology [136]. Finally, in McGill et  al., the 
authors observed that in peripheral blood mononuclear 
cells (PBMC), coinfection with BRSV and M. haemolyt-
ica exacerbated IL-17 production, which plays a critical 
role in neutrophil recruitment and inflammation, a char-
acteristic trait of M. haemolytica severe pasteurellosis in 
calves [137].

4.3  Viral coinfections: a less explored model of increased 
pathogenesis in BRD

The “viral infection followed by bacterial superinfection” 
model seems to be the most frequent and best described 
dynamic in cattle herds. There is currently very little 
information about viral superinfections in BRD. After an 
exhaustive literature search, we found three in vivo stud-
ies investigating the impact of a primary viral infection 
followed by a second viral infection [138–140]. BVDV 
was used in the three studies as the primary viral infec-
tion, likely due to its immunosuppressive nature [141]. 
We also identified two other studies investigating the 
impact of simultaneous BRSV and BVDV coinfection 
[142, 143]. All in  vivo viral/viral respiratory coinfection 
calf studies are summarized in Table 2.

In Pollreisz et  al., nine- to twelve-month-old calves 
simultaneously infected with BRSV and BVDV devel-
oped more severe clinical signs, including fever and 
diarrhoea, and lung lesions than their mono-infected 
counterparts. In addition, coinfected calves had a longer 
duration of viral shedding in nasal secretions and higher 
infectious titres compared to the groups infected with 
BRSV or BVDV alone [142]. An in vitro study performed 
on alveolar macrophages demonstrated that concomi-
tant infection with BRSV and BVDV suppressed alveolar 
macrophage functionality [144], potentially explaining 
the increased lung lesions observed in Pollreisz et  al. 
[142]. In contrast, Elvander et al. reported no change in 
clinical signs in three-month-old calves concurrently 
infected with BVDV and BRSV [138].

In Risalde et al., eight-month-old calves pre-inoculated 
with a non-cytopathic BVDV strain followed by BoHV-1 
inoculation twelve days later had more intense clinical 
signs and lesions, correlating with greater TNFα secre-
tion and reduced IL-10 production than animals inocu-
lated with BoHV-1 alone. Delayed IFNγ production 
and low IL-12 levels were also observed in coinfected 
animals [145]. In a following paper, the same authors 



Page 14 of 25Gaudino et al. Veterinary Research           (2022) 53:70 

Ta
bl

e 
2 

In
 v

iv
o 

st
ud

ie
s 

fr
om

 th
e 

sc
ie

nt
ifi

c 
lit

er
at

ur
e 

pe
rf

or
m

ed
 o

n 
yo

un
g 

ca
lv

es
 to

 a
ss

es
s 

vi
ra

l c
oi

nf
ec

tio
ns

 im
pa

ct
 o

n 
BR

D
 

Re
fe

re
nc

e
Pr

im
ar

y 
vi

ra
l c

ha
lle

ng
e 

(r
ou

te
 o

f i
nf

ec
tio

n 
an

d 
do

se
/a

ni
m

al
)

Ti
m

e 
be

tw
ee

n 
ex

po
su

re
 

to
 th

e 
tw

o 
pa

th
og

en
s

Se
co

nd
ar

y 
vi

ra
l c

ha
lle

ng
e 

(r
ou

te
 o

f i
nf

ec
tio

n 
an

d 
do

se
/a

ni
m

al
)

M
ai

n 
re

su
lts

 o
f t

he
 c

lin
ic

al
 

tr
ia

ls
Im

pa
ct

 o
f t

he
 

co
in

fe
ct

io
n 

on
 B

RD
 

(s
co

re
 1

 to
 4

)

St
ud

y 
lim

ita
tio

ns

Po
llr

ei
sz

 e
t a

l. 
[1

42
]

BV
D

V-
1 

(In
tr

an
as

al
 a

nd
 

in
tr

at
ra

ch
ea

l, 
5 

m
L 

of
 

2 
×

  1
08   T

C
ID

50
)

Si
m

ul
ta

ne
ou

s, 
1 

da
y 

an
d 

2 
da

ys
BR

SV
 (I

nt
ra

na
sa

l a
nd

 
in

tr
at

ra
ch

ea
l, 

5 
m

L 
of

  1
06  

 TC
ID

50
/m

L)

BV
D

V 
gr

ou
p:

 m
ild

 s
ig

ns
 

BR
SV

 g
ro

up
: s

er
ou

s 
na

sa
l 

di
sc

ha
rg

e,
 ra

pi
d 

an
d 

sh
al

lo
w

 re
sp

ira
tio

n 
an

d 
de

pr
es

si
on

 C
oi

nf
ec

te
d 

gr
ou

p:
 e

xc
es

si
ve

 s
er

ou
s 

or
 m

uc
op

ur
ul

en
t n

as
al

 
di

sc
ha

rg
e,

 ra
pi

d 
br

ea
th

in
g,

 
di

ar
rh

oe
a,

 s
ev

er
e 

de
pr

es
-

si
on

, o
ne

 c
al

f h
ad

 to
 b

e 
eu

th
an

iz
ed

4

Br
od

er
se

n 
et

 a
l. 

[1
43

]
BV

D
V

Si
m

ul
ta

ne
ou

s
BR

SV
Co

in
fe

ct
ed

 g
ro

up
: i

nc
re

as
ed

 
cl

in
ic

al
 s

ig
ns

, h
ig

he
r v

ira
l 

sh
ed

di
ng

 a
nd

 in
cr

ea
se

d 
lu

ng
 le

si
on

s 
th

an
 in

fe
ct

io
n 

w
ith

 e
ith

er
 v

iru
s 

al
on

e

3

El
va

nd
er

 e
t a

l. 
[1

38
]

BV
D

V 
(n

on
-c

yt
op

at
ho

ge
ni

c)
 

(In
tr

at
ra

ch
ea

l, 
 10

5   T
C

ID
50

/
m

L)

Si
m

ul
ta

ne
ou

s
BR

SV
 (I

nt
ra

tr
ac

he
al

, B
RS

V 
gr

ou
p:

 1
0 

m
L 

of
  1

04   T
C

ID
50

/
m

L,
 c

oi
nf

ec
te

d 
gr

ou
p:

 
10

 m
L 

of
 B

RS
V 

 10
5   T

C
ID

50
/

m
L)

N
o 

in
cr

ea
se

 in
 c

lin
ic

al
 s

ig
ns

 
in

 c
oi

nf
ec

te
d 

gr
ou

p
2

La
ck

 o
f B

VD
V 

gr
ou

p;
 d

iff
er

en
t 

BR
SV

 d
os

e 
in

 m
on

o-
in

fe
ct

ed
 

an
d 

co
in

fe
ct

ed
 g

ro
up

s

Ri
sa

ld
e 

et
 a

l. 
[1

45
]

BV
D

V-
1 

(n
on

-c
yt

op
at

ho
-

ge
ni

c)
 (I

nt
ra

na
sa

l, 
1 

m
L/

no
st

ril
 o

f  1
05   T

C
ID

50
/m

L)

12
 d

ay
s

Bo
H

V-
1.

1 
(In

tr
an

as
al

,1
 m

L/
no

st
ril

 o
f B

oH
V-

1.
1 
×

  1
07  

 TC
ID

50
/m

L)

A
pp

ea
ra

nc
e 

of
 c

lin
ic

al
 s

ig
ns

 
in

 a
ll 

gr
ou

ps
 b

ut
 in

cr
ea

se
 

in
 s

ev
er

ity
 in

 c
oi

nf
ec

te
d 

gr
ou

p;
 in

cr
ea

se
 in

 p
ro

-
in

fla
m

m
at

or
y 

cy
to

ki
ne

s 
an

d 
A

PP
s 

in
 c

oi
nf

ec
te

d 
gr

ou
p 

(IL
-1

β)
 a

nd
 m

or
e 

se
ve

re
 

in
fla

m
m

at
or

y 
le

si
on

s

3
La

ck
 o

f B
VD

V 
gr

ou
p

Ri
dp

at
h 

et
 a

l. 
[1

40
]

BV
D

V-
2a

 (I
nt

ra
na

sa
l a

er
os

ol
, 

4 
m

L 
of

  1
06   T

C
ID

50
/m

L)
3,

 6
 a

nd
 9

 d
ay

s
BC

oV
 (I

nt
ra

na
sa

l a
er

os
ol

)
BC

oV
 g

ro
up

: p
yr

ex
ia

 b
ut

 
no

 g
ro

ss
 le

si
on

s 
Co

in
-

fe
ct

ed
 g

ro
up

: h
ig

he
r f

ev
er

, 
lu

ng
 le

si
on

s 
pr

es
en

t i
n 

al
l i

nf
ec

te
d 

gr
ou

ps
 b

ut
 

m
or

e 
pr

on
ou

nc
ed

 in
 6

-d
ay

 
de

la
y 

gr
ou

p;
 p

er
ip

he
ra

l 
bl

oo
d 

ly
m

ph
oc

yt
es

 c
ou

nt
 

re
tu

rn
ed

 to
 b

as
el

in
e 

in
 

6-
da

y 
de

la
y 

gr
ou

p 
bu

t n
ot

 
in

 9
-d

ay
 d

el
ay

 g
ro

up

3
BC

oV
 d

os
e 

is
 n

ot
 re

po
rt

ed



Page 15 of 25Gaudino et al. Veterinary Research           (2022) 53:70  

Ta
bl

e 
2 

(c
on

tin
ue

d)

Re
fe

re
nc

e
Pr

im
ar

y 
vi

ra
l c

ha
lle

ng
e 

(r
ou

te
 o

f i
nf

ec
tio

n 
an

d 
do

se
/a

ni
m

al
)

Ti
m

e 
be

tw
ee

n 
ex

po
su

re
 

to
 th

e 
tw

o 
pa

th
og

en
s

Se
co

nd
ar

y 
vi

ra
l c

ha
lle

ng
e 

(r
ou

te
 o

f i
nf

ec
tio

n 
an

d 
do

se
/a

ni
m

al
)

M
ai

n 
re

su
lts

 o
f t

he
 c

lin
ic

al
 

tr
ia

ls
Im

pa
ct

 o
f t

he
 

co
in

fe
ct

io
n 

on
 B

RD
 

(s
co

re
 1

 to
 4

)

St
ud

y 
lim

ita
tio

ns

Ri
dp

at
h 

et
 a

l. 
[1

40
]

BC
oV

 (I
nt

ra
na

sa
l a

er
os

ol
)

3 
da

ys
BV

D
V-

2a
 (I

nt
ra

na
sa

l a
er

os
ol

, 
4 

m
L 

of
  1

06   T
C

ID
50

/m
L)

BC
oV

 g
ro

up
: p

yr
ex

ia
 b

ut
 n

o 
gr

os
s 

le
si

on
s 

Co
in

fe
ct

ed
 

gr
ou

p:
 p

yr
ex

ia
 a

nd
 lu

ng
 

le
si

on
s 

in
 s

om
e 

co
in

fe
ct

ed
 

ca
lv

es
 c

on
si

st
in

g 
in

 p
al

e,
 

fir
m

 fo
ci

 ra
nd

om
ly

 s
ca

tt
er

ed
 

th
ro

ug
ho

ut
 th

e 
lu

ng
s 

bu
t 

pa
rt

ic
ul

ar
ly

 o
bv

io
us

 in
 th

e 
ve

nt
ra

l c
au

da
l l

ob
es

2
BC

oV
 d

os
e 

is
 n

ot
 re

po
rt

ed



Page 16 of 25Gaudino et al. Veterinary Research           (2022) 53:70 

described important lung vascular alterations produced 
by fibrin microthrombi and platelet aggregations within 
the blood vessels that were earlier and more severe in 
the BVDV and BoHV-1 coinfected group, suggesting 
that coinfection facilitates a procoagulant environment 
modulated by inflammatory mediators such as signifi-
cantly decreased iNOS expression released by pulmo-
nary macrophages [146]. In two subsequent studies, the 
same authors reported that coinfected animals displayed 
inhibited CD8 + and CD4 + T lymphocyte responses 
against BoHV-1, suggesting that BVDV pre-infection 
could impair local cell-mediated immunity to secondary 
respiratory pathogens [139] and provoke thymic lesions 
that temporarily downregulate Foxp3 lymphocytes and 
TGFβ expression and medullary CD8 + T cells develop-
ment [147].

In Ridpath et al., BVDV and BCoV dual infection stud-
ies in vivo were performed using different sequences and 
delays of superinfection to assess pathogenicity. Calves 
inoculated with BVDV followed by BCoV 6 days later dis-
played more pronounced clinical signs and lung lesions 
compared to 3 days of delay, demonstrating that the tim-
ing of the secondary infection along with the pathogen 
itself plays an important role in coinfection pathogenesis 
[140]. In the same study, calves were also inoculated with 
BCoV followed by BVDV 3  days later but clinical signs 
and lung lesions were not as pronounced as in animals 
pre-infected with BVDV followed by BCoV challenge, 
questioning the role of BCoV as BRD initiator.

The in vivo studies described above support the notion 
that BVDV pre-infection aggravates the respiratory 
pathology induced by other viruses in a manner simi-
lar to bacterial superinfections, as previously discussed 
above. What the field lacks is data concerning other viral 
coinfections involved in BRD. For example, BRSV, also 
known to modulate host immune responses [148], could 
play a similar role, despite the absence of experimen-
tal in vivo evidence during respiratory coinfections. The 
small number of available studies on viral superinfections 
limits our understanding of the role of viruses in prim-
ing the immune system before causing a subsequent viral 
superinfection.

4.4  Bacterial coinfections: can bacteria initiate BRD 
without the presence of primary triggers?

Contrary to viral/bacterial coinfections, bacterial coin-
fection models have been rarely explored in BRD stud-
ies. Multiple bacterial respiratory pathogens are often 
simultaneously detected from sick animals [8]. Despite 
this, respiratory bacteria interactions remain unclear. 
Some are part of the normal microbial flora of the upper 
respiratory tract of healthy animals (notably Pasteurel-
laceae family members) but are also often isolated from 

animals with respiratory signs [8, 49]. Different experi-
mental in  vivo infections with single bacterial challenge 
have been carried out throughout the years in calf mod-
els [35, 52, 149]. However, reproducing classical broncho-
pneumonia signs has been highly variable. Inoculation of 
the A3 serotype of P. multocida in calves induced clini-
cal signs and lung lesions [35, 150, 151] whereas buffalo 
are susceptible to the A1 serotype [37]. In contrast, other 
studies reported milder lesions and overall pathology 
[152]. Animals experimentally infected with M. haemo-
lytica alone either fail to develop bronchopneumonia 
[118, 120, 121, 130], or manifest severe clinical illness and 
reach end-point limits during the study [149, 153]. Such 
confounding study differences could be due to intrinsic 
characteristics of the animals (immune status, age and 
breed) as well as differences in the bacterial strains that 
are not yet known and therefore, could not be accounted 
for the highly controlled experiments.

We retrieved two in  vivo studies from the literature 
investigating the impact of dual bacterial infection in 
calves. In Houghton and Gorlay, calves simultaneously 
inoculated with M. bovis and M. haemolytica were more 
severely affected than animals inoculated with only one 
pathogen. Vast differences were seen during necropsy 
with coinfected animals displaying 34 to 55% of lung con-
solidation compared to only 1–6% for calves from the M. 
bovis group and 0–1% for calves from the M. haemolytica 
group [154]. Subsequently, the same authors performed 
different dual bacterial challenges in gnotobiotic calves 
[155]. Calves were first inoculated with M. bovis followed 
by M. haemolytica one or two days later. Two animals also 
received a M. haemolytica strain that was cultured for 
18 h previously to the challenge and two others received 
a strain that was cultured for 6 h. No clinical signs were 
reported for the calf infected with only M. haemolytica, 
whereas calves that were inoculated with M. haemolytica 
2 days later displayed severe illness and 16% of lung con-
solidation at necropsy. However, calves that received the 
second pathogen one day later were more ill compared to 
the group inoculated 2 days later. In addition, high lung 
consolidation (50–64%) was reported for this group. Two 
calves inoculated with M. haemolytica then M. bovis two 
days later only developed mild signs without pneumonia. 
Similar challenges were performed on conventionally 
reared calves, with simultaneous inoculation of M. bovis 
and M. haemolytica, or, inoculation by M. bovis first fol-
lowed by M. haemolytica one day later. Calves in the M. 
haemolytica group did not display any lesions or illness 
and only a few animals in the coinfected group had fever 
and 6–8% of lung consolidation at necropsy. In contrast, 
calves first dosed with M. bovis followed by M. haemo-
lytica one day later had severe respiratory signs, resulting 
in the death of one calf and high lung consolidation (28 to 
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60%). The M. bovis group showed moderate clinical signs 
and less lung consolidation (27–40%). These data under-
line the relationship between coinfection and the devel-
opment of severe pneumonia [155]. This is in agreement 
with another study, where the death of two gnotobiotic 
calves was reported 24  h followed simultaneous inocu-
lation with M. bovis and M. haemolytica [156]. Table  3 
summarizes the calf in vivo studies on bacterial respira-
tory coinfections.

4.5  Bacterial coinfection studies: synergy or antagonism?
Currently, few in  vitro studies investigating the interac-
tions among different bacteria exist. In Corbeil et  al., 
different bacterial strains (P. multocida, M. haemolytica 
and H. somni) isolated from bovine microbial flora were 
grown together to examine whether they would inhibit 
or enhance their growth [157]. The authors discovered 
that the majority of microbial strains could enhance the 
growth of the tested pathogens, especially those from 
the Micrococcus, Corynebacterium and Staphylococcus 
genera, whereas a discrete number of isolates did not 
affect their growth. In contrast, only some Bacillus genus 
strains could inhibit Pasteurellaceae growth. In Bavanan-
thasivam et  al., the authors tested growth competition 
between P. multocida and M. haemolytica and found that 
each showed similar growth when cultured together but 
upon physical separation by a membrane, M. haemolytica 
growth was inhibited by a contact-proximity mechanism 
[158], similar to what was already observed for Biber-
steinia trehalosi in sheep pneumonia [159], hypothesiz-
ing that the inhibition occurred though similar molecular 
mechanisms. Inhibition of M. haemolytica by probiotic 
bacteria was also demonstrated in vitro [160]. Since pre-
vious studies reported that P. multocida can be isolated 
from the lower respiratory tract from calves experimen-
tally infected with H. somni [161] but also during natu-
ral cases of BRD [49], the co-existence of H. somni and P. 
multocida in polymicrobial film was investigated in vitro 
and in vivo [162]. In the in vitro model, both pathogens 
were shown to co-exist and to contribute to biofilm for-
mation. Two eight-week-old calves were then intratra-
cheally challenged with  109 CFU of H. somni so that lung 
tissues could be analysed for polymicrobial formation. 
Both pathogens were detected by PCR in the lungs, sup-
porting the hypothesis that H. somni and P. multocida 
can cohabit in polymicrobial films in  vivo. In another 
study, the carriage of H. somni, P. multocida and M. 
haemolytica was assessed by qPCR from nasal swabs col-
lected from healthy beef calves (n = 60) during a 75-day 
study [163]. Co-carriage of two or three bacterial species 
was detected in 47 animals but P. multocida remained 
the most prevalent during the entire study, either as co-
carriage with H. somni occurring the most frequently 

followed by M. haemolytica and lastly with H. somni. 
Taking all the experimental evidence into consideration, 
we cannot conclude whether a synergistic or antagonis-
tic effect is present among different Pasteurellae bacte-
rial strains. Further studies are needed to investigate the 
interactions among these pathogens in the context of 
BRD.

5  Discussion
In this review, we consolidated experimental evidence 
describing coinfection mechanisms potentiating pneu-
monia aetiology in cattle. The most studied mechanism 
of BRD onset in calves is the primary viral infection fol-
lowed by a secondary bacterial superinfection model, 
with evidence suggesting it to be one of the most com-
mon scenarios triggering BRD. Several in  vivo experi-
ments showed that a primary viral infection impacts M. 
haemolytica superinfection. The viruses that seem to 
enhance secondary bacterial infection the most include 
BRSV, BVDV and BoHV-1 with mean scores higher than 
3. BPIV-3 received a mean score of 2.67, also indicating 
a close association. Despite this, no solid conclusions 
can be drawn due to the very limited number of under-
taken studies. In addition, two of the BRSV studies were 
performed in lambs, not in calves. A few studies using P. 
multocida, H. somni and M. bovis as bacterial second-
ary infection could be retrieved, with the highest impact 
score for BoHV-1 followed by M. bovis (mean score of 4) 
and BRSV followed by H. somni (mean score of 3.5). Mul-
tiple in vitro studies showed that viral priming increased 
bacterial adherence and colonization of the respira-
tory tract, suggesting a possible mechanism underly-
ing the onset of bronchopneumonia in cattle. This could 
explain why viruses and bacteria are often co-detected in 
the respiratory tract of field animals with BRD signs. A 
limited number of viral coinfection studies (n = 4) was 
also retrieved, showing that a primary viral infection 
increases the pathogenicity of a secondary viral infection. 
Despite this, only the role of BVDV has been explored 
throughout the years for viral coinfections. The mecha-
nisms utilized by other viral pathogens such as BCoV and 
IDV remain unclear. One of the most important ques-
tions concerning the dynamics of bacterial derived res-
piratory infection is whether contagious spread between 
animals stems from bacterial replication in the lungs or 
whether said bacteria is already present in the nasophar-
ynx, accessing the lower respiratory tract when immune 
responses are impaired from a primary trigger (the sec-
ondary bacterial superinfection model).

A few studies have attempted to adress this question. 
Young bulls (n = 112) arriving at a fattening facility were 
divided into different pens and observed for 40  days. 
Nasal swabs and transtracheal aspirations were collected 
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to detect M. haemolytica and to study the clonal diver-
sity between the upper and lower respiratory tracts. 
During the BRD outbreaks that occurred at the facil-
ity, M. haemolytica was frequently isolated from sick 
animals with 75 bulls testing positive during the study. 
Among these, M. haemolytica was cultured from tran-
stracheal aspirates from 23 asymptomatic bulls. Pulse 
field gel electrophoresis (PFGE) analysis revealed a mod-
erate agreement in clone diversity within nasal swabs 
and transtracheal aspirates within the same animals but 
high within-pen diversity, indicating that the disease 
was due to predisposing triggers enabling the bacteria 
to overcome the animal immune system and the nor-
mal flora. Despite this, the authors observed horizontal 
gene transfers from bulls in the nearest pen as well [24]. 
High genetic diversity within the same feedlot was also 
observed in other studies for M. haemolytica [164] and 
for P. multocida [165]. These results suggest that BRD 
episodes associated with these pathogens are probably 
due to predisposing factors overcoming the normal flora 
than the spread of a contagious clone among animals 
within a herd. Young pre-weaned calves recently arrived 
to feeder farms are exposed to high stress levels, likely 
the most important trigger to BRD aetiology.

A separate evaluation should be made for M. bovis, 
as this pathogen is not part of the commensal flora of 
healthy animals. In experimental conditions, a primary 
M. bovis challenge followed by M. haemolytica one day 
later increased the severity of illness compared to calves 
singly challenged or simultaneously challenged with 
both pathogens [155]. The conditions of the experimen-
tal infection do not represent the reality of animals in the 
field within a herd (the pathogens are challenged intratra-
cheally with a high infectious dose), however these data 
suggest that M. bovis could potentially initiate BRD 
development.

Different in  vitro studies tried to elucidate bacterial 
pathogenic interactions; however, mechanisms of syn-
ergy or antagonism among the studied bacterial strains 
remain unknown as there are too few studies, leaving a 
gap in knowledge about the polymicrobial aetiology of 
BRD.

In this study, we developed a scoring system to evalu-
ate the impact of coinfection on overall cattle BRD 
pathology. This scoring system is meant to generalize 
the effects of specific pathogen pairs during coinfection 
with the caveat that there are major limits obfuscat-
ing the true impact, including poorly described control 
groups in certain studies and differences in induced res-
piratory pathology upon challenge of the same pathogen 

among all the studies. For example, inoculation with M. 
haemolytica induced BRD in some studies but not oth-
ers, making it difficult to compare the true impact of 
M. haemolytica during coinfection. High heterogene-
ity across studies leads to additional difficulties when 
comparing results as parameters considerably change 
from one study to another, notably the infection route or 
pathogen dose, the assays used to confirm infection and 
seroconversion, and the age and breed of the animals. In 
addition, in vivo studies assessing the impact of coinfec-
tions among respiratory pathogens in cattle are limited, 
as are the number of animals used per study. One way to 
control for error is by using specific-pathogen free (SPF) 
calves, negating confounding effects associated with 
animals previously exposed to different pathogens and 
immunologically primed to combat infection, potentially 
resulting in altered pathological changes upon challenge.

Few studies (n = 7) have attempted to study coinfec-
tions using alternative models to animal testing. The 
onset of new in  vitro, ex  vivo or in-vivo-like models in 
recent years could represent a valid replacement for pri-
mary studies before confirmation in animals. In particu-
lar, primary cell cultures, tissue cultures, organ slices and 
organoids provide a good start to change, both address-
ing the 3 R’s principle (Reduction, Replacement and 
Refinement) and expanding the global scientific field 
(Figure 1).

Over the course of the 20th and the twenty-first century, 
the impact of different pathogens on BRD has changed. 
On one side, the development of prophylactic measures 
has helped control some infectious diseases in cattle, as 
notably shown by the eradication program for IBR and 
BVDV [86]. On the other hand, new emerging patho-
gens continue to appear, probably due to intensified cattle 
farming from the twentieth century like the appearance 
of high-density animal feedlots. New pathogens poten-
tially involved in BRD that were not considered before 
(i.e. Influenza D virus) can be quickly discovered through 
NGS [166], potentially leading the way for an early risk 
assessment surveillance program in which cattle herds 
are monitored for emerging pathogens in order to pre-
vent their circulation. New techniques like NGS facili-
tate studies on respiratory pathogenic interactions with 
the surrounding normal bacterial species as well as the 
mechanisms underlying the pathogenesis of respiratory 
disease in cattle. During surveillance, longitudinal studies 
could also be conducted to observe the dynamics of res-
piratory outbreaks caused by mixed infections, providing 
insight about the timing of pathogen introduction during 
BRD development (Figure 2).
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