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Abstract
Metabolomics refers to the large-scale detection, quantification, and analysis of small molecules (metabolites) in biological
media. Although metabolomics, alone or combined with other omics data, has already demonstrated its relevance for patient
stratification in the frame of research projects and clinical studies, much remains to be done to move this approach to the clinical
practice. This is especially true in the perspective of being applied to personalized/precision medicine, which aims at stratifying
patients according to their risk of developing diseases, and tailoring medical treatments of patients according to individual
characteristics in order to improve their efficacy and limit their toxicity. In this review article, we discuss the main challenges
linked to analytical chemistry that need to be addressed to foster the implementation of metabolomics in the clinics and the use of
the data produced by this approach in personalizedmedicine. First of all, there are alreadywell-known issues related to untargeted
metabolomics workflows at the levels of data production (lack of standardization), metabolite identification (small proportion of
annotated features and identified metabolites), and data processing (from automatic detection of features to multi-omic data
integration) that hamper the inter-operability and reusability of metabolomics data. Furthermore, the outputs of metabolomics
workflows are complexmolecular signatures of few tens ofmetabolites, often with small abundance variations, and obtainedwith
expensive laboratory equipment. It is thus necessary to simplify these molecular signatures so that they can be produced and used
in the field. This last point, which is still poorly addressed by the metabolomics community, may be crucial in a near future with
the increased availability of molecular signatures of medical relevance and the increased societal demand for participatory
medicine.
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Introduction

“Omics” analyses are based on the use of large-scale data
production techniques (such as nucleic acid sequencing or
mass spectrometry). These, coupled with data mining and in-
terpretation tools based on mathematics, statistical analyses,
and bioinformatics, make it possible to analyze and under-
stand a system or living organism as a whole, at the different
levels of its biological organization (i.e., genomics, tran-
scriptomics, proteomics, and metabolomics for the sets of
genes, transcripts, proteins, and metabolites, respectively).

Metabolomics has emerged in the late 1990s, following the
development of proteomics [1]. It deals with the detection,
identification, and quantification of the small molecular
weight compounds present in a given biological medium.
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Themetabolome includes all the compounds of lowmolecular
weight (< 1000 Da or < 1500 Da according to the definitions)
that are present in a biological sample, and excludes biological
polymers such as proteins or nucleic acids [2]. Such metabo-
lites can be molecules involved in the ubiquitous reactions by
which the cells of an organism produce and use energy, as for
example amino acids, sugars, nucleotides, or fatty acids. Some
other kinds of metabolites can be synthesized by any given
biological species for achieving particular biological func-
tions, as for example glucocorticoids or neurotransmitters in
mammals, or alkaloids in plants. Xenobiotics (i.e., chemicals
which are found in living organisms, but not produced by
them) such as drugs and pollutants and their metabolites are
also part of the metabolome since they are present in biolog-
ical media and can be detected by the analytical chemistry
tools that are used for metabolomics [3]. This highlights that
metabolites are of different origins and come not only from the
cellular metabolism, but also from the microbiota, food and
drinks, drug intake, and environment. This makes metabolo-
mics an efficient tool to track interactions between a living
organism and its environment. However, many metabolites
are still uncharacterized due to their large chemical diversity
and to insufficient knowledge about metabolism. As a matter
of fact, it is estimated that less than 5% of the features detected
in biological media using mass spectrometry-based metabolo-
mics methods are annotated [4].

Metabolomics is thus far more complex than the metabolic
pathways displayed in metabolic biochemistry textbooks. It is
indeed impossible to know exactly how many metabolites
compose the metabolomes of living organisms, whereas the-
oretical proteomes can be more readily inferred from genomic
data. Furthermore, as metabolites exhibit a huge chemical di-
versity, ranging from polar and hydrophilic compounds such
as sugar derivatives to apolar and hydrophobic molecules such
as lipids, there is no universal method for metabolome analy-
sis. Consequently, the detection of metabolites relies on com-
plementary methods that have to be run in parallel to achieve
optimal metabolome coverage [5]. The two main technologies
for metabolomics data production are based on nuclear mag-
netic resonance (NMR) spectroscopy and mass spectrometry
(MS). The latter can be used as a standalone technique (i.e.,
direct introduction mass spectrometry) or coupled with gas
chromatography (GC-MS), liquid chromatography (LC-
MS), or capillary electrophoresis (CE-MS).

There are two main kinds of metabolomics approaches:
targeted and untargeted (or global) ones. Untargeted ap-
proaches seek to detect as many compounds as possible in
samples. Such compounds can be known metabolites, puta-
tively annotated metabolites, or unknown ones. In this case,
metabolite concentrations are given in a semi-quantitative
manner (relative quantification). This means that metabolite
concentrations are expressed as arbitrary units or ion intensi-
ties. In untargeted MS-based metabolomics, metabolite

abundances are generally provided in chromatographic peak
areas. Those peak areas highly depend on the LC-HRMS con-
ditions and thus remain linked to a dataset and are difficult to
be directly compared with those from other metabolomics
profiling experiments performed at different time periods or
within different laboratories. The most used detection
methods for global metabolomics approaches are NMR, GC/
MS, and liquid chromatography coupled to high-resolution
mass spectrometry (LC-HRMS). These untargeted ap-
proaches are used especially in the first steps of biomarker
discovery. Conversely, targeted approaches are focused on a
limited number of compounds, belonging to a given chemical
class or metabolic pathway. They can be more sensitive than
untargeted approaches and can provide, if needed, absolute
quantification with results expressed in molarity units. They
can be used for mechanistic purposes (in the frame of
fluxomic experiments, for example) or for biomarker valida-
tion following untargeted approaches [6, 7].

Metabolomics workflows, including sample preparation,
MS and/or NMR analyses, data pre-processing, statistical
analyses, and data visualization, have been developed since
the 2000s and have now reached a certain level of maturity.
Nowadays, metabolomics is considered as a tool in its own
right and is used in systems biology projects in many biolog-
ical fields, such as environmental research [8], plant science
[9, 10], nutrition, animal and human health [11, 12], etc. In
particular, this is the case in the field of biomedical research,
for which systems biology has given rise to systems medicine,
a systems approach to health and diseases paving the way to
personalized medicine.

Personalized medicine highlights the importance of the in-
dividuals’ characteristics in the response to treatment. This
concept has been developed with the improvement of our
knowledge, which makes it possible to define pathologies
more precisely. According to Leroy Hood, one of the pioneers
of this approach, personalized medicine promises to (i) pro-
vide deep insights into disease mechanisms, (ii) make blood a
diagnostic window for viewing health and disease of an indi-
vidual, (iii) stratify complex diseases into subtypes, (iv) pro-
vide new approaches to drug target discovery, and (v) gener-
ate metrics for assessing wellness. Thus, medicine aims at
being preventive, predictive, personalized, and participatory,
referred to as the concept of “P4 medicine” [13]. This ap-
proach is particularly relevant in the field of chronic and
non-communicable diseases for which it is often difficult to
grasp the transition from the healthy to the disease status. In
this context, Sagner et al. have proposed a “P4 health contin-
uum model” with 4 stages of health, namely the A, B, C, and
D stages, corresponding respectively to an apparently healthy
state, the emergence of chronic disease signs (such as elevated
blood pressure or dyslipidemia), the emergence of chronic
disease symptoms, and the confirmed chronic disease diagno-
sis, respectively [14].

760 Castelli F.A. et al.



Research and development in biomarker discovery are
central in modern healthcare for personalized and preci-
sion medicine. Omics approaches can be regarded as
particularly relevant and useful tools to identify new mo-
lecular biomarkers or sets of biomarkers to improve the
diagnosis and prognosis of various diseases as well as to
evaluate treatment efficacy. In this context, metabolomics
represents an attractive strategy for profiling a large pan-
el of low molecular weight molecules in patient samples
and for pointing out relevant molecules closely related to
(patho)physiological conditions and treatment response
phenotypes. However, over the last ten years, the number
of biomarkers derived from omics-based approaches, ap-
proved by regulatory agencies and used in clinical set-
tings, remains far from expectations [15]. This often
makes people perceive metabolomics and other omics
as over-promising and/or under-delivering approaches
when applied to clinical questions [16]. Despite the pub-
lication in the last two decades of more than 2000 sci-
entific papers using MS-based metabolomics for human
disease diagnostics, no diagnostic test based on metabo-
lomics has yet reached the clinics [17]. There are several
reasons and explanations for this observation, the most
frequently cited being the difficulty to integrate
multiscale biological information to generate knowledge
and predictive models [13, 16], the inappropriate design
of clinical trials with an often too small number of pa-
tients, together with a lack of validation cohorts [16, 18],
but also due to issues at the level of data acquisition, i.e.,
analytical chemistry. Indeed, the lack of standardization
of the data production methods, together with the expres-
sion of results in a semi-quantitative manner, are fre-
quently highlighted as factors preventing the sharing
and reuse of metabolomics data, and their integration
into multi-omics models [16, 18]. Anyway, while a
growing number of studies report on metabolic signa-
tures for the diagnosis and monitoring of pathologies,
responses or non-responses to treatments, it is now nec-
essary to consider converting these complex and
multiparametric signatures into reliable assays, with ap-
propriate costs of sample analysis, that could be run in
medical biology laboratories and even point-of-care tests,
which are part of the participative dimension of person-
alized medicine. These aspects, which fully deal with
analytical chemistry, are still poorly addressed within
the metabolomics research community.

In this context, this review deals with the main challenges
linked to analytical chemistry that need to be overcome to
foster the implementation of metabolomics in personalized
medicine and in clinical practice, from data production for
biomarker discovery and validation, to the translation of meta-
bolomics signatures into assays for medical laboratories and
point-of-care tests.

Metabolomics for personalized medicine:
more standardized and sharable
metabolomics datasets are still required

Several recent reviews have already addressed clinical appli-
cations of metabolomics in various fields such as oncology,
cardiology, neurology, diabetes, kidney and liver diseases,
and also response to treatments (aspirin, simvastatin, or anti-
hypertensive drugs) [16, 18–21].

In their article entitled “Metabolomics for the masses: the
future of metabolomics in a personalized world,” Trivedi et al.
have discussed on the current positioning of metabolomics
and on its future in a context of personalized medicine and,
more generally speaking, healthcare. They have listed around
one hundred metabolomics studies proposing biomarkers of
various pathologies and published between 2000 and 2017.
The authors pointed out limitations at different levels: data
production with a lack of interoperability and methodological
validation, poor experimental design with many studies deal-
ing with less than one hundred subjects (leading to a lack of
statistical robustness and validity), with the absence of
replication/validation cohorts. Finally, stating that mass
spectrometry–based approaches are not suitable for large-
scale screening of a very large population due to their low
throughput and high price, they consider alternative analytical
chemistry tools accessible to non-specialist end users, such as
lateral flow devices, dipstick approaches, or breath measure-
ments of volatiles [18].

The same conclusions are presented in the position paper of
Pinu et al., which summarizes the discussions on translational
metabolomics undertaken during the peer session of the
Australian and New Zealand Metabolomics conference in
2018. In addition to issues related to the lack of standardiza-
tion of data acquisition protocols and to partial identification
and too limited annotation of datasets, these authors also em-
phasized the insufficient recognition of metabolomics by
funding agencies, the difficulty of gathering multiple fields
of expertise within a given group, and the necessity to develop
routine tests and portable devices [16].

A search in the PubMed database (March 2021) over the
2015–2020 period with keywords related to the main omics
techniques, combined with the terms “disease*,” “*marker*
or signature*,” and “patients,” and restricted to the occurrence
of these words in titles and/or abstracts, yielded 4874 publi-
cations. As shown in Fig. 1(A), the bulk of these studies in-
volves transcriptomic analyses. Of these, the contribution of
metabolomics or lipidomics analyses amounts to 13%, that of
proteomic analyses to 15%, while approaches linked to
microbiome and multi-omic analyses are emerging.
Figure 1(B) displays the number of publications mentioning
the use of metabolomics or lipidomics alone or with other
omics approaches. A fourfold increase in the number of pub-
lications referring to metabolomics has been observed
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between 2015 and 2020. Although metabolomics analyses are
still mainly used alone, there is a trend toward increased use of
multi-omics approaches in 2020 (62 publications out of 187).
Finally, among the 643 publications related to metabolomics
or lipidomics, only 15 of them mention the use of a validation
cohort to confirm the molecular signatures obtained.

At the same time, data repositories have been developed,
making publicly available projects and studies including raw
data together with analytical and biological metadata neces-
sary for statistical analysis, as well as processed and annotated
datasets. The two main data warehouses in the field of meta-
bolomics are MetaboLights [22, 23] and Metabolomics
Workbench [24]. They allow sharing of protocols, assays,
and even tools to perform analyses and meta-analyses on the
datasets (for Metabolomics Workbench). At the time of writ-
ing this review, MetaboLights (https://www.ebi.ac.uk/
metabolights, accessed March 2021) contained 554 studies,
of which 30% deal with human studies (i.e., related to
“homo sapiens” in the browse study menu) and about 18%
are performed on human blood and urine samples (i.e., related
to “blood,” “serum,” “plasma,” “whole blood,” and “urine” in
the browse study menu). Metabolomics Workbench (https://
www.metabolomicsworkbench.org, accessed March 2021)
included 1370 studies of which 41% dealt with human

biological samples. A large number of projects are related to
diseases such as cancer (182 projects) or diabetes (63
projects). It should also be noted that spectral data
warehouses such as MassIVE (https://massive.ucsd.edu), a
community resource developed by the NIH center for
computational mass spectrometry for the free exchange of
mass spectrometry data, are likely to host metabolomics
datasets (404 out of 11,065, March 2021).

The development of data warehouses has been facilitated
by the efforts made within the community to standardize the
different steps of the metabolomics analysis workflow.
Initially, the Metabolomics Standards Initiative, set up by
the Metabolomics Society in 2005, has addressed, through
working groups, various aspects related to ontology problems,
data exchange, biological metadata, chemical analyses (from
the reporting of analytical chemistry metadata to metabolite
identification status), or data processing and statistical analy-
ses [25]. Regarding raw data sharing, vendor independent
standards have been proposed since the 1990s, and nowadays,
XML (i.e., “eXtensible Markup Language”)–based formats
such asmzML [26] and nmrML [27] are supported by vendors
and commercial and open-source software [28]. Concerning
metadata associated to studies, the ISA-Tab format (“ISA” for
Investigation, Study, Assay, and “Tab” for tabular) has been

13%

15%

65%

6%

1%

metabolom* OR lipidom* proteom*

transcriptom* OR gene expression microbiom*

multi-omics

Fig. 1 Omics technologies for
biomarker discovery in the
medical field. (A) Pie chart
displaying the relative contribu-
tions of the various omics ap-
proaches for the discovery of
biomarkers of diseases over the
2015–2020 period. The PubMed
database was inquired
(March 2021) with the following
keywords occurring in titles and/
or abstracts: “disease*,” *marker*
or signature*, patients; and
“metabolom* or lipidom*,”
“transcriptom* or gene expres-
sion,” “proteom*,” “microbiom*”
and “multi-omics,” excluding re-
view articles. (B) Number of
publications related to metabolo-
mics and/or lipidomics alone or
combined with other omics from
2015 to 2020
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developed to collect and share both analytical chemistry and
biological metadata [29]. Finally, certified reference materials
are provided by metrological institutions, which facilitate the
implementation of international inter-laboratory studies [30].
This is, for example, the case for human plasma with the SRM
1950, which is produced by the U.S. National Institute of
Standards and Technology (NIST) [31], and which has been
used in several inter-laboratory tests [32–35]. Beyond the case
of human blood samples, NIST urine reference materials have
been used in an inter-laboratory study involving NMR, GC-
MS, and LC-MS untargeted metabolomics analyses [36], and
the development of a human stool reference material for meta-
bolomics and metagenomics gut microbiome analysis is en-
visaged, as highlighted in a workshop report [37].

However, despite all these advances, the use and reuse of
public data from global metabolomics analyses in the frame of
meta-analyses remain uncommon. Table 1 shows the main
meta-analyses published to date. They are all based on mass
spectrometry data, and some of them use software tools such
as MetaboAnalystR 3.0 [38] or PAIRUP-MS [39], which en-
able joint analyses of different projects or batches from raw
data and pathway enrichments.

The study of Pang et al. deals with a comprehensive meta-
analysis of COVID-19 global metabolomics datasets. It was
achieved by using seven liquid chromatography coupled to
mass spectrometry datasets obtained from six studies that
were realized in three distinct countries. Five datasets were
obtained as raw data from public repositories or from the
authors of the studies, whereas the remaining two datasets
consisted of annotated peak tables obtained from supplemen-
tary materials of publications. The authors implemented a
computational workflow to process the raw data coming from
different experiments and performed pathway enrichment and
visual data mining, leading to metabolic signatures character-
istic of the disease progression and clinical outcomes [40].

In summary, progresses have been achieved in terms of
technological advances for the production and analysis of
metabolomics data, and for the standardization and sharing
of these data. These advances are reflected in the increasing
involvement of metabolomics data in clinical studies dealing
with disease biomarker discovery, and in systems medicine
research projects based on multi-omics approaches.
However, global and non-targeted metabolomics analyses
are still very little used, or even not at all, in routine care

Table 1 Meta-analyses involving
untargeted metabolomics-based
approaches

Publication title Data Technology Software Reference

Comprehensive
meta-analysis of
COVID-19 global
metabolomics
datasets

7 datasets from 3
countries, including 5
raw datasets from
MetaboLights,
MassIVE, and
authors, and 2
annotated peak tables
from 2 publications.
438 blood samples
from 337 subjects

LC/HRMS MetaboAnalystR
3.0

Pang et al.,
Metabolit-
es, 2021
[40]

Benford’s law and
metabolomics: a tale
of numbers and blood

Datasets from 3 studies
performed by the
author, no raw data
available, peaktable
available for one study

LC/HRMS No D'alessandro,
Transfus
Apher Sci,
2020 [194]

Integrating untargeted
metabolomics,
genetically informed
causal inference, and
pathway enrichment
to define the obesity
metabolome

3 LC/MS datasets, no
raw data available,
one peaktable avail-
able (related to the
software publication)

LC/HRMS PAIRUP-MS Hsu et al., Int
J Obes
(Lond),
2020 [195]

MicroRNAs regulating
human and mouse
naïve pluripotency

Meta-analysis including
microRNA-seq,
RNA-seq, and
metabolomics
datasets; the
metabolomics datasets
are from a single
published study;
peaktables available;
no raw data available

LC/HRMS,
LC/QQQ--
MS,
GC/MS

No Wang et al.,
Int J Mol
Sci, 2019
[196]
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practices, especially in medical laboratories. It is therefore
necessary to pursue research activities in the field of data
production and interoperability, as detailed belowwith a focus
on mass spectrometry–based metabolomics approaches.

Toward inter-operable and reusable
metabolomics data for biomarker discovery:
from appropriate project design and sample
collection to confident identification
and measurement of biomarker candidates

The pipeline of biomarker development includes several key
stages, consisting of discovery, validation, and clinical trans-
lation [41]. Each of these steps has its own limitations and can
be improved. For instance, the discovery phase might suffer
from a lack of standardized and validated methods, yielding
poor experimental reproducibility between laboratories. This
is especially the case with MS-based metabolomics, whereas,
although detecting less metabolites than LC-HRMS, NMR
can be more directly quantitative and can thus deliver more
robust data than untargeted LC-HRMS-based approaches.
Another reason is that clinical studies are not always appro-
priately designed for biomarker discovery, with biomarker
candidates not validated in independent cohorts and also not
sufficient clinical phenotyping available [42, 43]. In this con-
text, in the following paragraphs, we will review and discuss
the recent findings in LC/MS-based metabolomics that can fill
these gaps by pinpointing the need of the following:

– Large multi-center cohorts as well as validation cohorts to
increase statistical power and biomarker specificity and
avoid confounding factors

– Improved metabolome coverage and metabolite identifi-
cation confidence level (e.g., thanks to optimized and
validated acquisition workflows, dedicated spectral
databases)

– Standardized data production workflow with improved
robustness (e.g., with QCs, batch-to-batch consistency/
normalization, large-scale quantification) and capability
of automated interpretation of the huge amount of data
generated

– Linked untargeted and targeted quantitative approaches
for proper analytical validation of biomarker candidates

The issue of design of experiment regarding cohort
samples: toward more standardization

Metabolomics is a question-driven method. Thus, the prereq-
uisite of a successful metabolomics experiment is a well-
defined clinical question, which would unarguably imply ac-
tive discussions between physicians, analytical chemists, and

data scientists, each one knowing the constraints and require-
ments of their respective field. A successful metabolomics
study requires some key elements, including but not limited
to (i) consistency of samples to be analyzed and compared
(e.g., individuals matched for sex, age, weight, ethnicity, life-
style factors, etc.; site and type of sample, sample shipment,
storage, and handling), (ii) proper study design, (iii) proper
control groups and conditions, and (iv) sufficient sample size
of compared groups to encompass inter-individual variability
and provide statistical power [44] (Fig. 2).

Preanalytical considerations, study design The levels of me-
tabolites constituting the metabolome of any individual are
quantitatively affected by many factors such as disease, drug
use, environmental exposures, or nutrition [6, 45]. Therefore,
collection of data related to demographic, lifestyle, and phys-
iological factors (e.g., diet, gender, ethnicity, age, and BMI) is
necessary to limit inter- and intra-individual variations and
identify potential confounding factors. This practice also en-
sures that appropriate data can be incorporated into the exper-
imental design and data analysis processes [46].

Obviously, sample type/matrix must be consistent between
the patient samples and the control group (e.g., plasma
EDTA). Although overall concordance in results and similar
discriminatory ability can be observed when running plasma
and serummetabolomics [47], serum appeared to show higher
levels of some metabolites as a potential consequence of the
clotting process, as it is exemplified in the study of Wedge
et al., which deals with the metabolomics analysis of 29 small-
cell lung cancer patients [48]. Some metabolites can also read-
ily degrade or interconvert during sample preparation or dur-
ing temporary storage at room temperature before analysis
[49–51]. Kamlage et al. reported on the impact of blood and
plasma processing on the concentration of metabolites. They
observed significant metabolite concentration variations (in
the 4–19% range) in the case of hemolysis or short-term stor-
age of plasma samples at room temperature or cooled on wet
ice, and also some minor consequences when samples were
contaminated with buffy layer or in case of micro-clotting
[52]. Caution has to be paid to avoid these issues.

Different study designs (e.g., cross-sectional, cohort, case-
control studies) have their own strengths and weaknesses, and
their applicability depends on the clinical question of interest
[53]. Moreover, the sample size of groups should be similar
and large enough in a comparison to provide sufficient statis-
tical power. However, it is important to note that some cohort
studies may use more controls than cases in their experimental
design, which might imply the development and use of spe-
cific statistical tools for the treatment of the resulting metabo-
lomics data. In the case of expected high inter-individual var-
iability, a larger sample cohort would even be required. The
issue of statistical power related to sample size for the appro-
priate design of metabolomics studies has already been
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addressed through modeling approaches using pilot studies
[54], or even when pilot studies are not available [55].
However, there is still a lack of reference procedures to ad-
dress this point [56]. Thus, experts in data production and
statistical analysis should be involved in experimental design,
together with the sponsors of the study [57–59]. They should
pool their expertise to ensure the most standardized and robust
experimental design. Important points to be discussed and
agreed are the following: (i) a clear definition of the research
question, an as-precise-as-possible description of clinical
characteristics of each group to be compared (in order to avoid
any unwanted inter-group variability); (ii) a “true control”
group (although it is often complicated to collect samples
from healthy people in hospitals); (iii) an estimation of the
minimal sample size that is required to address the biological
question, the number of sample aliquots needed for the study;
and (iv) the creation and sharing of a single exhaustive file of
sample metadata with all known technical and clinical vari-
ables for each sample (sample name, tube labeling or barcode,
sample box, location in the box, collection origin, collection
date, gender, age, clinical treatment, diet, disease, BMI, used
anticoagulant, ethnicity...). Such a file could help to better
define the experimental groups in terms of homogeneity,
while avoiding any confusion and limiting the occurrence of
possible confounding effects (Fig. 2).

Discovery and (pre)validation cohorts As mentioned above,
untargeted LC-HRMS metabolomics methods are mainly
used for biomarker discovery. The resulting biomarker candi-
date data should be considered preliminary until their valida-
tion on a larger cohort with the use of a similar untargeted
workflow or a targeted quantitative metabolomics approach.

Indeed, a common issue in metabolomics-based biomarker
discovery is the absence of replication and insufficient sam-
pling, with many studies involving a single cohort of limited
size, i.e., often fewer than 100 samples [60]. Replication of the
results on biomarker performance using independent multi-
center cohorts is needed to ensure proper biomarker validation
for further transfer to the clinics [18]. Collaborative networks
and access to well-characterized bio-banked samples are often
needed to perform such large-scale studies.

Standardized sample preparation As the level of
comparability/variability is the critical point to be controlled
for standardizing metabolite concentration in the frame of
untargeted metabolomics experiments, standard operating
procedures (SOP) for sample collection and metabolite extrac-
tion are essential [57, 61, 62]. The review of Kirwan et al. [57]
gives a valuable overview about well-defined and validated
protocols for the collection of samples for metabolomics
research.

Kirwan et al. listed several already published protocols for
collection and storage of numerous biofluids and tissues.
Important insights are synthesized in an informative table
highlighting the crucial points of the protocols related to meta-
bolomics: (i) collection methods, (ii) range of temperature
before processing, (iii) storage conditions and reported conse-
quences if not followed, and (iv) observed confounding ef-
fects [57].

Before implementing an extraction protocol chosen as the
most appropriate to address the biological question of interest,
a crucial step in the standardization process consists in sample
normalization in terms of metabolite concentration before data
acquisition [62]. Regarding serum and plasma analyses, a

Fig. 2 The road to successful biomarker discovery
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consensus normalization way is to analyze the sample using a
fixed sample volume [61, 63]. As for a biomedical analysis,
the sample must be collected in a fasting state to minimize
unwanted sources of variability on the metabolome. For hu-
man fecal samples, Karu et al. also described several proposed
protocols for human fecal metabolomics [64]. We advise to
normalize on the dry weight of the freeze-dried stool sample to
avoid variability induced by differences in water content from
one fresh stool sample to the other [65]. Regarding urine
metabolomics studies, the need of normalization due to diure-
sis variations is well known and it has been already addressed
in several publications. Ideally, all urine samples in a study
should be collected over a period of time such as 24 h, know-
ing that the metabolic content of the sample can be impacted
by bacterial growth and chemical stability issues [50]. The
most used normalization protocols rely on creatinine, osmo-
lality, total useful signal (TUS, post-acquisition normaliza-
tion), and specific gravity measurements [66–71]. Although
no clear recommendation has emerged, the limitation of using
creatinine, encountered in many pathological contexts, has
been highlighted many times, while osmolality and specific
gravity appear to be the most reliable normalization protocols
[68, 71, 72].

For tissues, it is often difficult to weigh accurately a small
piece of frozen sample. We advise a standardization related to
the measurement of the total protein concentration. The pro-
tein concentration is thus measured in the pellet obtained after
the protein precipitation step during the metabolite extraction
(e.g., by using bicinchoninic acid “BCA” protein assay).
While for bacteria the normalization can be made based on
the optical density measurement [73, 74], normalization of
eukaryote cell samples before acquisition can be done on cell
numeration (which may lack of accuracy), or more confident-
ly by using total protein concentration or DNA concentration
in the extract. To conclude, it is essential to normalize the
concentration of metabolites present in the final extract and
before acquisition to detect only the metabolic variations re-
lated to the clinical parameter being monitored. Post-
acquisition normalization can also be implemented, for exam-
ple, by using the TUS (as mentioned above for normalization
of urine samples) [68].

The issue of metabolome coverage and accurate
measurement

Obtaining an exhaustive picture of the metabolome is highly
desirable to increase the likelihood of getting the best bio-
marker or set of biomarkers. Although major developments
have already taken place, we are still a longway from getting a
comprehensive coverage of all the metabolites. In the absence
of a universally accepted procedure for biomarker discovery
by mass spectrometry–based metabolomics, each data pro-
duction facility uses its own optimized procedure [18]. To

achieve broader metabolite coverage, samples are often ana-
lyzed several times by complementary LC-HRMS(/MS)
methods [63, 75–77]. A large portion of the detected signals
remains, however, structurally uncharacterized, and thus, me-
tabolite identification still represents a major bottleneck in
metabolomics [4, 78]. Detecting as many metabolites or me-
tabolite features as possible with the objective of obtaining
maximal biochemical information is a general tendency.
However, confidently identifying and measuring true and
unique metabolites is a completely different objective that is
absolutely required to obtain both reliable biomarker candi-
dates and meaningful biological information readily sharable
between laboratories. Therefore, broad metabolome coverage
makes sense only if metabolites are annotated/identified at a
high confidence level. Of course, this might sound frustrating
or can be erroneously linked to poor methodological perfor-
mances since this often yields limited sets of metabolites (e.g.,
~ 200), instead of few thousands of metabolite features or
elemental compositions. Such “limited” number of metabo-
lites can already provide key insights into relevant clinical
questions. For example, the robust monitoring of 137 metab-
olites in the blood of 800+ patients with acute decompensation
of cirrhosis with/without acute-on-chronic liver failure
(ACLF) provided unprecedented insights into the biochemical
mechanisms, underlying the development of the ACLF syn-
drome and also a 38-metabolite blood fingerprint specific for
ACLF that revealed mitochondrial dysfunction in peripheral
organs [79, 80].

Confident annotation and identification of metabolites As
mentioned above, accurate identification and monitoring of
metabolites are prerequisites to achieve measurements’ repro-
ducibility across laboratories and among countries. Confident
metabolite identification in complex biological matrices re-
quires the combination of several information lines exploited
in conjunction. High mass resolution (> 100,000,M/ΔM, full
width at half maximum) and highmassmeasurement accuracy
(< 1 ppm) allow for the measurement of isotope pattern and
isotope fine structure, including the distinction of isobaric iso-
topes [81–83]. Complementarily, accurate retention time(s)
andMS/MS spectra can provide high confidence in metabolite
identification when matched to reference data included in
chemical/spectral libraries. Among those complementary in-
formation lines, one of the most valuable elements to confirm
metabolite annotation or reduce the list of possible annotations
is the acquisition of fragmentation spectra and their compari-
son to reference MS/MS spectra included in reference mass
spectral libraries [82]. Differently from proteins, fragmenta-
tion of metabolites under low-energy conditions is relatively
unpredictable (at least with a high confidence level).
Therefore, the most relevant mass spectral databases for de-
finitive identification of metabolite biomarker candidates are
those obtained from pure authentic standards, and are thus
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unfortunately limited by their (most often commercial)
availability.

Databases are essential but often reflect only what is identi-
fied and commercially availableMost widely used (public and
proprietary) spectral databases include MassBank [84],
HMDB [85], GNPS [86], MoNA (https://mona.fiehnlab.
ucdavis.edu/), LIPID MAPS [87], NIST 20 (https://
chemdata.nist.gov/dokuwiki/doku.php?id = chemdata:msms)
, METLIN [88], and mzCloud (https://www.mzcloud.org/).
For a more detailed comparison and discussion of these
databases, we recommend these articles in the field [89, 90].
However, in brief, procedures for data collection and curation,
instruments used (e.g., Orbitrap, Q-TOF), fragmentation
conditions (e.g., resonant and/or non-resonant conditions,
number of collision energies, MSn), and type of molecules
differ from one database to the other. Presently available spec-
tral databases are therefore not strongly overlapping [90],
which underlines their complementarity as exploited by recent
studies for larger metabolite identification [91]. Interestingly,
a European proposal for quality control and quality assurance
of tandem mass spectral libraries has been recently published
and also reported that Q-TOF and Orbitrap-based instruments
yielded comparable MS/MS spectra [92]. As a representative
example, the MS/MS spectrum of taurocholic acid as acquired
in the positive ion mode on a first-generation Thermo Q-
Exactive instrument (at a normalized collision energy
“NCE” of 20%) has been successfully matched to spectra
stored in the MoNA database and previously recorded both
on a Q-Exactive HF and a Waters Q-TOF II instruments used
under different fragmentation conditions (Fig. 3). This opens
the door to spectral databases generated in the FAIR (i.e.,
“Findable, Accessible, Interoperable, Reusable”) data context
[93] also with a standardized way of describing the observed
ions [94].

Although covering more and more metabolites, not all me-
tabolites found naturally in biological matrices are currently
commercially available to feed those databases, which clearly
limits their expansion. As a matter of fact, metabolomics re-
searchers usually focus on metabolites that are present in da-
tabases or websites. Although very exciting for the analytical
chemist, the exploration of unknown metabolites, the so-
called dark matter [95], is one of the biggest challenges and
a research field on its own and is therefore still insufficiently
explored. Therefore, acquisition and thorough annotation (or
putative identification) of MS/MS data from biologically rel-
evant and recurrently observed metabolite features absent
from databases and chemical provider catalogs is required
for their further implementation and storage in specific shared
databases. Such a strategy has been recently used to build
spectral libraries of unidentified but annotated recurrent spec-
tra derived from NIST urine samples [96], and could be

extended to unknown signals returned by meta-analysis at
the pathway level with software tools such as Mummichog
[97].

Reporting high-quality and robust data in the frame
of untargeted MS-based metabolomics studies

General quality assurance and quality control practices
Quality assurance (QA) and quality control (QC) are indis-
pensable processes in research and critical in metabolomics
to obtain high-quality and FAIR data [58, 59, 98, 99].

QA deals with processes planned and performed before
sample collection to fulfill predefined quality requirement.
The main processes for metabolomics experiments are staff
training, preventive instrument maintenance, analytical
methods validation, and calibration of analytical tools and
verification of their performance.

Quality control deals with techniques and activities used to
measure and report if these QA requirements have been met
during and after data acquisition. It can include (i) run order
randomization to control unwanted variation and unwanted
correlation; (ii) internal standards added to samples in order
to report the quality of data within and between batches; (iii)
blank samples to assess the occurrence of contaminations,
interferences, artifact feature, carry-over phenomenon, and
matrix effect (if internal standards are added); and (iv) QC
samples (including diluted QC in order to highlight artifactual
features).

QC samples should be representative of the qualitative and
quantitative composition of the samples to be analyzed. The
samples can be obtained by pooling aliquots of each original
sample and then following the same sample preparation pro-
tocol of the biological samples. Proposed in 2006 for the first
time for untargeted metabolomics studies in order to check for
data quality [100], QC samples have been and are used in
numerous studies and several publications have highlighted
their importance in the metabolomics workflow [59, 61, 98,
99, 101]. Broadhurst et al. have reported on the different kinds
of QC samples, and their respective advantages and limita-
tions [98]. QC samples are usually injected several times at
the beginning of each batch analysis in order to equilibrate the
analytical platform, and then every 5 to 10 biological samples
in order to control the stability and performance of the analyt-
ical platform, and its reliability during the course of analysis.
They have also a crucial role in data pre-processing, as em-
phasized below.

The need for reproducible data (pre)processing workflows
and precisely documented metabolite identification proce-
dures This includes data preprocessing and processing, the
reporting of metabolite identification, and publication and da-
ta sharing.
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The data-preprocessing step deals with the implementation
of a peak-picking (i.e., detection and integration of LC/MS
peaks, i.e., features), feature alignment and feature integration
workflow. This is a key step in untargeted metabolomics,
which leads to data matrices that have to be cleaned and an-
notated before being subjected to statistical analyses. Software
packages dedicated toNMR,GC-MS, or LC-HRMS are avail-
able for that, and their description is beyond the scope of this
review. There is a need to standardize these pre-processing
steps [102], but most importantly to standardize the sharing
of processed data so that they can be re-analyzed by other
investigators to advance in the development of these tools.
This can be achieved by integrated software tools that com-
bine several data treatment steps, from data preprocessing to
statistical analyses, such as workflow4metabolomics [103] or
Metaboanalyst [104], the latter also proposing some data vi-
sualization and metabolic pathway enrichment tools. Such
metabolomics data-processing platforms enable to store and
share all the parameter values related to data pre-processing
and processing.

Dataset annotation and metabolite identification are crucial
steps enabling to convert hundreds to thousands of

metabolites features contained in peak tables into biologically
interpretable data. The way of reporting metabolite identifica-
tion has already been highlighted as a key issue. The Chemical
Analysis Working Group of the Metabolomics Standards
Initiative has thus proposed four levels of confidence for me-
tabolite identification [105]:

– Level 1: fully identified compounds based on at least 2
orthogonal (i.e., independent) data related to an authentic
standard analyzed in the same experimental conditions.

– Level 2: putatively annotated compounds based on char-
acteristic physicochemical properties or spectral similari-
ty with spectral libraries. In this case, there is one candi-
date, but the authentic standard is not available for
confirmation.

– Level 3: putative characterized compound classes, based
on characteristic physicochemical properties of a chemi-
ca l c lass ( i . e . , acy lcarn i t ine der iva t ives , or
sulfoconjugates). In this case, several candidates are pos-
sible and it is not possible to highlight a precise chemical
structure.

– Level 4: unknown compounds.

Fig. 3 Head-to-tail comparison of
evaluated versus reference MS/
MS spectra of taurocholic acid
obtained under non-resonant con-
ditions. Evaluated MS/MS spec-
tra (blue color) were obtained in
the positive ion mode on a
Thermo Q-Exactive instrument
(NCE 20%). Reference spectra
(red color) are stored in the
MoNA database and were re-
corded in the positive ion mode
on a Q-Exactive HF (NCE 20–
30–40%) and a Waters Q-TOF II
instrument (20 eV). [M+H]+ ion
at m/z 516.2974. Spectral
matching was performed using
the MS-DIAL version 4.12) soft-
ware [208]. DP, dot product; rev.
DP, reverse dot product
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Although they are simple to implement, these identification
levels have limitations since they cannot avoid ambiguities.
For example, the use of at least two orthogonal data together
with that of a standard, as it is required for a level 1 metabolite
identification, does not always lead to an unambiguous iden-
tification, as observed with optical isomers such as enantio-
mers, for example [106]. Although improvements have been
proposed with the addition of a fifth level [107], or with the
proposal of metabolite identification metrics with a quantita-
tive scoring system based on the sum of all the data types
supporting the identification [108], there is a need to propose
a metabolite identification reporting system that focuses fur-
ther on chemical structures.

Application to different types of medical cohorts

Depending on the level of complexity of the study, different
kinds of quality control procedures should be applied to the
metabolomics data production workflow in order to achieve a
sufficient degree of standardization. Thus, non-targeted meta-
bolomics studies performed with MS technologies can be
classified into three categories:

- (a) Studies dealing with a sample set analyzed in a single
batch, in the same laboratory, and with the same instrument

- (b) Studies dealing with a large cohort requiring to be
analyzed in several batches, over a long period of time, in
the same laboratory

- (c) Studies dealing with a large cohort and requiring sev-
eral laboratories

All the QA and QC procedures previously detailed below
apply in terms of experimental design, sample preparation,
data production, and pre-processing. The most important ele-
ment is to use QC samples and to analyze them at regular
intervals in order to guarantee signal stability over the duration
of the experiment.

Studies dealing with a sample set analyzed in a single batch,
in the same laboratory and with the same instrument This
case deals with cohorts ranging from 200 to 500 samples,
depending on the kind of sample preparation protocols and
instruments used. It is the simplest one because recommenda-
tions on how to standardize the different steps of the
untargeted metabolomics workflow and quality management
practices (from the experimental design of the study to the
submission of data into public repositories) are available and
have been the subject of many publications [30, 57–59, 61, 62,
98, 99, 105, 109–113] (Table 2).

Studies dealing with large cohorts requiring to be analyzed in
several batches, over a long period of time, in the same lab-
oratory In this case, in addition to the already described QA
and QC procedures, it is important to have a “long-term ref-
erence (LTR)”QC sample, as proposed by Dunn et al. [61]. In

some cases, the strategy of the “pooled QC sample”might not
be the most relevant. For instance, when analyzing some par-
ticularly large cohorts, the amount of QC sample available can
become limiting; while for projects involving rare diseases or
longitudinal studies, the exact number of batches to be re-
ceived can be unknown or the samples are not all available
at the beginning of sample preparation and analysis. In such
situations, a commercially available plasma LTR QC sample
from NIST (see below) can represent a reliable alternative.

There are several key issues associated with these LTR QC
samples. The first one deals with how representative such
samples are, in terms of metabolites and concentration ranges.
As an example, the standard reference material (SRM) dedi-
cated to metabolites in human plasma (SRM 1950) is prepared
from 100 donors, with an equal number of men and women of
40 to 50 years of age, selected to be representative of the
ethnic distribution of the US population [31]. However, it is
not established whether or not this SRM will be appropriate
for studies performed on other populations, or on patients
affected by overt diseases or metabolic disorders. Further
studies are needed to address these issues.

The second one is their long-term stability. Indeed, stability
studies are challenging to implement in the case of non-
targeted and semi-quantitative approaches, especially those
based on the use of mass spectrometry, due to the impossibil-
ity to ensure the stability of the metabolites contained in the
QC samples that are used for inter-batch normalization.
However, a few studies dealing with untargeted metabolomics
approaches have been published on this issue. For example,
Laparre et al. have evaluated the impact of the storage tem-
perature (+ 4 °C, − 20 °C, − 80 °C, and freeze-dried stored at −
80 °C) and the storage duration (5 to 144 days) on the bovine
urinary metabolome by using liquid chromatography coupled
to high-resolution mass spectrometry [114]. The authors fo-
cused on 200 identified metabolites contained in their spectral
database. Normalization was performed by dividing each fea-
ture’s intensity recorded on the different days by the corre-
sponding feature’s intensity recorded in the freshly collected
urine sample at day 0 for every subject. Furthermore, scaling
factors were calculated by dividing the average intensities
recorded in − 80 °C stored samples per feature and for each
batch by the corresponding intensities recorded in the refer-
ence batch. By these means, they found that urine metabolic
profiles are altered starting from 5 days when stored at + 4 °C,
and after one month at − 20 °C. The temperature of − 80 °C
was considered as the most convenient urine long-term stor-
age condition. In another study, Palmer et al. have investigated
the 12-month stability of dried blood spots (DBS) and dried
urine spots (DUS) at different storage temperatures (− 20, + 4,
and + 21 °C) and compared it to plasma and urine biofluids
stored at the same storage temperatures and time by using LC/
HRMS-based untargeted metabolomics [115]. Inter-batch
normalization was achieved using a pooled QC sample.
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They concluded that DBS and DUS stored at + 21 °C are
stable for up to 4 weeks but are not stable over a 1-year period,
whereas they showed good stability when stored at − 20 °C for
1 year.

These two studies are based on the assumption that QC sam-
ples used for inter-batch normalization are stable in “reference
storage conditions” (i.e., at − 80 °C or − 20 °C). However, some
studies using absolute quantification and/or a calibration system
highlighted some altered metabolite concentrations in plasma
samples stored at − 80 °C up to five years. By using the
Biocrates AbsoluteIDQ p180 targeted-metabolomics assay,
Haid et al. observed significantly changed levels of amino acids,
acylcarnitines, glycerophospholipids, sphingomyelins, and the
sum of hexoses, with average increases or decreases of +
13.7% or − 14.5%, respectively [116]. Otherwise, Wagner-
Golbs et al. analyzed EDTA plasma samples stored for up to
16 years by gas and liquid chromatography-tandem mass
spectrometry-based quantitative metabolomics. They found that
226 out of 231metabolites remained stable during the first seven
years of storage [117].

There is a limited number of large-scale studies using
untargeted metabolomics that have been published. Among
those, a representative one is that of Dunn et al. who have
reported on the molecular phenotyping of 1200 “healthy adults”
from the UK in the age range of 19–81 years, by using GC/MS
and LC/HRMS-based metabolomics [118]. The data were ac-
quired across 11 months in 10 batches including samples from
120 subjects analyzed within a five-day period. Data were proc-
essed using dedicated GC- and LC-HRMS workflows, and
inter-batch normalization was achieved thanks to a unique QC
sample and the LOESS algorithm. From 259, 7813, and 7914
metabolite features initially detected in GC-MS, LC-HRMS
(positive mode), and LC-HRMS (negative mode), the imple-
mentation of signal correction, batch integration, and quality
assurance procedures led to 126, 2181, and 2283 metabolite
features combined within a single multi-batch data matrix and
available for statistical analyses.

Another interesting study is that of Sindelar et al. on the use
of metabolomics to highlight prognostic markers of COVID-
19 severity [119]. Seven hundred and four human plasma
samples were collected at six-month longitudinal points from
341 patients, and SRM 1950 was used as QC sample. Given
that the metabolic profiles were acquired over several months,
the combined data showed strong batch effects that proved
efficiently corrected by combined batch correction [120].

Chromatographic retention time shifts are the main issues
regarding batch fusion over long periods. Particular software
solutions have been described to correct within- and between-
batch variability drifts in terms of mass accuracy, intensity,
and retention times [121, 122]. Nevertheless, if there are too
large differences in retention times between batches, it can
become difficult to correctly align peaks with common auto-
matic signal detection and alignment software tools [123,

124]. Then, targeted detection of metabolites that are present
in laboratory spectral databases can be carried out using peak
integration software from instrument suppliers. The batch fu-
sion process would then be carried out more easily on the basis
of known metabolites (targeted data treatment) and no longer
based on m/z ratios and retention times alone and in a more
blinded way (untargeted data treatment).

Studies dealing with large cohorts and requiring several lab-
oratories Although several laboratories with complementary
technological expertise may be required in order to achieve
the largest metabolome coverage, most studies dealing with a
multi-platform approach are actually multi-omic studies in-
volving a single metabolomics platform. In this case, general-
ly, each type of omics data is analyzed separately in order to
achieve molecular signatures, which are in turn collated and
integrated by using molecular network analysis and visualiza-
tion software tools [125].

Most of published metabolomics studies involving several
laboratories or platforms with inter-laboratory comparison
studies are dedicated to the evaluation of the performance
and comparability of analytical methods [126–128].

The metabo-ring initiative gathered 5 NMR and 11 differ-
ent LC/HRMS platforms with the objective of assessing the
reliability of untargeted metabolomics approaches in
obtaining comparable metabolomics profiles. Biological sam-
ples obtained from 2 different conditions were analyzed by the
partners using their own in-house protocols. It was observed
that, despite large differences in the number of spectral fea-
tures produced after post-processing and the heterogeneity of
the analytical conditions and the data treatment, the spectral
information within and across technologies (NMR vs. LCMS)
was highly convergent regarding 2 test datasets in terms of
statistical analysis [126].

Izumi et al. performed an inter-laboratory comparison
study on cell line extracts including 12 participating laborato-
ries using their own analytical methods (capillary electropho-
resis coupled to mass spectrometry, GC/MS and LC/MS with
different kinds of high-resolution mass spectrometers and
chromatographic conditions, corresponding to 15 and 9
methods for hydrophilic and lipophilic compounds, respec-
tively). The aim of the study was to evaluate issues in inte-
grating different kinds of metabolomics data. Overall, 203
metabolites and 580 lipid species were detected by at least
one analytical method, among which 148 hydrophilic metab-
olites and 285 hydrophobic metabolites were detected by at
least two methods [127].

Finally, in their article, Yu et al. describe the Consortium of
Metabolomics Studies, which was established in 2014 for fos-
tering large-scale collaborative research on medical cohorts
and epidemiology. This initiative includes 47 cohorts from
Asia, Europe, North America, and South America, and blood
samples were analyzed by 17 platforms. It appeared, from 2
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feasibility studies, that the overlap between any 2 different
laboratories in terms of detected metabolites ranged from 6
to 121 metabolites within 5 leading laboratories, and that the
median Spearman correlation coefficient was of 0.79 on 111
metabolites detected by two platforms. Absolute concentra-
tions were provided on only 31 metabolites across the 5 plat-
forms, and 28% of identified metabolites were not listed in
public databases [128].

All these studies highlighted a modest overlap in terms of
metabolite detection from one facility to the other, and two of
them reported on inconsistencies in compound identifiers that
limit the integration of datasets [127, 128]. This is especially
the case with isomers that can be discriminated or not from
one platform to the other. Such issues could be addressed by
the development and sharing of spectral databases [33], by
fostering the evaluation and the use of standard reference ma-
terials within metabolomics data production facilities [127,
128], and of course by providing absolute concentrations on
identified metabolites present in the chemical libraries of data
production facilities, in the frame of untargeted approaches.

Analytical validation of biomarker candidates
highlighted by untargeted metabolomics: the need
for targeted quantitative metabolomics approaches

As mentioned above, confident metabolite identification is
required for biomarker discovery. As a corollary, quantitative
information about measured metabolites instead of relative
differences must be provided if the biomarkers are to be used
in clinical settings for diagnostic purposes through the defini-
tion of normal ranges of metabolite concentration. In addition
to providing relevant data for answering clinical questions,
metabolite concentrations expressed asmolarity units will also
facilitate access to the dynamics of the metabolome and of
course the integration of metabolomics data with those of
other omics, while also enabling facile comparison of results
among laboratories and studies.

Accurate and validated metabolite quantification is gener-
ally accomplished by using targeted LC-MS/MS-based ap-
proaches using low-resolution triple quadrupole instruments
operating in the multiple reaction monitoring mode (MRM)
and using metabolites labeled with stable isotopes (e.g., 13C,
15N, 2H) [129]. Such an approach can also be used to validate
the results obtained by untargeted LC-HRMS metabolomics.
For example, the concentrations of 4 tryptophan metabolites
have been recently measured by LC-MS/MS (multiple reac-
tion monitoring—MRM—mode with isotope dilution) in the
serum of 218 patients with acute decompensation and ACLF
in cirrhosis, and demonstrated excellent correlation with the
corresponding MS signals observed under LC-HRMS condi-
tions [130] (Fig. 4).

Although targeted LC-MS/MS (MRM) methods offer the
best quantification sensitivity, they are often focused on a

small set of compounds and thus suffer from such a limited
metabolite coverage. New MS/MS workflows as implement-
ed on high-resolution mass spectrometers such as Q-TOF or
Orbitrap-based instruments have merged as powerful alterna-
tive strategies [131]. Such acquisition methods referred to as
data independent acquisition (DIA) including the SWATH
(accounting for Sequential Window Acquisition of all
Theoretical fragment-ion spectra) approach are being increas-
ingly used in metabolomics by enabling simultaneous metab-
olite identification and quantification through the acquisition
of MS/MS spectra for all analytes in a single run [131, 132].
Although slightly less sensitive than traditional LC-HRMS or
MRM approaches, recent publications highlighted the poten-
tial of SWATH approaches for unambiguous compound de-
tection and accurate quantification in complex samples
[133–136]. With constant instrumental improvements (e.g.,
data acquisition speed on Orbitrap mass analyzers, in collision
energ ies management , sens i t iv i ty , MS2 spec t ra
deconvolution), one can imagine great potential of such ap-
proach for future biological metabolomics applications. As a
sort of proof of principle, Zha et al. recently reported on an
innovative SWATH-to-MRM approach. Thus, a high-
coverage targeted metabolomics method with 1303 metabo-
lites in one injection was developed to profile colorectal tis-
sues [137]. The success of such an approach would make LC-
HRMS-based metabolomics both a screening and quantitative
confirmatory technology.

How to transfer metabolomics signatures
from the research laboratories to the field

Metabolomics signatures are generally defined by clinical re-
search studies, which cannot be considered as routine care
practice. They are complex for several reasons. First, they
are multi-parametric in that they often consist of few tens of
metabolites. They often deal with small concentration varia-
tions from one group to the others, with concentration ratios
often less than a factor five. Some of themetabolites of interest
may be only partially characterized (i.e., for example a com-
pound class, such as an acylcarnitine species including a hy-
droxylated carboxylic acid in which the position of the hy-
droxyl group cannot be precisely located). Furthermore, when
obtained by using untargeted approaches, results are not
expressed in molarity units but rather as peak areas, which
obviously limits data reuse and sharing. Finally, these molec-
ular signatures are often not validated due to a lack of valida-
tion cohorts, and also of specificity studies which are time
consuming, expensive, and difficult to design.

Consequently, metabolomics signatures obtained from
untargeted metabolomics cannot be directly used in the routine
care practice. There is a need for simplification and for moving
to quantitative results. Simplification can be achieved through
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statistical analysis tools enabling to select a small number of key
components of the signatures. This is, for example, the case with
the biosigner algorithm, which enables to find the smallest fea-
ture subset which significantly contributes to the performance of
a multivariate statistical analysis model [138]. Regarding quan-
tification, multiplexed targeted assays can be developed and
implemented for specifically monitoring essential metabolites
obtained from complexmolecular signatures in order to confirm
results obtained from untargeted metabolomics experiments, as
already described in the previous section.

Furthermore, many actors and structures are involved in
healthcare systems: clinical units in hospitals, medical laborato-
ries in hospital settings or outside the hospitals, physician’s of-
fices, pharmacists, and at least the patient at home. Current lim-
itations in terms of data reuse and interoperability combined with
a lack of validation data for the molecular signatures generated
make metabolomics not yet easily usable in routine care.
However, the main users in the short term could be clinical
biologists and chemists, as well as non-experts, working in med-
ical laboratories in a hospital context, near the clinical units. It is
likely that in the near future the use ofMS-based approaches will
remain limited to hospital settings, operated by trained staff. This
because (i) the sample preparation requires technically advanced

operations and (ii) outputs of metabolomics workflows are com-
plex molecular signatures of few tens of metabolites, often with
small concentration variations. In the field of personalized med-
icine, the challenges will then lie in the longer term in the devel-
opment and use of field rapid diagnostic tests based on the de-
velopment of biosensors for the multiplexed and quantitative
detection of several biomarker candidates.

Metabolomics at medical laboratories

The clinical context has a strong impact on the manner of
translating metabolomics signatures into clinical practice. It
can be intended for a critical care, a chronic disease follow-
up, or a genetic rare disease. Modalities such as the frequency
of analysis, the delivery time of the results, the geographical
availability (local, regional) of equipment, and the routine
workflow have to be defined by taking into account this con-
text. These aspects are usually managed in a clinical laborato-
ry by a clinical biologist. One role of the biologist is to inte-
grate these requirements with analytical constraints, by setting
a framework in which the sample pathway, the analytical
quality, and the delivery of the results are well defined.

Fig. 4 Comparison of metabolite concentrations measured by using
untargeted and targeted approaches. Correlation between LC-HRMS data
(peak area, exactive instrument) and absolute quantification data (ng/mL,
Waters Xevo TQ-XS instrument) obtained for tryptophan, quinolinic ac-
id, kynurenine, and kynurenic acid measured in the serum of 217 patients

with different levels of cirrhosis decompensation. Correlation analyses
were achieved by calculating Pearson correlation coefficients (r).
Experimental conditions are displayed in the publication of Claria et al.
[130]
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Delivering ametabolic signature to a physician is challenging.
This means to translate complex and numerous data into a self-
explanatory analysis report, which must be available and inter-
pretable for any clinician specialized in a given medical area.
This translation requires processing, integration, and interpreta-
tion of data, in order to transmit a suitable information to the
clinical issue. Clinical biologists will have a key role in the results
transmission by integrating the biologicalmessage into the global
clinical context. This requires rethinking medical biology by no
longer reasoning in terms of isolatedmarkers reflecting an organ-
ic function, but rather in terms of molecular signatures reflecting
the stage of a disease at a given time. This is a major paradigm
shift from a focus on broad categories of disease, to a more
holistic approach that will integrate a patient’s metabolic status,
impacted by all of their co-morbidities and their environment. To
achieve this, clinical biologists will have to upgrade analytical
technologies to generate data, integrate bioinformatics solutions,
and develop an automated algorithm to express targeted and
accurate results from complex data. Actually, clinical biochem-
istry is likely to undergo the same technological revolution as
molecular genetics has undergone over the last 20 years with the
advent of genomics and next-generation sequencing. One of the
main challenges will be to obtain concentrations of key metabo-
lites expressed in units of molarity, in order to meet the short-
term needs of clinicians, while at the same time having the pos-
sibility of building databases of metabolic profiles that will be
interrogated in different medical contexts.

Although there are some liquid chromatography coupled to
mass spectrometry systems that are CE-IVD (i.e., European
directive for In Vitro Diagnostics) approved for clinical bio-
chemistry, toxicology, or therapeutic drug monitoring, and
mass spectrometers can be used in operating rooms [139,
140], not all medical laboratories are and will be equipped
with mass spectrometers (especially high-resolution instru-
ments) and very few of them with nuclear magnetic resonance
instruments. Thus, other analytical methods, such as enzyme
assays, immunoassays, and biosensors, have to be envisaged
for metabolite detection. For example, enzyme- and immuno-
assays are already widely and routinely used in hospitals for
clinical biochemistry and therapeutic drug monitoring, as part
of industrial automated in vitro diagnostic systems.

Alternative tools to mass spectrometry
and nuclear magnetic resonance instruments
for making metabolomics valuable in clinical
laboratories

Enzyme assays for monitoring metabolites in
biological fluids

As previously emphasized, enzyme assays are already widely
used in clinical laboratories for monitoring metabolites, such

as bile acids [141], formic acid [142], oxalic acid [143], or
sialic acid [144]. Such assays are mainly based on the moni-
toring of enzymatic cofactors such as NADH or NADPH that
are consumed by the enzymatic reaction together with the
analyte. Although simple to implement when kits are commer-
cially available, these approaches may suffer from low spec-
ificity and may lead to underestimated values, as recently re-
ported for bile acids [145]. They are also prone to interfer-
ences, as observed with oxalic acid for which vitamin C inter-
feres [143]. Furthermore, as enzymes may process all the
members of a chemical class, some enzyme assays enable
the determination of total concentrations rather than individual
ones, as observed for bile acids and triglycerides, for example.
Finally, such assays suffer from low multiplexing capabilities.

For all these reasons, if enzymatic methods are useful to
analyze a metabolite or possibly a set of metabolites belonging
to a given chemical class, it seems unlikely to use them for
more complex metabolomics signatures as they require the
ability to find and produce dedicated enzymes and to set up
conditions allowing enzymatic activity measurement in differ-
ent types of biological media.

Laboratory immunoassays for the detection of
metabolites in biological fluids

As main tools of immunoassays, antibodies enable the detec-
tion and quantification of specific biomarkers and are partic-
ularly suitable for molecules with a molecular weight above
3000 Da [146]. Performances of an immunoassay will rely
first on the affinity and specificity of the antibodies used:
polyclonal antibodies (i.e., collection of purified immuno-
globulin molecules obtained from immunization of animals
such as rabbits, sheep, donkeys, or goats), usually easier and
faster to produce than monoclonal antibodies (i.e., single class
of antibodies produced by a monoclonal immortalized B lym-
phocyte), generally display high affinities for their target but
limited specificity. Monoclonal antibodies (mAb) are pre-
ferred tools for the development of accurate and specific im-
munological tests. Second, performances will depend on the
detection system that can be achieved using various methods,
including among others isotopic labeling (radioimmunoas-
says), enzyme reaction with UV-visible or fluorescence or
chemiluminescence detection, or colloidal gold particles.

There are twomain immunoassay formats: competitive and
immunometric, depending on the size of the analyte. In
immunometric assays, a first capture antibody, specific for
the antigen, is bound to a solid surface. The antigen is then
added, followed by addition of a detection antibody. The latter
binds the antigen to a different epitope from the capture anti-
body. Thus, this assay format is adapted to analytes containing
a least two epitopes (i.e., molecules having a molecular mass
above 1000 Da, assuming that an epitope includes at least 5
amino acids). Conversely, in competitive immunoassays, the
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antibody is immobilized on a support and the detection is
achieved through a labeled antigen. The addition of the sam-
ple containing free antigen induces an antibody binding equi-
librium between the free antigens and the labeled ones. This
assay format is preferably used when only one antibody is
available, or when the analyte has only one epitope (i.e., small
antigen < 1000 Da), which is the case for metabolites.

Before the development and popularization of LC-MS ap-
proaches in the 1990s, competitive immunoassays were wide-
ly used for the sensitive detection of drugs and their metabo-
lites for pharmacokinetics and therapeutic drug monitoring,
and for clinical chemistry, as it was for example the case for
steroid hormones [147, 148]. Nowadays, competitive immu-
noassays are still used for a number of clinical biology analy-
ses such as the detection of 25-hydroxyvitamin D (vitamin D
metabolite) by radioimmunoassay [149], the detection of ox-
idative stress biomarkers based on the combination of
microfluidics and fluorescent immunoassay [150], and the
detection of hormones such as progesterone by coupling mi-
crochip electrophoresis and chemiluminescent immunoassay
[151] or cortisol using a paper-based immunosensor with a
colloidal-gold labeled immunoassay [152].

Various types of competitive assays have thus been devel-
oped and implemented on automated in vitro diagnostic de-
vices. The most popular are competitive immunoassays in
homogeneous phase (i .e. , reagents, samples, and

measurements are achieved in a liquid phase), such as EMIT
(Enzyme Multiplied Immunoassay Technique; see Fig. 5a),
CEDIA (Clone Enzyme Donor Immunoassay), FPIA
(Fluorescence Polarisation Immunoanalysis), and KIMS
(Kinetic Interaction of Microparticle in Solution) [153].

Laboratory immunoassays can also take place in heteroge-
neous phases. In this case, the assays are performed in several
steps with reagents added and optionally washed or separated
at the site of the antigen/mAb complexes. Enzyme linked
immunosorbent assays (ELISA) are probably the most used
heterogeneous phase assay formats for the detection and quan-
tification of biomarkers in biological media. Since it requires
multiple steps (and washing steps in between), ELISA (Fig.
5b) needs to be performed by trained staff with laboratory
equipment.

Finally, other types of assays aiming at overcoming the
limitations of competitive formats have been specifically de-
veloped for the detection and quantification of small mole-
cules. Some of them, such as SPIE-IA (solid-phase
immobilized epitope-immunoassay), AIA-NIA (anti-idiotypic
antibody-based non-competitive immunoassay), AICA-NIA
(anti-immune complex antibody-based non-competitive im-
munoassay), and OS-NIA (open sandwich non-competitive
immunoassay), are described in Fig. 6 [155].

Although some of these assay formats are attractive and
inspiring for the design of biosensors for personalized

Fig. 5 Competitive laboratory
immunoassays for small
molecules. a Principle of EMIT
(Enzyme Multiplied
Immunoassay Technique) [153].
EMIT is a competitive
immunoassay in homogenous
phase in which an analyte analog
is bound to an enzyme using
nicotinamide-adenine-
dinucleotide (NAD) as a cofactor.
The enzymatic reaction generates
NADH which is detected by
spectrophotometry at 340 nm. A
competition between the analyte
and the enzyme bound analog
takes place toward the antibody.
The amount of NADH produced
is directly related to the amount of
analyte present in the sample. b
Competitive ELISA [154]:
Antibodies are immobilized on
the solid support. A competition
takes place between an analyte
analog coupled to an enzyme and
the free analyte in the sample. The
detection is achieved through en-
zymatic activity
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medicine purposes, immunoassays for small molecules suffer
from several limitations. Indeed, the lack of sensitivity and
specificity of antibodies for small molecules are their main
weaknesses. Although many antibodies have been developed
against small molecules, they can suffer from cross-reactions.
This is the case, for example, for antibodies against cortisol
which have cross-reactivity with many endogenous steroids

such as cortisone or many synthetic steroids such as prednis-
olone or prednisone [156]. The challenge to develop assays
based on the recognition of metabolites by antibodies firstly
lies in the possibility to derive these small chemical molecules,
to make them haptens (i.e., to link them covalently to carrier
proteins whose role is to provoke/favor the immune response
in immunized animals, naturally not immunogenic). In some

Fig. 6 Non-competitive laboratory immunoassays for small molecules
[155]. a SPIE-IA (solid-phase immobilized epitope-immunoassay): This
format is based on the use of a single antibody that acts as both capture
and detection antibody. It takes place in four steps: (i) Analytes are cap-
tured by immobilized antibodies. (ii) Analytes are covalently bound to the
immobilized antibodies with the help of a reagent (e.g., glutaraldehyde,
carbaonyldiimidazole). (iii) C-Analytes are then released from the
immobilized antibodies by denaturation with a solvent. (iv) Detection
antibodies coupled to an enzyme can then fix the analytes. b AIA-NIA
(anti-idiotypic antibody-based non-competitive immunoassay): This for-
mat requires the use of three antibodies: an immobilized primary antibody
(Ab1), an anti-idiotypic antibody (Ab2α), and a labeled anti-idiotypic
antibody (Ab2β) and is performed in four steps : (i) The analyte binds
to Ab1. (ii) Ab2β is added to block the remaining Ab1 free binding sites.
(iii) Ab2α are then added to capture only the Ab1/analyte complexes
(Ab2β/Ab1 complexes cannot be captured due to steric hindrance). The

signal strength is proportional to the amount of Ab2α labeled and bound
to the Ab1/antigen complex. c AICA-NIA (anti-immune complex
antibody-based non-competitive immunoassay): This assay uses an
immobilized (Ab1) and an anti-metatypic (Ab2) antibody, the latter sta-
bilizing the antibody/analyte complex. It takes place in two stages: (i) The
analyte binds to the Ab1. (ii) Ab2 is added and binds the analyte-antibody
complexes. The intensity reflects the amount of Ab2 that has bound. d
OS-NIA (open sandwich non-competitive immunoassay): This format is
based on the association of free VH and VL chains from the variable
domain of an antibody, which dissociate in the absence of the antigen
(i.e., the analyte). It takes place in two stages: (i) The VL chains, conju-
gated to a carrier protein, are fixed by immobilized antibodies. (ii) The
analyte and the labeled VH chains are added. The binding of the antigens
to the VL chains allows the association of the VL and VH chains. The
intensity of the signal is proportional to the quantity of labeled VH chains
present
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cases, complex coupling chemistry procedures are necessary
to obtain an immunogen [157]. Furthermore, antibodies of
interest have to be selected on their specificity to recognize
exclusively the molecule, without recognition of the derived
molecule, or of related molecules. The smaller the molecule,
the more difficult this selection is to achieve. Competitive
immunoassays also exhibit poorer sensitivity than
immunometric ones because of the use of a limited amount
of reagent, which does not facilitate the formation of antigen/
antibody complexes.

Finally, there could be issues of loss of performance, po-
tentially in terms of specificity, when moving from mass
spectrometry–based methods to immunoassays. In this con-
text, there are many studies aimed at comparing the perfor-
mances of immunoassays and mass spectrometry–based ap-
proaches. Most of them deal with drugs and their metabolites,
and, to a lesser extent, with endogenous metabolites such as
steroids, thyroid hormones, and vitamin D derivatives. Some
of these studies show that these two methods exhibit the same
kind of performances [158–160], whereas others point out
variable quantitative performances between immunoassays
[161], and specificity issue with over- or underestimated con-
centrations measured in immunoassays [162–165].

Anyway, despite these limitations, it is important to con-
tinue working on new small-molecule immunoassay formats
given their sensitivity, their relative simplicity of implemen-
tation, and the lack of efficient alternative methods, when
methods based onmass spectrometry and proton nuclear mag-
netic resonance spectroscopy cannot be used.

Biosensors for small molecules: toward point of care
tests for metabolomics?

Point-of-care (PoC) tests are medical laboratory diagnostic
tests intended to be carried out in the direct proximity of the
patient, at the physician’s office, in pharmacies, in medical
centers, in the emergency rooms of hospitals, or even in pro-
fessional laboratories. Whether in hospitals or not, PoC tests
are expected to give results within a short period of time (30
min). Those tests thus require the smallest possible logistical
footprint, in terms of transport and space and storage condi-
tions, as well as handling time, and are designed to be carried
out by staff not necessarily trained in laboratory medicine
(nurse, medical assistant), or even by the patient himself or
his relatives. Lateral flow immunoassay (LFIA) is probably
the ideal on-field point-of-care test since it does not require
complex sample preparation or further steps after the deposi-
tion of the sample and can be performed easily by untrained
staff. Although mainly used for protein targets, competitive
LFIA, whose principle is described on Fig. 7, have been de-
veloped for small molecules. However, they are more com-
plex to implement and less sensitive than non-competitive
LFIA for different reasons. Firstly, obtaining a specific and

affine antibody is difficult as the molecule is small [146].
Secondly, the decreased signal observed in competitive
methods is more difficult to interpret than the appearance of
a signal [146]. Moreover, these tests are neither suitable for
multiplexed detection nor for field quantification, and are sub-
ject to matrix effects. Indeed, in the case of small endogenous
molecules, the challenge is important: some of themmay have
relatively small variations (less than a factor of 5) between a
physiological and a pathological state, they generally require a
preliminary sample extraction step, and only the integration of
data from several biomarkers will allow the interpretation of a
biological signature. The test must be accurate, robust (with
little matrix effect), quantitative, highly multiplexable, and
easily interpretable, and must integrate automated sample
preparation before analysis. Therefore, the PoC tests for fine,
multiplexed, integrated quantification of multiple metabolites
of different natures must address unmet needs and will require
a large research effort which will be driven by the need of
clinicians [167].

Research on rapid tests has developed considerably, espe-
cially regarding nanoparticles-based devices [168] and
microfluidics [169], paving the way to the emergence of
new diagnostic devices [170]. Wearable chemical sensors en-
abling real-time on-body analytical chemistry are in increas-
ing development. However, they only allow monitoring elec-
trolytes and few metabolites such as glucose or lactic acid at
the time of writing this review [171].

Biosensors are devices that combine the physical properties
of a transducing platform (electrical, optical, etc.) with those
of a biological or synthetic component in order to detect, i.e.,
sense, the presence and, possibly, quantify the concentration
of a target compound, i.e., the analyte. This combination, if
properly addressed, benefits from both the natural selectivity
of a wide range of bioreceptors (enzymes, antibodies but also
nucleic acids and even viruses, bacteria, and whole cells) or
synthetic molecules (i.e., molecularly imprinted polymers
(MIPs), aptamers, etc.) and the sensitivity of the devices
converting, i.e., transducing, the binding event between the
bioreceptors and the analyte in an analytical signal.
Depending on the nature of this signal, several transduction
methods could be employed, such as optical, electrochemical,
thermal, or piezoelectric biosensors.

Biosensors are one of the most important representatives of
PoC devices that are having a remarkable impact on patients’
life and, thus, are also being pursued with the highest interest
by the research community. Indeed, PoC biosensors’ charac-
teristics should reach the criteria “REASSURED,” i.e., real-
time connectivity, ease of specimen collection and environ-
mental friendliness, affordable, sensitive, specific, user friend-
ly, rapid, equipment free, delivered [172], as they should pro-
vide real-time connectivity and easy specimen collection.

Nanotechnology can push even further the characteristics
of PoC biosensors by introducing nanomaterials, guaranteeing
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numerous advantages, such as ultra-high sensitivity, further
miniaturization if necessary, nanoreceptors with high stability
and specificity, and innovative detection mechanisms, im-
proving the performances while decreasing the associated
costs.

Most of the challenges of small-molecule detection
are directly related to the use of biorecognition ele-
ments. As previously emphasized, due to the low mo-
lecular weight and simple structure of small molecules,
they show a lack of immunogenicity when it comes to
antibody production. For this reason, there have been
strong efforts to develop other types of bioreceptors in
order to have better performance with this type of mol-
ecules. Among them are aptamers and MIPs, which can
be successfully applied to PoC nanobiosensors.

Aptamers are nucleic acid (DNA or RNA) short sequences
that bind to a specific target and are determined through se-
quential evolution of ligands by exponential enrichment
(SELEX) [173, 174]. A pool of random nucleic acid se-
quences is repeatedly incubated with the target analyte, and
the unbounded sequences are discarded. After various rounds
with different stringencies, the sequences with higher affinity
for the target are selected. The SELEX methodology has been
successful in developing aptamers for small molecules. This is
in part thanks to the flexibility of the method, which can be
adapted to the nature and needs of the target molecule (cap-
ture-SELEX, capillary-SELEX, or nitrocellulose-SELEX, for
instance). [175, 176]. Conventional and capture-SELEX have
been reported as suitable options for small molecules [177].

Theoretically, these methods allow the production of big
amounts of aptamers at low cost and take less time compared
to antibody production, as well as avoiding the use of animal
testing and batch-to-batch variations. Of course, this allows
the production of aptamers for toxic molecules that would kill
the animal in the immunization process. Moreover, stability
and affinity toward the target can be modulated by modifying
the sequence of the aptamer, along with adding other elements
to the sequence depending on its intended use (fluorophores,
biotin, thiol groups, etc.), which is especially interesting for
assays combining aptamers with nanomaterials. As SELEX is
performed by incorporating negative counter-selection
rounds, a high specificity and selectivity are ensured. In con-
trast, antibodies often show cross-reactivity between similar
molecules [178].

Aptamers are approximately one tenth of the size of an
antibody, with enough recognition surface area to target small
molecules, unlike antibodies, which rely on epitopes that are
often scarce in small molecules [179]. Compared with anti-
bodies, the small size of aptamers also allows a high immobi-
lization rate at the surface of a biosensor, increasing its sensi-
tivity. Besides, they can be regenerated for long-term moni-
toring and are not susceptible to irreversible denaturation, in
contrast to antibodies. Moreover, aptamers have a long
shelf-life and stability under strong conditions such as
temperature, chemicals or pH, which makes its transpor-
tation, storage, and performance much easier in remote
areas [178]. As depicted in Table 3, different platforms
and detection strategies have been successfully and

Fig. 7 Principle of competitive lateral flow immunoassays: The device is
composed of four parts: (i) a sample pad, on which the sample is depos-
ited; (ii) a conjugate dried buffer, containing the labeled analyte analog;
(iii) a nitrocellulose membrane, on which are found test line(s) composed
of antibodies recognizing the analyte(s), and control line(s) formed by
antibodies which recognize the labeled analyte analog; and (iv) an absor-
bent paper, which serves to pump the liquid sample and reserves any

excess sample. In the absence of the target analyte (negative sample),
labeled analog analytes move through the strip and bind on both test
and control lines. In a positive sample, a competition takes place on the
test line between the analyte and its labeled analog. As before, the excess
of labeled analyte analog is captured by antibodies in the control line.
Thus, a signal is only observed on the control line. Adapted from refer-
ence [166]
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sensitively detecting small molecules in biological sam-
ples by using aptamers in the last decade. For instance,
microfluidic devices, lateral flow and electrochemical
systems are some of the potential platforms where
aptamers can be implemented (see Fig. 8).

To summarize, aptamers have shown potentially great ad-
vantages over the use of antibodies for diagnostic applications
since their discovery in 1990. This is especially of interest for
small molecules for which antibodies are not well suited.
However, their implementation into PoC nanobiosensors is
rather scarce [169], and despite promising results, there is still
no commercialized diagnostic tests based on aptamers.
Studies are needed to evaluate their performance in biological
media for diagnostic tests involving metabolites.

For the last decades, it has been a challenging task to gen-
erate polymeric matrices with homogeneously distributed and
highly specific cavities, thoroughly designed to match the di-
mensions and chemical functionality of a target molecule.
This type of bioreceptors is known as molecularly imprinted
polymers (MIPs), which are considered synthetic
biorecognition elements resulting from the polymerization of

a precise combination of one or several functional monomers
and the desired target, i.e., “template molecule,” along with
other components present in the polymerization solution, such
as a cross-linker molecule. The utmost important challenge
that needs to be addressed in the first stages of the develop-
ment of a MIP would be to study the binding interactions
among the monomers and between the monomer and the tem-
plate, which must be guaranteed in order to form a spontane-
ous and stable template-monomer complexation. From this,
several other parameters must be considered for the formation
of a single-molecule MIP or a “class-selective” one, which is
particularly designed to detect a family of related molecules.
Some of them are the template-to-monomer (T:M) ratio, the
crosslinking degree, porogenic solvent selection, and some
physical parameters, such as temperature, pH, and agitation
of the polymer solution.

The use of MIPs as another metabolomics tool has been
considered an interesting approach due to their fast produc-
tion, robustness, chemical inertness, cost-effectiveness, and
long-term stability. If precisely tuned, they can withstand ex-
treme values of pH and temperature [180, 181]. Unlike current

Table 3 Characteristics and performance of the main biosensors currently available for small-molecule detection in biological fluids

Analyte Transducer Bioreceptor LOD Response
time

Biological
fluid

Ref.

Cocaine and synthetic
cathinones

Colorimetric Aptamer 10 μM 5 min Saliva and
urine

Luo et al., 2019
[198]

Cocaine Microfluidic,
electrochemistry

Aptamer 10 μM 1–2 min Blood
serum

Swensen et al.,
2009 [199]

Adenosine trihosphate (ATP) Lateral-flow assay Self-assembly of split
aptamers fragments

2 μM 10 min Blood
serum

Chen et al., 2012
[200]

Adenosine Electrochemistry uPAD Aptamers 5.7 μM 10 min Urine Fu et al., 2017
[201]

Cocaine, ATP Fluorescence Exonuclease-mediated
aptamer digestion

500 nM 25 min Urine Canoura et al.,
2018 [202]

Tetrahydrocannabinol Magnetoresistive sensor Antibodies competitive
detection

10 ng/ml < 15 min Saliva Lee et al., 2016
[203]

Ochratoxin A, aflatoxin B1,
ATP, potassium ions

Localized surface
plasmon resonance

Aptamers on gold
nanorods

0.56, 0.63, 0.87,
1.05 pM

30–60min Serum Park et al., 2017
[204]

L-Tyrosinamide Fluorescence
polarization assay

Aptamer 200 nM < 10 min Urine Ruta et al., 2009
[205]

Phenytoin CMOS BioMEMS 4.06 μg/ml 25 min Artificial
samples

Yen et al., 2020
[206]

Dopamine, cortisol, serotonin Thermal variation MIPs and thermal
transducers

8 μM / Serum and
urine

Diliën et al.,
2017 [186]

Carnitine Potentiometric MIPs, Radical
polymerization

80 μM / Urine Moret et al.,
2014 [187]

Dopamine Ratiometric
electrochemical

MIPs and nanoporous Au 0.1 μM 2 min Artificial
CSF

Yang et al., 2019
[207]

Glucose Electrochemial MIPs and AuNPs 1.25 nM 30 min Serum Sehit et al., 2020
[188]
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and typical immunoaffinity-based approaches, MIPs have
demonstrated a higher sample load capacity for small mole-
cules (MW below 3 kDa), resulting in higher recoveries for
further analytical applications, as well as displaying a slightly
higher selectivity and specificity toward smaller targets [182].

Based on the final applicability of the desired sensor, sev-
eral approaches have been developed. For detecting tamoxi-
fen, for example, an estrogen receptor used to prevent breast
cancer, a successfully electropolymerized MIP composed of
o-phenylenedediamine and resorcinol was developed [183].
This methodology demonstrated a better diffusion rate, per-
meability, and binding affinity to the target. Acetaminophen
has also been investigated for medical and clinical purposes,
by using signal enhancers, such as gold nanoparticles [184], or
developing a thin MIP layer that enhances the selectivity
[185]. Other metabolites have also been studied, such as do-
pamine [186], carnitine [187], and glucose [188], among
others, as it can be seen in Table 3 and Fig. 9.

Anyway, to our knowledge and as for aptamers, there are
still no commercialized diagnostic tests based onMIPs. These
two types of synthetic bioreceptors (aptamers and MIPs) need
to address the issue of properly working in real biological
fluids, as well as for enzyme- and immunoaffinity-based sys-
tems, as it was aforementioned [189]. Most metabolites are
often found in ultra-low concentrations in biological samples.

In these cases, the integration of nanomaterials clearly up-
grades the sensitivity, either by signal amplification or better
immobilization of the biorecognition elements [190]. Another
inconvenience is the complexity of biological fluids, which
might contain contaminants causing cross-reactivity, or even
nucleases, that are detrimental for these bioreceptors [191].
While electrochemical platforms are well known for their ad-
vantages in complex matrices like blood (i.e., glucometer, the
most-known example), optical platforms still face the problem
of interferences mainly due to the viscosity and optical prop-
erties of the samples (e.g., the deep red of blood causes back-
ground interference) [192] [193].

Conclusion

Metabolomics workflows, including sample preparation, MS
and/or NMR analyses, data pre-processing, statistical analy-
ses, and data visualization, have been developed since the
2000s and have now reached a certain level of maturity.
Data production methods have gained in sensitivity and ver-
satility, suggesting the possibility of achieving metabolite de-
tection, identification, and quantification at the same time.
Many guidelines covering pre-analytical stages, data acquisi-
tion, and study design have been published. Quality

Fig. 8 Overview of the possible adaptation of aptamers in different
detection platforms combined with nanomaterials. (a) Gold nanocap-
supported up-conversion nanoparticles for fabrication of a solid-phase
aptasensor for ochratoxin A detection. Extracted from reference [209].
(b) Calibration-free measurement of phenylalanine levels in the blood

using an electrochemical aptamer-based sensor suitable for point-of-
care applications extracted from reference [210]. (c and d) Aptamer-
based lateral flow test strip for rapid detection of zearalenone in corn
samples. Adapted from reference [211]
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management processes have been proposed, become consen-
sual, and are more and more used. Data warehouses dedicated
to metabolomics have been developed, improving data shar-
ing. Despite this, no diagnostic test based on metabolomics
has yet been marketed. The main issues are linked to lacks of
standardized data production tools and interoperability, to in-
appropriate design of clinical trials for the discovery and val-
idation of metabolomics signatures, and to the difficulty of
integrating multiscale biological information to generate
knowledge and predictive models.

However, more than 600 articles dealing with metabolomics
for the investigation of medical cohorts have been published
over the 2015–2020 period, some of them leading to proposed
metabolomics signatures of disease diagnosis and severity, and
response or non-response to treatments. In this context, it is now
time to consider how to be prepared to efficiently transfer future
metabolomics signatures to clinical settings. First of all, meta-
bolomics signatures obtained from untargeted metabolomics
cannot be directly used in the routine care practice. There is a
need for simplification and for moving to quantitative results.
Indeed, many actors and structures are involved in healthcare
systems, such as clinical units in hospitals, medical laboratories
in hospital settings or outside the hospitals, physician’s offices,
pharmacists, and at least the patient at home.

A first step regarding the transfer of metabolomics signa-
tures to the field could rely on medical laboratories in hospital
settings. Clinical biologists will certainly have a key role in
data production and interpretation, and for transmitting the
results, clinicians by integrating the biological message into
the global clinical context. In this case, one can think about

centralized data production platforms equipped with (high-
resolution) MS or NMR instruments. However, not all medi-
cal laboratories are and will be equipped with these instru-
ments. Thus, there is a need to consider alternative methods,
such enzyme assays, immunoassays, and biosensors. In par-
ticular, even if enzyme assays have been and are still widely
used for monitoring small molecules in biological fluids, they
are restricted to few key metabolic intermediates present at
high concentrations, and they have low multiplexing capabil-
ities. Immunoassays are also very popular in the field of clin-
ical and environmental chemistry, regarding the detection of
drugs and more generally xenobiotics. However, they still
suffer from limitations linked to the difficulty of generating
antibodies having satisfactory sensitivity and specificity,
which limits the design of biosensors for small molecules.
Aptamers and molecularly imprinted polymers are attractive
and promising alternatives to antibodies, especially in the field
of small molecules, but further research efforts are needed to
evaluate their relevance in complex biological media.

To conclude, it is important to intensify research in analyt-
ical chemistry, not only in the generation of metabolomics
data for producing interoperable and reusable data, but also
in the field of point-of-care tests, in order to be ready when
molecular signatures can be used in routine care practice.
Furthermore, the small metabolite concentration variations
that are often observed between groups inmanymetabolomics
and lipidomics studies represent an important limitation for
clinical translation, which will call for new ways of thinking
in the fields of analytical chemistry and data sciences to over-
come this issue.

Fig. 9 MIP-based biosensing platforms. a Gold nanoparticle (AuNP)
decorated MIPs using o-PD and glucose as monomer and template mol-
ecules, respectively. CV and DPV measurement of each step. Extracted
from Sehit et al. [188]. b Schematic representation of the heat flow
through the MIP and NIP-coated thermocouples. Extracted from Diliën

et al. [186]. c Schematic diagram of the synthesis process of MIPs/pThi/
NPG electrodes, along with their respective DPV measurements and the
calibration curves for dopamine detection. Adapted from Yang et al.
[207]
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