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Abstract: The necessity to focus and work with renewable energy for value-added product
generation has gained interest in recent years, which has led to the development of mathematical
models that allow a better understanding and optimization of these processes. In this work
an extension of the anaerobic digestion model (ADM No. 1) with H2 and CO external gas
injection was proposed. Therefore, the modification of the volumetric mass transfer coefficient
in terms of gas injection and the use of CO as a substrate of the process were proposed. Then, a
model reduction was performed applying the principal process analysis (PPA) methodology with
two threshold values δ=0.05 and δ=0.1. The R2, AICc criterium, and Global Relative Error
(%Error) were used to compare the model and reductions performance. The threshold value
δ=0.05 presented the best results with an R2 > 0.99 and AICc criterium of -114 compared to
the experimental process. For the %Error, values of 2.32%, 1.38%, and 2.18% were achieved for
H2, CH4, and CO outlet gas flowrates when the reduction δ=0.05 is compared with the complete
model. This reduction also allowed to decrease the simulation time from 1.94s to 0.82s. Thus,
concluding that a first reduced model approximation is possible for the biomethanation process.

Keywords: Biomethanation process, ADM No.1 extension, Gas injection, Model reduction,
Biomethane production.

1. INTRODUCTION

The over-exploitation of non-renewable fossil-derived fuels
associated with this increased energy demand has led to
their progressive exhaustion worldwide. In addition, their
use has generated multiple adverse effects on the envi-
ronment, e.g., greenhouse gases emitted into the atmo-
sphere that contributes to global warming effects, which
has forced us to look for possible alternatives for renewable
resources (Dar et al., 2021; Grimalt-Alemany et al., 2020;
Hupfauf et al., 2020).

One of the alternatives studied to mitigate these impacts
is the biomethanation process. It consists of a sequential
degradation of organic compounds by a large variety of
complex microorganisms that work synergistically and
produce a mixture of CH4 and CO2, all in an oxygen-free
environment (Dar et al., 2021).

This process entails four phases that transform biomasses
into methane and CO2: (i) hydrolysis, (ii) acidogenesis,
(iii) acetogenesis, and (iv) methanogenesis. In the first
phase, the fermentative bacteria excrete enzymes that
dissolve complex material. In the second phase, these com-
pounds are transformed into volatile fatty acids (VFA). In
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the third phase, those VFA are converted into acetate,
H2, CO2, and cell material. Finally, in the fourth phase,
different substrates such as acetate, H2, and CO2 are
converted by methanogenic archaea into CH4 and new cell
material.

In literature, several works employed models in the
biomethanation process to use control strategies (Ashraf
et al., 2020; Dev et al., 2019), analyze the degradation
of raw materials or agro-industrial waste (Batstone et al.,
2002; Rosen et al., 2006; Sun et al., 2021), or microbial
consortium control (Grimalt-Alemany et al., 2020).

Another research area that gained interest in the last year
is biogas injection to improve the biomethanation process
efficiency (Jensen et al., 2018). Generally, the syngas (gas
composed of H2, CO2, and CO) conversion efficiency into
CH4 increased from less than 68% up to 95% (Sun et al.,
2021). Here, there are several challenges, like differentiat-
ing between the efficiency generated by gas injection or
the conventional process (Rafrafi et al., 2020). However,
through the model and simulation of the biomethanation
process, it is possible to make differentiations easily.

In this study, an extension of the ADM No.1 model
(ADM1−ME) is proposed. It includes the injection in-situ
of gases, such as H2 and CO, and the use of homoace-
togenic bacteria and CO as a substrate of the process.
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1. INTRODUCTION

The over-exploitation of non-renewable fossil-derived fuels
associated with this increased energy demand has led to
their progressive exhaustion worldwide. In addition, their
use has generated multiple adverse effects on the envi-
ronment, e.g., greenhouse gases emitted into the atmo-
sphere that contributes to global warming effects, which
has forced us to look for possible alternatives for renewable
resources (Dar et al., 2021; Grimalt-Alemany et al., 2020;
Hupfauf et al., 2020).

One of the alternatives studied to mitigate these impacts
is the biomethanation process. It consists of a sequential
degradation of organic compounds by a large variety of
complex microorganisms that work synergistically and
produce a mixture of CH4 and CO2, all in an oxygen-free
environment (Dar et al., 2021).

This process entails four phases that transform biomasses
into methane and CO2: (i) hydrolysis, (ii) acidogenesis,
(iii) acetogenesis, and (iv) methanogenesis. In the first
phase, the fermentative bacteria excrete enzymes that
dissolve complex material. In the second phase, these com-
pounds are transformed into volatile fatty acids (VFA). In
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the third phase, those VFA are converted into acetate,
H2, CO2, and cell material. Finally, in the fourth phase,
different substrates such as acetate, H2, and CO2 are
converted by methanogenic archaea into CH4 and new cell
material.

In literature, several works employed models in the
biomethanation process to use control strategies (Ashraf
et al., 2020; Dev et al., 2019), analyze the degradation
of raw materials or agro-industrial waste (Batstone et al.,
2002; Rosen et al., 2006; Sun et al., 2021), or microbial
consortium control (Grimalt-Alemany et al., 2020).

Another research area that gained interest in the last year
is biogas injection to improve the biomethanation process
efficiency (Jensen et al., 2018). Generally, the syngas (gas
composed of H2, CO2, and CO) conversion efficiency into
CH4 increased from less than 68% up to 95% (Sun et al.,
2021). Here, there are several challenges, like differentiat-
ing between the efficiency generated by gas injection or
the conventional process (Rafrafi et al., 2020). However,
through the model and simulation of the biomethanation
process, it is possible to make differentiations easily.

In this study, an extension of the ADM No.1 model
(ADM1−ME) is proposed. It includes the injection in-situ
of gases, such as H2 and CO, and the use of homoace-
togenic bacteria and CO as a substrate of the process.
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1. INTRODUCTION

The over-exploitation of non-renewable fossil-derived fuels
associated with this increased energy demand has led to
their progressive exhaustion worldwide. In addition, their
use has generated multiple adverse effects on the envi-
ronment, e.g., greenhouse gases emitted into the atmo-
sphere that contributes to global warming effects, which
has forced us to look for possible alternatives for renewable
resources (Dar et al., 2021; Grimalt-Alemany et al., 2020;
Hupfauf et al., 2020).

One of the alternatives studied to mitigate these impacts
is the biomethanation process. It consists of a sequential
degradation of organic compounds by a large variety of
complex microorganisms that work synergistically and
produce a mixture of CH4 and CO2, all in an oxygen-free
environment (Dar et al., 2021).

This process entails four phases that transform biomasses
into methane and CO2: (i) hydrolysis, (ii) acidogenesis,
(iii) acetogenesis, and (iv) methanogenesis. In the first
phase, the fermentative bacteria excrete enzymes that
dissolve complex material. In the second phase, these com-
pounds are transformed into volatile fatty acids (VFA). In
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the third phase, those VFA are converted into acetate,
H2, CO2, and cell material. Finally, in the fourth phase,
different substrates such as acetate, H2, and CO2 are
converted by methanogenic archaea into CH4 and new cell
material.

In literature, several works employed models in the
biomethanation process to use control strategies (Ashraf
et al., 2020; Dev et al., 2019), analyze the degradation
of raw materials or agro-industrial waste (Batstone et al.,
2002; Rosen et al., 2006; Sun et al., 2021), or microbial
consortium control (Grimalt-Alemany et al., 2020).

Another research area that gained interest in the last year
is biogas injection to improve the biomethanation process
efficiency (Jensen et al., 2018). Generally, the syngas (gas
composed of H2, CO2, and CO) conversion efficiency into
CH4 increased from less than 68% up to 95% (Sun et al.,
2021). Here, there are several challenges, like differentiat-
ing between the efficiency generated by gas injection or
the conventional process (Rafrafi et al., 2020). However,
through the model and simulation of the biomethanation
process, it is possible to make differentiations easily.

In this study, an extension of the ADM No.1 model
(ADM1−ME) is proposed. It includes the injection in-situ
of gases, such as H2 and CO, and the use of homoace-
togenic bacteria and CO as a substrate of the process.
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This model considers a volumetric mass transfer coeffi-
cient in terms of the gas injected for all components in
the gas phase. Finally, the model is reduced using the
Principal Process Analysis (PPA) methodology proposed
by Casagranda et al. (2015), which allows obtaining a
simple model that preserves its phenomenology with the
possibility to use it in optimization and control process,
e.g., the development of optimal control strategies.

2. EXPERIMENTAL DATA FROM LITERATURE
REVIEW

Experimental data were taken from the literature (Sun
et al., 2021). The entire experiment (first 32 days and
stages I-V) was carried out in a working volume of
3.75×10−2 m3. The bioreactor was operated at a hydraulic
retention time (HRT) of 20 days at 37◦C for 207 days.
The organic loading rate (OLR) was 10.66 kgCOD/m3 of
glucose with an inlet liquid flowrate (qliq,in) of 1.9×10−3

m3/d. The gas injection was carried out in five stages,
in which the injected gas flowrate (qgas,in) and the gas
loading rate (GLR), i.e., the COD kilograms (kgCOD) of
H2 and CO injected into the gas phase were varied in time.
To model the process, the initial concentrations of H2 and
CO in gas phase (Sg

i,in) were calculated by using (1). All
values are reported in Table 1.

Sg
i,in =

GLR · ϕi · γCOD,i

qgas,in · Vm
(1)

where ϕi is the gas molar fraction of the component i,
γCOD,i (kg/kmol) is the chemical oxygen demand (amount
of oxygen needed to degrade the compound i into CO2

and H2O), Vm is the molar volume, for an ideal gas, 22.4
m3/kmol.

Table 1. Experimental conditions in each stage.
Taken from (Sun et al., 2021).

Stage
Time
(Days)

Injected gas flowrate
(m3/d)

Gas loading rate
(m3/d)
×10−2

Initial concentration gas phase
(kgCOD/m3)

×10−3

H2 CO

- 1-32 - - - -
A 33-64 0.09 0.75 20.83 38.69
B 65-101 1.44 0.75 1.30 2.42
C 102-135 2.88 1.50 1.30 2.41
D 136-171 2.88 3.75 3.26 6.04
E 172-207 5.76 3.75 1.63 3.02

3. DEVELOPMENT MODEL

3.1 States, Inputs and Outputs in ADM1−ME

To model and simulate the biomethanation process, a bub-
ble column reactor with a working volume of 3.75×10−2

m3 is proposed. Operating at a HRT of 20 days at 37◦C
for 207 days . The ADM1−ME presents sixteen state
variables, reported in Table 2.

As input variables the ADM1−ME presents an OLR of
10.66 kgCOD/m3 of glucose, with an inlet liquid flowrate of
1.9×10−3 m3/d. The injected gas flowrate was varied over
time; values are reported in Table 1. As output variables,
the model have the outlet gas flowrates of H2, CH4, and
CO. The model assumptions are: the gas molar fraction
volume is one-third of the working volume, the height of
the bubble column reactor is hreactor = 1.2 m, the reactor
cross-sectional area A=3.13×10−2m2 is calculated for a
bubble column reactor with the Vliq and hreactor, and the

volumetric mass transfer coefficient for the first 32 days is
200 1/d (Rosen et al., 2006).

For each variable state mass balance is proposed:

Variable states in gas phase Sgas,i were calculated by using
(2)-(4),

dSgas,H2

dt
=

qgas,in

Vgas
Sg
H2,in

+ ξNH2 −
qgas

Vgas
Sgas,H2 (2)

dSgas,CH4

dt
=

qgas,in

Vgas
Sg
CH4,in

+ ξNCH4
−

qgas

Vgas
Sgas,CH4

(3)

dSgas,CO

dt
=

qgas,in

Vgas
Sg
CO,in + ξNCO −

qgas

Vgas
Sgas,CO (4)

Variable states in liquid phase Sliq,i were calculated by
using (5)-(11),

dSliq,su

dt
= D(Sl

su,in − Sliq,su)− rsu (5)

dSliq,bu

dt
= D(Sl

bu,in − Sliq,bu) + (1− Ysu)βbu,sursu − rbu (6)

dSliq,pro

dt
= D(Sl

pro,in − Sliq,pro) + (1− Ysu)βpro,sursu

− rpro

(7)

dSliq,ac

dt
= D(Sl

ac,in − Sliq,ac) + (1− Ysu)βac,sursu

+ (1− Ybu)βac,burbu + (1− Ypro)βac,prorpro − rac

+ (1− YCO)βac,COrCO

(8)

dSliq,CO

dt
= D(Sl

CO,in − Sliq,CO)− rCO +NCO (9)

dSliq,CH4

dt
= D(Sl

CH4,in
− Sliq,CH4

) + (1− Yac)rac

+ (1− YH2 )rH2

(10)

dSliq,H2

dt
= D(Sl

H2,in
− Sliq,H2

) + (1− Ysu)βH2,sursu

+ (1− Ybu)βH2,burbu + (1− Ypro)βH2,prorpro

− rH2 −NH2 + (1− YCO)βH2,COrCO

(11)

Variables states biomass growth Xk, were calculated by
using (12)-(17),

dXsu

dt
=

qliq,in

Vliq
(Xsu,in −Xsu) + Ysursu + Ydec,sursu (12)

dXbu

dt
=

qliq,in

Vliq
(Xbu,in −Xbu) + Yburbu + Ydec,burbu (13)

dXpro

dt
=

qliq,in

Vliq
(Xpro,in −Xpro) + Yprorpro + Ydec,prorpro (14)

dXac

dt
=

qliq,in

Vliq
(Xac,in −Xac) + Yacrac + Ydec,acrac (15)

dXCO

dt
=

qliq,in

Vliq
(XCO,in −XCO) + YCOrCO + Ydec,COrCO (16)

dXH2

dt
=

qliq,in

Vliq
(XH2,in −XH2 ) + YH2rH2 + Ydec,H2

rH2 (17)

where ξ = Vliq/Vgas , D = qliq,in/Vliq , qliq,in, and qgas,in
are the inlet liquid and injected gas flowrates, Vliq (m3)
and Vgas (m3) are the working and gas molar fraction vol-
ume, rk (kgCOD/m3d) are the biochemical rates, βj,k are
the stoichiometric coefficients, Sg

i,in (kgCOD/m3) and Sg
j,in

(kgCOD/m3) are the inlet concentration of component i
and j to the gas and liquid phase, Xk,in (kgCOD/m3) is
the inlet concentration of biomass k, rdec,k (kgCOD/m3)
is the decay rate of biomass associated of component k,
Ni (kgCOD/m3) is the mass transfer rate of component i,
Yk (kgCOD,k/kgCOD,j) is the yield of biomass k, and qgas
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(m3/d) is the total outlet gas flowrate calculated by using
(18).

qgas = KP (Pgas − Patm + qgas,in) (18)

where KP (m3/bard) is a parameter related to the friction
in the outlet gas flowrate (Rosen et al., 2006), Pgas (bar)
and Patm (bar) are the total gas and atmospheric pressure.
Finally, using (19) is calclated the outlet gas flowrate of
the component i.

qgas,i = qgas

(
pgas,i
Pgas

)
(19)

here pgas,i (bar) is the partial pressure of component i.

Table 2. Variable states in ADM1−ME.

Variable States (kgCOD/m3)

1 H2 gas concentration Sgas,H2

2 CH4 gas concentration Sgas,CH4

3 CO gas concentration Sgas,CO

4 Glucose liquid concentration Sliq,glu

5 Butyrate liquid concentration Sliq,bu

6 Propionate liquid concentration Sliq,pro

7 H2 liquid concentration Sliq,H2

8 Acetate liquid concentration Sliq,ac

9 CO liquid concentration Sliq,CO

10 CH4 liquid concentration Sliq,CH4

11 Glucose biomass Xglu

12 Butyrate biomass Xbu

13 Propionate biomass Xpro

14 Acetate biomass Xac

15 H2 biomass XH2

16 CO biomass XCO

3.2 Biochemical Processs

In ADM1−ME, the gases injection becomes significant
since it can affect the behavior of the biomethanation
process. Therefore, the inclusion of CO was proposed as
a substrate, which can be degraded by homoacetogenic
bacteria to acetate or CH4 obtention (Ashraf et al., 2020;
Sun et al., 2021). Applying (20)-(25), the biochemical
reaction rates are calculated as Monod kinetics type.

rsu =
µm,suSliq,su

KSsu
+ Sliq,su

Xsu (20)

rbu =
µm,buSliq,bu

KSbu
+ Sliq,bu

XbuIH2,buICO,H2 (21)

rpro =
µm,proSliq,pro

KSpro
+ Sliq,pro

XproIH2,proICO,H2 (22)

rac =
µm,acSliq,ac

KSac
+ Sliq,ac

XacIH2,acICO,ac (23)

rCO =
µm,COSliq,CO

KSCO
+ Sliq,CO

XCO (24)

rH2
=

µm,H2Sliq,H2

KSH2
+ Sliq,H2

XH2
ICO,H2 (25)

where µm,k (1/d) is the maximum specific growth rate,
KSk

(kgCOD/m3) is the saturation constant. The reaction
rates of butyrate, propionate, and acetate express inhibi-
tion concerning H2, through IH2,bu, IH2,pro, and IH2,ac,
which can be calculated by using (26)-(28).

IH2,bu =
1

1 + Sliq,H2
/KIH2,bu

(26)

IH2,pro =
1

1 + Sliq,H2/KIH2,pro
(27)

IH2,ac =
1

1 + Sliq,H2
/KIH2,ac

(28)

The reaction rates of butyrate, propionate, and acetate
express inhibition concerning CO, through ICO,ac, and
ICO,H2

, which can be calculated by using (29)-(30).

ICO,ac =
1

1 + Sliq,CO/KICO,ac
(29)

ICO,H2 =
1

1 + Sliq,CO/KICO,H2

(30)

where KIH2,bu, KIH2,pro, and KIH2,ac are the inhibition
constants by H2 over butyrate, propionate, and acetate.
KICO,ac, KICO,H2 are the inhibition constants by CO
over acetate and H2. And first order kinetics for decay
biomass were proposed in (31) with Kk,dec (1/d) as the
decay biomass constant.

rk,dec = Kk,decXk (31)

3.3 Gas-liquid Mass Transfer Process

Volumetric Mass Transfer Coefficient. Following
the modification of the gas injection, it is necessary to
analyze its effect on the physicochemical part of the
biomethanation process. Therefore, the volumetric mass
transfer coefficients proposed by Batstone et al. (2002)
and Sun et al. (2021) were modified. The principal reason
is that it lacks a direct integration with the injection of
gases into different process, which does not allow a physical
behavior of the concept of mass transfer. Hence, volumetric
mass transfer coefficient (kLaME) was proposed to take
into account the gas injection of the system in bubble
column reactors (Klaas Van’t, 1979) as,

kLaME = βUα
g (32)

here β and α are parameters that change with the condi-
tions. UG (m/d) is the superficial gas velocity, which can
be calculated by using (33).

UG =
qgas,in
A

(33)

where A (m2) represents the reactor cross-sectional area.
To differentiate the volumetric mass transfer coefficients
for each component, applying (34) we computed the
kLaME,CH4 and kLaME,CO in terms of the kLaME,H2.

kLaME,i = kLaME,H2

√
Di

DH2

(34)

here Di (m
2/s) indicates the diffusivity of component i.

Mass Transfer Rates. In this work, the mass transfer
rates for H2, CO and CH4 can be calculated by using (35).

Ni = kLaME,i(Sliq,j − γCOD,iHiPgas,i) (35)

where Hi is the Henry’s law equilibrium constant. The
signs of the mass transfer rates in the mass balance are
maintained according to Batstone et al. (2002), and the
direction of the mass transfer is controlled by the driving
force, and depends on the existence or not of gas injection;
the parameters used are reported in Table 3.

This model considers a volumetric mass transfer coeffi-
cient in terms of the gas injected for all components in
the gas phase. Finally, the model is reduced using the
Principal Process Analysis (PPA) methodology proposed
by Casagranda et al. (2015), which allows obtaining a
simple model that preserves its phenomenology with the
possibility to use it in optimization and control process,
e.g., the development of optimal control strategies.

2. EXPERIMENTAL DATA FROM LITERATURE
REVIEW

Experimental data were taken from the literature (Sun
et al., 2021). The entire experiment (first 32 days and
stages I-V) was carried out in a working volume of
3.75×10−2 m3. The bioreactor was operated at a hydraulic
retention time (HRT) of 20 days at 37◦C for 207 days.
The organic loading rate (OLR) was 10.66 kgCOD/m3 of
glucose with an inlet liquid flowrate (qliq,in) of 1.9×10−3

m3/d. The gas injection was carried out in five stages,
in which the injected gas flowrate (qgas,in) and the gas
loading rate (GLR), i.e., the COD kilograms (kgCOD) of
H2 and CO injected into the gas phase were varied in time.
To model the process, the initial concentrations of H2 and
CO in gas phase (Sg

i,in) were calculated by using (1). All
values are reported in Table 1.

Sg
i,in =

GLR · ϕi · γCOD,i

qgas,in · Vm
(1)

where ϕi is the gas molar fraction of the component i,
γCOD,i (kg/kmol) is the chemical oxygen demand (amount
of oxygen needed to degrade the compound i into CO2

and H2O), Vm is the molar volume, for an ideal gas, 22.4
m3/kmol.

Table 1. Experimental conditions in each stage.
Taken from (Sun et al., 2021).

Stage
Time
(Days)

Injected gas flowrate
(m3/d)

Gas loading rate
(m3/d)
×10−2

Initial concentration gas phase
(kgCOD/m3)

×10−3

H2 CO

- 1-32 - - - -
A 33-64 0.09 0.75 20.83 38.69
B 65-101 1.44 0.75 1.30 2.42
C 102-135 2.88 1.50 1.30 2.41
D 136-171 2.88 3.75 3.26 6.04
E 172-207 5.76 3.75 1.63 3.02

3. DEVELOPMENT MODEL

3.1 States, Inputs and Outputs in ADM1−ME

To model and simulate the biomethanation process, a bub-
ble column reactor with a working volume of 3.75×10−2

m3 is proposed. Operating at a HRT of 20 days at 37◦C
for 207 days . The ADM1−ME presents sixteen state
variables, reported in Table 2.

As input variables the ADM1−ME presents an OLR of
10.66 kgCOD/m3 of glucose, with an inlet liquid flowrate of
1.9×10−3 m3/d. The injected gas flowrate was varied over
time; values are reported in Table 1. As output variables,
the model have the outlet gas flowrates of H2, CH4, and
CO. The model assumptions are: the gas molar fraction
volume is one-third of the working volume, the height of
the bubble column reactor is hreactor = 1.2 m, the reactor
cross-sectional area A=3.13×10−2m2 is calculated for a
bubble column reactor with the Vliq and hreactor, and the

volumetric mass transfer coefficient for the first 32 days is
200 1/d (Rosen et al., 2006).

For each variable state mass balance is proposed:

Variable states in gas phase Sgas,i were calculated by using
(2)-(4),

dSgas,H2

dt
=

qgas,in

Vgas
Sg
H2,in

+ ξNH2 −
qgas

Vgas
Sgas,H2 (2)

dSgas,CH4

dt
=

qgas,in

Vgas
Sg
CH4,in

+ ξNCH4
−

qgas

Vgas
Sgas,CH4

(3)

dSgas,CO

dt
=

qgas,in

Vgas
Sg
CO,in + ξNCO −

qgas

Vgas
Sgas,CO (4)

Variable states in liquid phase Sliq,i were calculated by
using (5)-(11),

dSliq,su

dt
= D(Sl

su,in − Sliq,su)− rsu (5)

dSliq,bu

dt
= D(Sl

bu,in − Sliq,bu) + (1− Ysu)βbu,sursu − rbu (6)

dSliq,pro

dt
= D(Sl

pro,in − Sliq,pro) + (1− Ysu)βpro,sursu

− rpro

(7)

dSliq,ac

dt
= D(Sl

ac,in − Sliq,ac) + (1− Ysu)βac,sursu

+ (1− Ybu)βac,burbu + (1− Ypro)βac,prorpro − rac

+ (1− YCO)βac,COrCO

(8)

dSliq,CO

dt
= D(Sl

CO,in − Sliq,CO)− rCO +NCO (9)

dSliq,CH4

dt
= D(Sl

CH4,in
− Sliq,CH4

) + (1− Yac)rac

+ (1− YH2 )rH2

(10)

dSliq,H2

dt
= D(Sl

H2,in
− Sliq,H2

) + (1− Ysu)βH2,sursu

+ (1− Ybu)βH2,burbu + (1− Ypro)βH2,prorpro

− rH2 −NH2 + (1− YCO)βH2,COrCO

(11)

Variables states biomass growth Xk, were calculated by
using (12)-(17),

dXsu

dt
=

qliq,in

Vliq
(Xsu,in −Xsu) + Ysursu + Ydec,sursu (12)

dXbu

dt
=

qliq,in

Vliq
(Xbu,in −Xbu) + Yburbu + Ydec,burbu (13)

dXpro

dt
=

qliq,in

Vliq
(Xpro,in −Xpro) + Yprorpro + Ydec,prorpro (14)

dXac

dt
=

qliq,in

Vliq
(Xac,in −Xac) + Yacrac + Ydec,acrac (15)

dXCO

dt
=

qliq,in

Vliq
(XCO,in −XCO) + YCOrCO + Ydec,COrCO (16)

dXH2

dt
=

qliq,in

Vliq
(XH2,in −XH2 ) + YH2rH2 + Ydec,H2

rH2 (17)

where ξ = Vliq/Vgas , D = qliq,in/Vliq , qliq,in, and qgas,in
are the inlet liquid and injected gas flowrates, Vliq (m3)
and Vgas (m3) are the working and gas molar fraction vol-
ume, rk (kgCOD/m3d) are the biochemical rates, βj,k are
the stoichiometric coefficients, Sg

i,in (kgCOD/m3) and Sg
j,in

(kgCOD/m3) are the inlet concentration of component i
and j to the gas and liquid phase, Xk,in (kgCOD/m3) is
the inlet concentration of biomass k, rdec,k (kgCOD/m3)
is the decay rate of biomass associated of component k,
Ni (kgCOD/m3) is the mass transfer rate of component i,
Yk (kgCOD,k/kgCOD,j) is the yield of biomass k, and qgas



638	 Juan C. Acosta-Pavas  et al. / IFAC PapersOnLine 55-20 (2022) 635–640

Table 4. %Error for outlet gas flowrates in
ADM1−ME reductions.

Model Outputs % Error (δ = 0.05) %Error (δ = 0.1)

qgas,CH4 1.38 26.15
qgas,H2 2.32 27.53
qgas,CO 2.18 26.80

Table 5. R2, AICc, and simulation time for
ADM1−ME and its reductions.

Criterium ADM1−ME
ADM1−ME
(δ = 0.05)

ADM1−ME
(δ = 0.1)

R2 0.9951 0.9945 0.9785
AIC -197.1335 -134.0685 74.9102
AICc -176.1335 -114.0518 94.9634

tsimu(s) 1.94 0.8247 1.0429

tsimu : Simulation time

From the statistical point of view (see Table 5), the
ADM1−ME model presents a better adjustment, followed
by the reduction with δ=0.05 and finally δ=0.1. If we
focus on the R2, it is possible to conclude that the
ADM1−ME model and the reduction with δ=0.05 adjust
the experimental data (R2 > 0.99) and can be used to
represent the process. However, it is necessary to consider
other aspects. For this reason, the AIC and AICc have an
important role.

AIC and AICc values for the reduction δ=0.1 permit us
to conclude that this model reduction presents a lack in
the representation of the experimental process. For the
ADM1−ME and the reduction δ=0.05, AIC of -176.13
and -114.01 were achieved, meaning that both of them
represent properly the experimental process. In addition,
the use of δ=0.05 achieved a decrease in the simulation
time from 1.94 s to 0.82 s.

Fig. 1. Outlet gas flowrates qgas,H2, qgas,CH4, and qgas,CO

in ADM1−ME (-), and reductions δ=0.05 (–), δ=0.1
(-.).

Figure 1 presents the dynamic behavior of the adjusted
variables qgas,H2, qgas,CH4, and qgas,CO. It is observed
how the adjusted ADM1−MEmodel manages to reproduce

the experimental data for all stages and the first 32 days
of the process. It is also evident how a reduction with
δ=0.05 replicates the experimental data, even better than
the ADM1−ME at the beginning of stage I. The reduction
δ=0.1 fails to reproduce the experimental data, especially
for qgas,CH4 and qgas,CO. These differences are associated
with the removed processes in the reduction. A detailed
explanation is presented in section 6.2.

6. DEEP INSIDE IN THE ADM1−ME AND ITS
REDUCTIONS

6.1 Gas percent in ADM1−ME

A comparison between ADM1−ME and its reduction in
terms of gas percent for H2, CH4, and CO is presented in
Table 6. The %Error for all components with δ=0.05 is
less than 17%, concerning 19% with δ=0.1. For δ=0.05,
the best accuracy was achieved for CH4 gas percent, with
%Error of 1.68% concerning 10.37% and 16.70% obtained
for H2 and CO gas percents, variables directly implicated
in the gas injection.

Table 6. %Error for H2, CH4, and CO percent
between ADM1−ME and its reduction.

Component Percent
% Error
(δ=0.05)

% Error
(δ=0.1)

H2 gas percent 10.37 17.00
CH4 gas percent 1.68 1.52
CO gas percent 16.70 19.11

Table 7 presents the %Error for qgas,H2, qgas,CH4, and
qgas,CO for the model and its reductions concerning the
experimental data from the literature. The ADM1−ME
achieved %Error up to 17%, in relation to the reduction
δ=0.05 and δ=0.1, where errors less than 18%, and 46%
were achieved.

Table 7. %Error for ADM1−ME and its re-
duction respect to experimental data.

Component
% Error

(Sun et al., 2021)
% Error

(ADM1−ME)
% Error
(δ=0.05)

% Error
(δ=0.1)

qgas,H2 24.84 17,02 17.77 43.62
qgas,CH4 1.86 2.92 1.32 27.64
qgas,CO 12.63 13.55 12.70 45.15

6.2 Principal Differences Between ADM1−ME Reductions

The differences in the reductions are given by the removed
processes in the variable states Sliq,ac and Sgas,H2. Sliq,ac

is composed of seven processes f1,8, f2,8, . . ., and f7,8,
previously described. In δ=0.1 is suggested to eliminate
the terms f4,8 = (1−Ybu)βac,burbu in all stages, f5,8 = (1−
Ypro)βac,prorpro in the stages IV and V, and f7,8 = (1 −
YCO)βac,corCO for stages I, II, and III. Which generate a
significant loss in the acetate variable and influence the
qgas,CH4. For this reason, all the state variables associated
with acetate show marked differences.

Similarly happens with the state Sliq,H2. It is composed
of 8 processes f1,11 = D(Sl

H2,in
), f2,11 = −D(Sliq,H2

),

f3,11 = (1 − Ysu)βH2,sursu, f4,11 = (1 − Ybu)βH2,burbu,
f5,11 = +(1 − Ypro)βH2,prorpro, f6,11 = −rH2 , f7,11 =
−NH2 , and f8,11 = +(1−YCO)βH2,COrCO. Both threshold

Table 3. Parameters in ADM1−ME.

Parameter Value Parameter Value

βbu,su 0.13 µm,bu(1/d) 20
βpro,su 0.27 µm,pro(1/d) 13
βac,su 0.41 µm,ac(1/d) 12.5
βH2,su 0.19 µm,CO(1/d) 75
βac,bu 0.8 µm,H2

(1/d) 90
βH2,bu 0.2 KSsu (kgCOD/m3) 0.02
βac,pro 0.57 KSbu

(kgCOD/m3) 0.3
βH2,pro 0.43 KSpro (kgCOD/m3) 0.3

βac,CO 0.3 KSac (kgCOD/m3) 0.05
βH2,CO 0.7 KSCO

(kgCOD/m3) 8×10−6

Ysu(kgCOD,k/kgCOD,j) 0.06 KSH2
(kgCOD/m3) 1×10−6

Ybu(kgCOD,k/kgCOD,j) 0.06 Kk, dec (1/d) 0.02
Ypro(kgCOD,k/kgCOD,j) 0.04 KIH2,bu(kgCOD/m3) 1×10−5

Yac(kgCOD,k/kgCOD,j) 0.05 KIH2,pro(kgCOD/m3) 3.5×10−6

YCO(kgCOD,k/kgCOD,j) 0.25 KIH2,ac(kgCOD/m3) 1×10−6

YH2
(kgCOD,k/kgCOD,j) 0.006 KICO,ac(kgCOD/m3) 1×10−6

µm,su(1⁄d) 45 KICO,H2
(kgCOD/m3) 1×10−6

3.4 Parameter estimation

One of the main contributions in this research is the
modification of the volumetric mass transfer coefficient.
Therefore, the parameters KP , β, and α in (18) and (32)
were estimated for this case. With (36) is computed the
sum of squared errors (SSE) using as adjusted variables
the outlet gas flowrate of CH4, CO, and H2.

SSEi =
qegas,i − qgas,i

max(qegas,i)
(36)

where qegas,i is the experimental outlet gas flowrate, and
max(qegas,i) corresponds to the maximum experimental
value. Once the SEEi is determined for each outlet gas
flowrate, the minimization of their sums, is performed
by using (37) in order to reduce the error between the
experimental and model data.

SSEtotal =

n∑
i=1

SEEi (37)

4. ADM1−ME REDUCTION METHODOLOGY

Non-linear models could presents difficulties for use in
the online optimization and control process because they
have several parameters and equations that need high
time calculations. In literature, some research proposes a
model reduction to improve time calculation (Bernard and
Bastin, 2005). In this study, the methodology proposed by
Casagranda et al. (2015) was applied. Principal Process
Analysis (PPA) is a methodology that allows analyzing the
key processes. Consider the following ordinary differential
equation (ODE) model of biological network,

dS

dt
= F (S, p) (38)

where S = (S1, S2, . . . , Sn) ∈ Rn is the vector of variable
states, S0 = (S0

1 , S
0
1 , . . . , S

0
n) ∈ Rn is the vector of the

initial conditions, pb is the vector of parameters. Each
equation is decomposed into a sum of biological processes
as,

dSn

dt
=

∑
j

fi,n(S, p) (39)

where fi,n represents the i process involved in the dynam-
ical evolution of the n variable of the system over a period
[0, t]. As example, the variable state acetate in the liquid
phase is rewritten as,

dS8

dt
= f1,8 + f2,8 + f3,8 + f4,8 + f5,8 + f6,8 + f7,8 (40)

with f1,8 = DSin,ac, f2,8 = −DSin,ac, . . . f7,8 = (1 −
YCO)βac,COrCO. Once the decomposition of the state vari-
able into the different processes has been carried out, the
analysis of the weight of each one is performed, i.e., a cri-
terion must be proposed that allows weighing the influence
of the different processes fi,j on the time evolution of each
variable Sn.

Wi,n(t, p) =
|fi,n(S(t), p)|

|
∑

i fi,n(S(t), p)|
(41)

where 0 ≤ Wi,n(t, p) ≤ 1 and
∑

i Wi,n(t, p) = 1. Com-
monly to consider or discard processes in the reduction
methodology, a threshold value (δ) is necessary. If Wi,n <
δ, the process fi,n might be discarded in the state n, else
must be considered. Casagranda et al. (2015) proposed
to use a threshold value of 10%. Two criteria were used to
compare the model and its reductions. The Global Relative
Error (% Error) calculated as,

%Error =

∑
|yn,model − yn,model,re|∑

|yn,model,re|
· 100% (42)

And the AICc criterium calculated as,

AICc = AIC +
2K(K + 1)

n−K − 1
(43)

This criterium permit compare the models by taking into
account the number of variables and parameters in each
model, and sample size (Burnham and Anderson, 2004).
AIC can be calculated by using (44).

AIC = 2K+n [log(2π) + 1− log(n) + log(WSSE)] (44)

K is the number of parameters in each model, n is the
number of data to compare the models (sample size), and
WSSE is the weighted sum of squared errors.

5. RESULTS AND DISCUSSION

5.1 Parameter Estimation

The models were run in a processor Intel(R) Core(TM)
i7-8665U CPU @ 1.90GHz 2.11 GHz. For the parameters
estimation the fmincon function from MATLAB was used,
and the parameters β, α, and KP , were estimated by
minimize the function SEEtotal. The initial value of β, and
α, 0.467 and 0.82, were taken from (Klaas Van’t, 1979), for
superficial gas velocity less than 0.1 m/s, and the value of
KP , 5×104 (m3/bard) was taken from (Rosen et al., 2006).
Finally, a SEEtotal=5.46 was achieved, and the estimated
value of β, α, andKP were 11, 0.95, and 6×104 (m3/bard),
respectively.

5.2 ADM1−ME Proposal and Reduction Development

In this work, two threshold values were evaluated, δ=0.05,
and δ= 0.1, meaning that fi,n must be discarded if the
weight (Wi,n) is less than 5% or 10%, respectively. Table
4 presents the %Error for the outputs model, qgas,CH4 ,
qgas,H2 , and qgas,CO. The maximal %Error was 2.32%
for H2 with δ=0.05, respect to 27.52% with δ=0.1. It is
possible to conclude that the reduction with a threshold
δ=0.05 presents a better adjustment concerning δ=0.1.
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Table 4. %Error for outlet gas flowrates in
ADM1−ME reductions.

Model Outputs % Error (δ = 0.05) %Error (δ = 0.1)

qgas,CH4 1.38 26.15
qgas,H2 2.32 27.53
qgas,CO 2.18 26.80

Table 5. R2, AICc, and simulation time for
ADM1−ME and its reductions.

Criterium ADM1−ME
ADM1−ME
(δ = 0.05)

ADM1−ME
(δ = 0.1)

R2 0.9951 0.9945 0.9785
AIC -197.1335 -134.0685 74.9102
AICc -176.1335 -114.0518 94.9634

tsimu(s) 1.94 0.8247 1.0429

tsimu : Simulation time

From the statistical point of view (see Table 5), the
ADM1−ME model presents a better adjustment, followed
by the reduction with δ=0.05 and finally δ=0.1. If we
focus on the R2, it is possible to conclude that the
ADM1−ME model and the reduction with δ=0.05 adjust
the experimental data (R2 > 0.99) and can be used to
represent the process. However, it is necessary to consider
other aspects. For this reason, the AIC and AICc have an
important role.

AIC and AICc values for the reduction δ=0.1 permit us
to conclude that this model reduction presents a lack in
the representation of the experimental process. For the
ADM1−ME and the reduction δ=0.05, AIC of -176.13
and -114.01 were achieved, meaning that both of them
represent properly the experimental process. In addition,
the use of δ=0.05 achieved a decrease in the simulation
time from 1.94 s to 0.82 s.

Fig. 1. Outlet gas flowrates qgas,H2, qgas,CH4, and qgas,CO

in ADM1−ME (-), and reductions δ=0.05 (–), δ=0.1
(-.).

Figure 1 presents the dynamic behavior of the adjusted
variables qgas,H2, qgas,CH4, and qgas,CO. It is observed
how the adjusted ADM1−MEmodel manages to reproduce

the experimental data for all stages and the first 32 days
of the process. It is also evident how a reduction with
δ=0.05 replicates the experimental data, even better than
the ADM1−ME at the beginning of stage I. The reduction
δ=0.1 fails to reproduce the experimental data, especially
for qgas,CH4 and qgas,CO. These differences are associated
with the removed processes in the reduction. A detailed
explanation is presented in section 6.2.

6. DEEP INSIDE IN THE ADM1−ME AND ITS
REDUCTIONS

6.1 Gas percent in ADM1−ME

A comparison between ADM1−ME and its reduction in
terms of gas percent for H2, CH4, and CO is presented in
Table 6. The %Error for all components with δ=0.05 is
less than 17%, concerning 19% with δ=0.1. For δ=0.05,
the best accuracy was achieved for CH4 gas percent, with
%Error of 1.68% concerning 10.37% and 16.70% obtained
for H2 and CO gas percents, variables directly implicated
in the gas injection.

Table 6. %Error for H2, CH4, and CO percent
between ADM1−ME and its reduction.

Component Percent
% Error
(δ=0.05)

% Error
(δ=0.1)

H2 gas percent 10.37 17.00
CH4 gas percent 1.68 1.52
CO gas percent 16.70 19.11

Table 7 presents the %Error for qgas,H2, qgas,CH4, and
qgas,CO for the model and its reductions concerning the
experimental data from the literature. The ADM1−ME
achieved %Error up to 17%, in relation to the reduction
δ=0.05 and δ=0.1, where errors less than 18%, and 46%
were achieved.

Table 7. %Error for ADM1−ME and its re-
duction respect to experimental data.

Component
% Error

(Sun et al., 2021)
% Error

(ADM1−ME)
% Error
(δ=0.05)

% Error
(δ=0.1)

qgas,H2 24.84 17,02 17.77 43.62
qgas,CH4 1.86 2.92 1.32 27.64
qgas,CO 12.63 13.55 12.70 45.15

6.2 Principal Differences Between ADM1−ME Reductions

The differences in the reductions are given by the removed
processes in the variable states Sliq,ac and Sgas,H2. Sliq,ac

is composed of seven processes f1,8, f2,8, . . ., and f7,8,
previously described. In δ=0.1 is suggested to eliminate
the terms f4,8 = (1−Ybu)βac,burbu in all stages, f5,8 = (1−
Ypro)βac,prorpro in the stages IV and V, and f7,8 = (1 −
YCO)βac,corCO for stages I, II, and III. Which generate a
significant loss in the acetate variable and influence the
qgas,CH4. For this reason, all the state variables associated
with acetate show marked differences.

Similarly happens with the state Sliq,H2. It is composed
of 8 processes f1,11 = D(Sl

H2,in
), f2,11 = −D(Sliq,H2

),

f3,11 = (1 − Ysu)βH2,sursu, f4,11 = (1 − Ybu)βH2,burbu,
f5,11 = +(1 − Ypro)βH2,prorpro, f6,11 = −rH2 , f7,11 =
−NH2 , and f8,11 = +(1−YCO)βH2,COrCO. Both threshold
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values suggest eliminating f4,11, but only δ=0.1 suggest
eliminating f5,11, and this change generates notable differ-
ences, especially in stage I.

6.3 Comparison of ADM1−ME with other models

The ADM1−ME and the Sun et al. (2021) models have a
good representation of the experimental process. %Error
of 17.02% and 2.92% for qgas,H2, and qgas,CH4, were
achieved with the ADM1−ME. In the Sun et al. (2021)
model, %Error of 24.84% and 1.86% were respectively
achieved. In the case of qgas,CO, the Sun et al. (2021)
model presents an error of 12.63% concerning 13.55%
with the ADM1−ME (see Table 7). Finally, it is possible
to conclude that the modified equation to represent the
volumetric mass transfer coefficient with the injection of
gases and the estimation of its parameters permits a better
approximation of the experimental process.

7. CONCLUSIONS

The extended model (ADM1 ME) and its reduction al-
lowed to generate advances in the understanding in the
modeling of the biomethanation process with gases injec-
tion such as H2 and CO, in addition, the modification of
the volumetric mass transfer coefficient dependent on the
injected gas flowrate was proposed.

The model was adjusted to the experimental data selected
from the literature, where an SSE of 5.46 was obtained
by adjustment of the parameters β, α, and KP , which
are directly associated with the proposed equation for the
volumetric mass transfer coefficient.

The PPA methodology was applied, with two threshold
values, δ=0.1 and δ=0.05. For the second one, R2 > 0.99,
ACIc of -114, and simulation time of 0.82s were achieved,
respect to R2 > 0.99, ACIc of -176.13, and simulation
time of 1.94s obtained in the ADM1−ME. This makes the
reduction δ=0.05 suitable to represent the biomethanation
process. However, it is necessary to take care with the
selection of the threshold values. Changes from a threshold
value of δ=0.05 to δ=0.1 can generate important varia-
tions. Therefore, the selection of the threshold must be
analyzed in detail.
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