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Abstract 42 
43

Genomic selection is a promising approach for reducing the length of the selection cycle in forest tree 44 

breeding. Its efficiency must be evaluated across generations for this purpose, but such studies have been 45 

performed for multi-generational breeding programmes in only a few forest tree species to date. We analysed a 46 

subset of the Eucalyptus globulus breeding population from the Portuguese company Altri Florestal. In total, 412 47 

genotypes from three successive breeding generation were genotyped with 14,716 SNP markers. A comparison of 48 

pedigree-based and marker-based relationship coefficients allowed to correct several documented pedigree errors. 49 

Deregressed breeding values were estimated from phenotypic records for growth traits (height and diameter) and 50 

survival for 31 field trials distributed in one breeding zone in Portugal, and used as pseudo-phenotypes for genomic 51 

prediction models. Accuracy was assessed by cross-validation according to two main scenarios: i) a scenario based 52 

on a five random fold number, not taking generation into account ; ii) scenarios investigating progeny validation 53 

using parental generations to predict the progenies. Accuracy was highest after pedigree correction, and ranged 54 

from 0.46 to 0.60 for the first scenario, from -0.56 to 0.72 for parent/progeny scenarios, and from 0.34 to 0.78 55 

when progenies were added to the calibration population. This genomic selection study provides promising insight 56 

for the Altri Florestal Eucalyptus breeding programme. 57 

  58 
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Introduction 59 

 60 

Eucalyptus globulus (Tasmanian blue gum) is an evergreen broadleaf tree species endemic to southern 61 

Australia. This forest tree species is one of the most planted hardwood species in temperate regions worldwide. Its 62 

economic importance is mainly due to the suitability of its wood for pulp and paper production. This species is 63 

also characterized by rapid growth, challenging vegetative propagation by cuttings since it is a rooting recalcitrant 64 

species and its ability to adapt to harsh environmental conditions. E. globulus covers an area of 0.84 million 65 

hectares in Portugal (ICNF 2019), and 0.64 million hectares in Spain (MAPA 2019). Since the 1960s, E. globulus 66 

breeding programmes have been developed in Portugal, to support intensive silviculture. The Portuguese company 67 

Altri Florestal selects varieties of this species, mostly on the basis of wood productivity-related traits, such as 68 

growth, and traits related to adaptation (survival). The Altri Florestal breeding programme is still in the early stages 69 

of E. globulus domestication with only three generations so far, like most of the advanced genetic materials 70 

currently available in forestry (Jones et al. 2006; Borralho et al. 2007).  71 

Breeding programmes were initially based on a few key genetic trials, but have gradually expanded, with 72 

an ever-increasing number of trials and phenotyped trees. The genetic performance of trees is commonly evaluated 73 

on the basis of genetic co-variances in known relatives arising from the pedigree, according to the individual mixed 74 

model (Henderson 1950, 1975). This method is based on a numerator relationship matrix (A matrix) derived from 75 

the pedigree, which provides information about the proportion of alleles expected to be identical by descent 76 

between two individuals (Mrode 2013). Such models have already proved effective for the estimation of genetic 77 

components, especially in cases of unbalanced data, a situation frequently encountered in forest tree breeding 78 

(Borralho 1995; Jarvis et al. 1995), but their application is hindered by approximations. Indeed, the base population 79 

is assumed to consist of unrelated founders, although some cryptic relatedness may exist (Powell et al. 2010). In 80 

addition, pedigree information is rarely fully documented, particularly in open crossing strategies 81 

2014). Finally, various identity or pedigree errors may occur during the breeding process, from the greenhouse to 82 

the field (pollination, seedlings, cuttings, plantation, etc.), compromising the genetic evaluation (Ericsson 1999). 83 

Such errors are cumulative over generations, and the earlier they occur in breeding cycles, the more likely they are 84 

to have a significant and damaging long-term impact on genetic evaluation. Recent decades have seen considerable 85 

advances in molecular biology, leading to the development of new tools for forest tree breeders. Pedigree-based 86 

relationships are based on expectations of the sharing of genomic material between individuals, but high-87 

throughput genotyping has made it possible to estimate the proportion of alleles common to individuals (actual or 88 

realised relationship) precisely, including the within-family variability arising from Mendelian sampling (Hill and 89 

Weir 2011). This information can be summarised in a genomic relationship matrix (G matrix) (VanRaden 2008), 90 

and can be used in a genomic selection (GS) strategy through the so-called GBLUP (Genomic Best Linear 91 

Unbiased Prediction) methodology (Meuwissen et al. 2001), which involves replacing the A matrix with a G matrix 92 

in the individual mixed model. The deviation of A and G matrices is one of the key factors promoting the use of 93 

GS to obtain more accurate breeding values (Hayes et al. 2009b). GS exploits the linkage disequilibrium (LD) 94 

between high-throughput molecular data and targeted traits. Based on a calibration population of several hundred 95 

phenotyped and genotyped individuals, a predictive model is built to predict the genetic values of genotyped 96 

individuals. Eucalyptus breeding should benefit greatly from GS, as this approach makes early selection possible. 97 

Indeed, age-age correlations for both height and diameter are generally low-to-moderate between the ages of one 98 
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to three years, delaying progeny evaluation and clonal trials (Salas et al. 2014). Eucalyptus breeding programmes 99

therefore require about 12-16 years, from initial recombination to clonal selection and operational deployment 100 

(Rezende et al. 2014). 101 

Over the last decade, GS has benefited from many proof-of-concept studies for the genus Eucalyptus, 102 

with more than 20 publications and promising results, at least as good as those obtained by conventional 103 

phenotypic selection in most studies (Lebedev et al. 2020; Ahmar et al. 2021). However, such studies have 104 

generally focused on a limited number of progeny trials, whereas most breeding programmes involve at least 105 

several dozen, if not hundreds of trials. Furthermore, only a few studies have explored GS across generations, 106 

whereas such approach would be required in current breeding programmes based on recurrent selection strategies 107 

(Grattapaglia 2017). This study aims to fill this gap by applying GS in the context of the advanced Eucalyptus 108 

globulus breeding programme of the Portuguese company Altri Florestal. Our main objectives were: i) to highlight 109 

pedigree errors by comparing pedigree-based (A matrix) and marker-based relationship coefficients (G matrix) 110 

and to investigate the consequences of such errors for breeding value prediction; ii) to assess the accuracy of GS 111 

for three major traits in forest tree breeding (height, diameter and survival); and iii) to investigate GS accuracy 112 

over generations. 113 

  114 
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Materials and methods 115 

 116 

1. Biological resources 117 

 118 

This study was performed on a subset of the Eucalyptus globulus breeding population of Altri Florestal, 119 

referred to here as POPTOT. In total, 81,520 E. globulus genotypes were evaluated in 31 progeny and clonal trials 120 

(92,679 trees) planted in the coastal region of Portugal between 1986 and 2009. This region, which is one of the 121 

four breeding zones defined by Altri Florestal based on temperatures and precipitations, is considered to be an 122 

major drought or cold events. According to the documented 123 

pedigree, POPTOT encompassed three breeding generations, with 2.8% of the genotypes (2,250) of unknown 124 

parentage belonging to the base population called G0. The next generation, corresponding to the first improved 125 

generation (G1), contained 41.6% of the genotypes (33,909), each with at least one documented G0 parent. The 126 

remaining 55.6% of the genotypes (45,361 genotypes) had at least one documented grandparent and belonged to 127 

the second improved breeding generation (G2). The G0 genotypes were documented as originating from selections 128 

from populations native to Australia or growing in various stands in Portugal, USA, Chile, Spain and Uruguay. A 129 

subsample of 412 POPTOT genotypes corresponding to the genotypes available in clonal archives was selected for 130 

high-throughput molecular genotyping: 46 from G0, 292 from G1 and 74 from G2 (Fig. 1). Three full-sib (FS) 131 

families accounted for 81% of the genotyped G2 trees: FS1 (15 genotypes), FS2 (29 genotypes) and FS3 (16 132 

genotypes). 133 

 134 

2. SNP genotyping 135 

 136 

Total genomic DNA was extracted from dried leaves from mature trees with an adapted CTAB protocol 137 

(Doyle 1991). DNA concentration was determined with a Quantit fluorometer (Invitrogen, Carlsbad, USA). 138 

Single-nucleotide polymorphism (SNP) genotyping was performed with the commercial Axiom Euc72K SNP 139 

Array (Affymetrix, Santa Clara, USA), anchored on the 11 linkage groups of the reference Eucalyptus genome 140 

(Myburg et al. 2014). A first set of thresholds was applied with the default settings of Axiom Suite Analysis v5.0.1 141 

software (Affymetrix, Santa Clara, USA) and an SNP call rate threshold of 97% (detailed in Table S1). SNPs were, 142 

thus, classified as polymorphic (PolyHighResolution and NoMinorHom), monomorphic, or failed SNPs 143 

(CallRateBelowThreshold, OTV, Other). The highest quality polymorphic SNPs were then selected according to 144 

a second set of thresholds: a Fisher's linear discriminant (FLD) above 5, a homozygote ratio offset (HomRo) above 145 

1, a heterozygous strength offset (HetSO) above 0, and a minor allele frequency (MAF) higher than 0.05. Eight 146 

genotypes were genotyped twice to assess the repeatability of the genotyping experiment, calculated as the 147 

proportion of identical SNP alleles between two samples of a given genotype. 148 

 149 

3. Comparison of pedigree-based and genomic relationship matrices  150 

 151 

A dedicated R script was used to check the uniqueness of each genotype based on SNPs. Pairs of genotypes 152 

with different identities and more than 99% SNP alleles in common were considered synonymous. In this case, 153 

the highest call rate profile was retained, and pairs of synonymous genotypes were renamed under the same identity 154 
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label in the pedigree and field measurement files. The parents were considered to be unknown if the initially 155

documented parents of two synonymous genotypes were different. After identity correction, the final set of unique 156 

genotypes was named POPGS. An initial expected additive numerator relationship matrix (AI matrix) was calculated 157 

for POPGS with the R package kinship2 (Sinnwell et al. 2014) based on the documented pedigree. A genomic 158 

relationship matrix (G matrix) was also calculated from the observed allele frequencies (VanRaden 2008), with 159 

the R package AGHMatrix (Amadeu et al. 2016):  160 

  (Eq. 1) 161 

where M is a matrix of dimension n×m (n is the number of individuals and m the number of loci) giving the 162 

genotype at each locus i, coded as 1 for minor allele homozygous, 2 for heterozygous, and 3 for major allel 163 

homozygous. P is the matrix of allele frequencies (n×m) for all individuals, which takes the following form 164 

 where pi is the frequency of the least frequent allele at the considered locus i. The documented 165 

parent-progeny relationship (P/P) were checked by counting the number of non-concordant SNPs for each 166 

documented P/P. P/P highlighting fewer than 115 non-concordant SNPs , whereas P/P 167 

harbouring more than 115 non-concordant SNPs . P/P involving non-genotyped parent 168 

were considered to be  For each progeny involved in an undetermined P/P, G coefficients for 169 

all documented full and half siblings were compared to the expected AI coefficients. If more than 40% of the 170 

pairwise differences between G and AI coefficients exceeded the threshold of 0.2 (Thumma et al. 2022), the 171 

pedigree was considered to be inconsistent. For such individuals, the identity of the initial parents was either 172 

considered to be unknown or was replaced by a new parent identity if allelic patterns were found to be concordant. 173 

The corrected pedigree was used to generate the corrected numerator relationship matrix AC. The AI, AC and G 174 

matrices were visualised with the ggplot2 (Wickham 2016) and ComplexHeatmap (Gu et al. 2016) packages in 175 

the R statistical environment (Rstudio Team 2021). 176 

 177 

4. Pseudo-phenotype estimates 178 

 179 

Trials have been measured at various ages for growth traits and survival, but only the most recent 180 

measurements were considered for each trial (i.e. ages ranging from 6 to 17 years depending on the trial). The 181 

diameter over-bark at breast height (DBH) was calculated as the mean of two tree calliper measurements taken at 182 

right angles. Height (HT) was measured with a telescopic pole. Survival (SV) was equal to 1 for living trees, and 183 

0 for dead trees. For each trait, estimated breeding values (EBV) were obtained with ASREML 4.0 (Butler et al. 184 

2017) from a BLUP meta-analysis routinely implemented at Altri Florestal as detailed in Borralho et al. (2018). 185 

This mixed-model included fixed effects (trial and replicates within trial) and random effects (incomplete blocks 186 

within replicates, additive genetic effect, full-sib family, clone within full-sib family), as well as pedigree 187 

relationships across all trees (numerator relationship matrix). The variance components and heritability estimates 188 

considered for the meta-analysis were described in Table 1 following Borralho et al. (2018). Considering this 189 

mixed-model, an initial estimated breeding value (EBVI) was calculated with the AI matrix, and a corrected 190 

estimated breeding value (EBVC) was calculated with the AC matrix. EBV accuracy was estimated as follows (Isik 191 

et al. 2017): 192 

  (Eq.2) 193 
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where S is the standard error of the EBV, F is the coefficient of inbreeding and ²A is the additive genetic variance.194

Additional EBVC values were calculated with the BLUP meta-analysis based on truncated phenotypic data: i) the 195 

EBVC-T01 values considering only phenotypic data from the G0 and G1 genotypes, and ii) the EBVC-T2 values 196 

considering only phenotypic data from G2 genotypes. EBVC-T01 and EBVC-T2, were, thus, estimated with 197 

independent phenotypic data sets. Considering EBV as phenotypes in genomic prediction may introduce bias and 198 

heterogeneity (Garrick et al. 2009). EBV was therefore deregressed and weighted (dEBV) following Garrick et al. 199 

(2009) based on estimates of heritability and without removal of the parent average effect, as many individuals 200 

had unknown fathers. The resulting dEBVI, dEBVC, dEBVC-T01, dEBVC-T2 were used as pseudo-phenotypes for 201 

GS. 202 

 203 

Table 1 Variances associated with each random effects and heritability (h²) estimated for HT, DBH and SV. 204 

, , ,  and  are the variances associated with the following random effects: additive genetic effect, 205 
incomplete block within replicate, full-sib family, clone within full-sib family and residuals, respectively. 206 
Heritability was estimated as:  207 

 208 

 209 
 210 

5. Genomic prediction models 211 

 212 

Genomic estimated breeding values (GEBVI, GEBVC, GEBVC-T01 and GEBVC-T2) were estimated for each 213 

trait, from dEBVI, dEBVC, dEBVC-T01, and dEBVC-T2, respectively. The following GBLUP model was 214 

implemented with the BreedR R package (Munoz and Rodriguez 2020): 215 

  (Eq. 3) 216 

in which y is the vector of pseudo-phenotypes (dEBVI, dEBVC, dEBVC-T01, or dEBVC-T2),  the population mean, 217 

a the vector of random additive genetic effects and e the vector of residuals effects. X and Z are the incidence 218 

matrices for µ and a effects. The vector a was assumed to follow a normal distribution a ~ N(0, a²), where G is 219 

the realised relationship matrix and ²a the variance of additive effects. The vector e followed a normal distribution 220 

with e ²e) ²e is the residual variance. The solutions for the random genetic effects of Eq. 3 are the 221 

genomic estimated breeding values, GEBV. GBLUP shrunk marker effects uniformly, assuming a centred normal 222 

distribution and a common variance for marker effects. 223 

 224 

6. Cross-validation scenarios 225 

 226 

Nine cross-validation scenarios were tested to assess the accuracy of GS for each trait (Table 2). In the random 227 

cross-validation scenario (S0), the three generations were all included in the calibration population (CP) and the 228 

validation population (VP), whereas the others cross-validation scenarios were designed for the investigation of 229 

GS accuracy over breeding generations by using different configurations of pseudo-phenotypes for both the CP 230 

and the VP.  231 

Trait A² r² f² c² e² h²

HT 0.25 0.19 0.03 0.05 0.72 0.20
DBH 0.15 0.08 0.04 0.04 0.80 0.14
SV 0.45 - 0.05 0.25 3.29 0.11
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Table 2 Description of the nine GS scenarios (S0, S1a, S1b, S2a, S2b, S2c, S2d, S3a and S3b) regarding the pseudo-232

phenotype used, the number of genotypes in the calibration (CP) and validation (VP) populations (the number of 233 

genotypes indicated is after pedigree correction), the number of iterations performed, and the corresponding 234 

accuracy  235 
* randomly selected in POPGS ; ** 20% of the G1 from POPGS ; *** 20% of the three main G2 FS, and 20% of all the other G2 236 
families ; **** mean scenario accuracy over the 100 iterations. 237 

 238 
 239 

For the S0 scenario, 80% of POPGS (321 genotypes) were randomly assigned to the CP, with the remaining 240 

20% (80 genotypes) were used as the VP (5 folds, 100 iterations). For S1a, only G0 genotypes were included in 241 

the CP (44 genotypes) for prediction of all the G1 genotypes in the VP. S1b was similar to S1a but 20% of the G1 242 

genotypes (57 genotypes) were added to the CP (100 iterations). For S2a, all genotyped G0 and G1 were included 243 

in the CP (328 genotypes), and GEBVC were predicted in the VP for the 73 G2 genotypes. In S2b, prediction 244 

accuracy was estimated relative to dEBVC-T2. The S2c scenario used dEBVC-T01 in the CP to predict the 245 

G2 GEBVC-T01 of the VP, which was compared to dEBVC for accuracy estimation. The S2d used the same pseudo-246 

phenotype in the CP to estimate GEBVC-T01, which was compared to dEBVC-T2. In S3a and S3b, 14 additional G2 247 

genotypes were added to the G0 and G1 genotypes for the CP (342 genotypes), considering 20% of the three main 248 

FS families and 20% of all the other families used to estimate the GEBVC for the remaining G2 (59) in the VP 249 

(100 iterations). Prediction accuracy was estimated relative to either dEBVC (S3a) or dEBVC-T2 (S3b). When 100 250 

iterations were considered (S0, S1b, S3a and S3b), the accuracy was calculated as the mean accuracy over the 100 251 

iterations. 252 

  253 

Pseudo-
phenotypes

Genotypes
Pseudo-

phenotypes
Genotypes

S0 dEBVC 321 G0/G1/G2 * dEBVC 80 G0/G1/G2 * 100 (GEBVC, dEBVC) ****

S1a dEBVC 44 G0 dEBVC 284 G1 - (GEBVC, dEBVC)

S1b dEBVC 44 G0, 57 G1 ** dEBVC 227 G1 100 (GEBVC, dEBVC) ****

S2a dEBVC 44 G0, 284 G1 dEBVC 73 G2 - (GEBVC, dEBVC)

S2b dEBVC 44 G0, 284 G1 dEBVC-T2 73 G2 - (GEBVC, dEBVC-T2)

S2c dEBVC-T01 44 G0, 284 G1 dEBVC 73 G2 - (GEBVC-T01, dEBVC)

S2d dEBVC-T01 44 G0, 284 G1 dEBVC-T2 73 G2 - (GEBVC-T01, dEBVC-T2)

S3a dEBVC 44 G0, 284 G1, 14 G2 *** dEBVC 59 G2 100 (GEBVC, dEBVC) ****

S3b dEBVC 44 G0, 284 G1, 14 G2 *** dEBVC-T2 59 G2 100 (GEBVC, dEBVC-T2) ****

Iterations AccuracyScenarios
CP VP
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Results 254 

 255 

1. Genotyping results  256 

 257 

The first filtering of 412 genotypes with 68,055 SNPs classified 28,242 SNPs as polymorphic SNPs (41.5%), 258 

23,165 as monomorphic (34.0%), and 16,648 as failed (24.5%). The second filtering step selected the highest 259 

quality polymorphic SNPs: 14,716 SNPs uniformly distributed over the 11 chromosomes of the reference genome 260 

(Table 3). This final set of SNPs was used for pedigree correction and genomic predictions. The mean sample call 261 

rate over all genotype samples was 99.6%. Based on the replicated samples, repeatability was estimated at 99.98%.  262 

 263 

Table 3 Marker coverage of the 14,716 SNPs, anchored onto the 11 chromosomes (Chr) of the E. grandis v2.0 264 

reference genome (Myburg et al. 2014; Bartholomé et al. 2015). SNP positions were retrieved from Affymetrix 265 

documentation to determine if they were located within gene or not. * Chromosome physical length in Mb from 266 

Myburg et al. (2014) and their corresponding genetic length in cM based on the Eucalyptus composite map from 267 

Hudson et al. (2012)  268 

 269 
 270 
The number of SNPs per chromosome (Table 3) ranged from 786 (Chr4) to 1,938 (Chr2) with a mean of 1,338 271 

SNPs per chromosome (mean density of 24.4 SNPs per Mb). The largest distance observed between two 272 

neighbouring SNPs on the same chromosome ranged from 970 kb (Chr11) to 3760 kb (Chr5), and the smallest 273 

distance between SNPs on the same chromosome ranged from 30 bp (Chr2, Chr3, Chr5, Chr9) to 40 bp (Chr11). 274 

Considering the composite linkage map of Eucalyptus (Hudson et al. 2012), the number of SNPs per cM ranged 275 

from 9.7 (Chr4) to 19.0 (Chr2). Based on the E. grandis reference genome, 64% of the SNPs (9,443 SNPs) were 276 

located within a gene corresponding to 6,273 different genes out of the 36,376 genes estimated in this species. 277 

 278 

2. Pedigree correction and its effect on estimated breeding value (EBV)  279 

 280 

Eleven pairs of genotypes were identified as synonymous and were renamed as 11 unique genotypes, 281 

accounting for 5.3% of the genotyping set (2 in G0, 8 in G1, and 1 in G2). Thus, POPGS contained 401 unique 282 

genotypes spread over three generations: 44 G0, 284 G1, and 73 G2. After the correction of synonymous 283 

genotypes, the G matrix (dimension n=401) derived from POPGS was compared to the corresponding subsample 284 

(Mb) (cM) (SNP/Mb) (SNP/cM)

1 1,192 40.3 93.8 29.6 12.7 38 805 68

2 1,938 64.2 102.1 30.2 19.0 31 1,253 65

3 1,932 80.1 105.6 24.1 18.3 43 1,249 65

4 786 42.0 80.9 18.7 9.7 51 479 61

5 1,596 74.7 95.9 21.4 16.6 48 1,002 63

6 1,569 54.0 125.3 29.0 12.5 37 1,025 65

7 1,275 52.4 87.7 24.3 14.5 43 872 68

8 1,568 74.3 137.3 21.1 11.4 46 950 61

9 934 39.0 82.9 24.0 11.3 41 569 61

10 955 39.4 97.8 24.2 9.8 39 614 64

11 971 45.5 97.3 21.4 10.0 46 625 64

Genome 14,716 605.9 1,106.5 24.4 13.3 42 9,443 64

Proportion of 
SNPs within 

gene (%)

Number of 
SNPs within 

gene

DensityNumber of 
SNPs

Chr
Chr length * Mean distance 

between SNPs 
(kb) 
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AI matrix of the same dimensions (Fig. 2a). The AI matrix coefficients were discrete variables with six relationship 285

classes (0, 0.0625, 0.125, 0.25, 0.5 and 1), whereas the G matrix coefficients followed a continuous distribution 286 

ranging from -0.20 to 1.44. Negative coefficients in the G matrix suggested that some individuals had fewer 287 

markers in common than expected on the basis of allele frequencies. The diagonal elements of the AI matrix 288 

indicate an absence of inbreeding (relationship of 1), whereas the diagonal elements of the G matrix ranged from 289 

0.82 to 1.44. 290 

Overall, 238 of the 401 genotypes were involved in at least one relationship with AI=0.25, and 264 were 291 

involved in at least one relationship with AI=0.5 (and 198 were involved in both types of relationships). For both 292 

the 0.25 and 0.5 AI classes, bimodal and asymmetric distributions were observed (Fig. 3a and Fig. 3b) with the 293 

largest peak close to the expected value, and a second peak close to zero, suggesting the existence of errors in the 294 

documented pedigree. P/P consistencies were first assessed in POPGS by evaluating the compatibility of SNP 295 

between parents and progenies. A gap between P/P associated with less than 115 non-concordant SNPs and P/P 296 

associated with more than 911 non-concordant SNPs was highlighted (Fig. 4) which justified the threshold 297 

Both parents were considered to have been 298 

correctly documented for 112 genotypes  which highlighted between 46 and 113 non-concordant SNPs 299 

(i.e. between 0.31% and 0.77% of the available SNPs). The presence of non-300 

explained by the genotyping repeatability below 100%. In the present study, the repeatability (99.98%) was 301 

probably overestimated as based on only eight replicates. At least one parent was incorrectly documented for 37 302 

false  which were associated with 912 to 1405 non-concordant SNPs (6.2% to 9.5% of the 303 

available SNPs). As some parents were not genotyped, 226 individuals had at least one undetermined  P/P. Their 304 

consistencies were then analysed by comparing AI and G matrix coefficients for full-sib and half-sib relationships. 305 

The distribution of the percentage of relationships differing from more 0.2 was represented in Fig. 5a. Our strategy 306 

was to identify and correct pedigree for genotypes which clearly highlighted pedigree inconsistencies. In addition 307 

to the false  previously detected, we identified eight additional genotypes for which more than 40% of G 308 

coefficients were at least 0.2 lower than the AI coefficient, suggesting an incorrect parent. In total, for 45 genotypes 309 

(41 G1 and 4 G2), corresponding to 11.2% of POPGS, at least one wrong parent was identified. Reassignment of 310 

the correct parents was possible for 14 genotypes (14 G1), and the wrong parents were replaced by unknown 311 

parents in the documented pedigree for the remaining 31 genotypes (27 G1 and 4 G2). Finally, an AC matrix was 312 

built from the corrected pedigree and compared to the G matrix. As illustrated in Fig. 2b, the AC matrix better 313 

matched the G matrix than did the AI matrix. The G matrix coefficient statistics for each A matrix coefficient class 314 

were reported in Table 4. As expected, the AC matrix coefficients fitted better the G matrix coefficients for the two 315 

classes considered for pedigree correction (0.25 and 0.5), bringing the mean G matrix coefficient closer to the A 316 

matrix coefficient, and reducing the corresponding standard deviations. The applied pedigree correction resolved 317 

the bimodal distribution, resulting in a single peak (Fig. 3c and Fig. 3d) and highly decreased the percentage of 318 

relationships with AC and G differing from more than 0.2 (Fig. 5b). There was also a minor effect in other classes, 319 

due to the resulting changes in the number of relationships per A class (Fig. S1). After correction, G2 genotypes 320 

from the three main FS families accounted for 77% of G2 genotypes in POPGS: FS1 (14 genotypes), FS2 (27 321 

genotypes) and FS3 (15 genotypes).  322 

The G matrix also uncovered relatedness between individuals, that was not expected based on the documented 323 

pedigree, i.e. hidden relationships. For example, for the 145,672 pairwise relationships from the AC=0 class of 324 
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unrelated individuals, a total of 1,668 G matrix coefficients (1.1%) were greater than 0.2, mostly in G0 and G1. 325

For the AC=0.25 class, 52 of the 10,482 relationships (0.5%) had G matrix coefficients greater than 0.5, suggesting 326 

the existence of a few undocumented FS or P/P relationships. For hidden relationships not involved in pedigree 327 

error, the documented pedigree was not modified. For the three traits considered, Pearson correlation coefficients 328 

( ) between EBVI and EBVC revealed a small but non-negligible effect of pedigree modification on EBV estimates 329 

(Fig. S2). At the POPGS level,  was 0.99 for HT, 0.97 for DBH and 0.98 for SV. However, when we considered 330 

only the 45 genotypes for which parentage errors were highlighted, slightly higher deviations between EBVI and 331 

EBVC were observed, with  equal to 0.92 for HT, 0.81 for DBH and 0.73 for SV (red dots in Fig. S2). 332 

 333 

Table 4 G relationship coefficients according to the expected AI and AC matrix coefficients, for the 401 genotypes 334 

of POPGS 335 

 336 
 337 

3. Genetic values and correlations over generations 338 

 339 

We investigated the trends in genetic value over generations, and compared genetic values obtained 340 

independently from G0/G1 and G2 phenotypic data through a truncation process. Table 5 presents the descriptive 341 

statistics for EBVC for each trait in each generation of POPGS. For growth traits, the lowest EBVC means were 342 

obtained for G1 (0.15 for HT and 0.01 for DBH), with higher values obtained in G2 (0.20 for HT and 0.12 for 343 

DBH). For SV, mean EBVC decreased slightly over generations, with mean values of 0.23 for G0, 0.21 for G1 and 344 

0.16 for G2. The mean accuracy of all EBVC was high, regardless of the generation considered, ranging from 0.72 345 

to 0.92 in POPGS. This high accuracy was explained by the use of a meta-analysis based on a high number of clonal 346 

copies and a high level of connectivity in the pedigree. 347 

 348 

 349 

Table 5 Descriptive statistics (mean and standard deviation) for EBVC and its mean accuracy (r) for tree height 350 

(HT), diameter at breast height (DBH) and survival (SV) for each generation of POPGS. The number of genotypes 351 

in each generation is given (Size). 352 

Relationship 
matrices

Expected 
coefficient

Number of 
relationships

Mean Sd Min Max

0 144,000 -0.02 0.07 -0.20 0.76

0.0625 58 0.12 0.03 0.00 0.18

0.125 148 0.14 0.09 -0.05 0.30

0.25 11,870 0.11 0.11 -0.16 0.72

0.5 4,324 0.40 0.16 -0.15 0.77

1 401 1.04 0.13 0.82 1.44

0 145,672 -0.03 0.07 -0.20 0.76

0.0625 54 0.13 0.02 0.08 0.18

0.125 140 0.15 0.09 -0.05 0.30

0.25 10,482 0.15 0.07 -0.04 0.72

0.5 4,052 0.44 0.10 0.10 0.77

1 401 1.04 0.13 0.82 1.44

A I

AC
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 353 
 354 

Correlations between the EBVC for the three traits were assessed using POPGS and within each breeding 355 

generation (G0, G1 and G2) (Fig. 6). Strong, highly significant positive genetic correlations (p-value < 0.001) 356 

between growth traits were observed for the whole sample ( =0.85), whatever the generation considered (0.86 for 357 

G0, 0.83 for G1, and 0.93 for G2). HT and SV were significantly but weakly correlated in POPGS (0.18), but 358 

strongly correlated in G2 (0.55). Correlation between DBH and SV in POPGS was not significant at the 5% level, 359 

even though the G2 correlation was similar to that between HT and SV. 360 

These results highlighted that POPGS was not representative of POPTOT for which an increase of EBVC over the 361 

generation was observed whatever the trait (Table S2). Based on EBVC correlations, slight differences were also 362 

observed between POPTOT and the subsample POPGS (Fig. S3), although the same overall trends were found with 363 

the strongest correlations between growth traits (0.87) and weak correlations between growth traits and SV (0.25 364 

for HT and 0.21 for DBH). The differences in EBVC and trait correlations between POPTOT and POPGS could be 365 

explained by a sampling effect, with a smaller number of genotypes from G0 (44), G1 (284), and G2 (73). G2 366 

genotypes in POPGS consisted of 13 FS families, three of which accounted for 77% of G2 genotypes. By contrast, 367 

G2 in POPTOT was composed of 45,360 genotypes with 914 FS. The genotyped population was therefore poorly 368 

representative of the total diversity of POPTOT, particularly for the first breeding generation (G0) and the last one 369 

(G2).  370 

Genetic values of G1 genotypes were estimated based on POPGS through two independent processes based on 371 

truncated phenotypic data either EBVC-T01 or EBVC-T2, but keeping relatedness between genotypes. The 372 

correlations between G1 EBVC-T01 and G1 EBVC-T2 were weak (0.26 for HT, 0.41 for DBH, 0.14 for SV) (Fig. S4), 373 

suggesting that the G0/G1 and G2 generations made slightly different contributions to global EBVC estimates. 374 

This was confirmed by the strong correlations between G1 EBVC-T01 and G1 EBVC (0.94 for HT, 0.83 for DBH, 375 

and 0.84 for SV) whereas the correlations between G1 EBVC-T2 and G1 EBVC were only moderate (0.47 for HT, 376 

0.59 for DBH and 0.56 for SV). This trend was also observed for genetic value in G0. In contrast, the correlation 377 

between G2 EBVC-T2 and G2 EBVC (0.98 for HT, 0.99 for DBH and 0.96 for SV) was stronger than that between 378 

G2 EBVC-T01 and G2 EBVC (0.46 for HT, 0.43 for DBH and -0.45 for SV). Thus, for G2, global genetic value (G2 379 

EBVC) was determined principally from the data collected for the G2 generation. 380 

 381 

4. Accuracy in cross-validation scenarios 382 

 383 

The correlation between EBV and dEBV were very strong (>0.99 for all traits). We therefore used only dEBV 384 

as input variables for all GS scenarios. We first checked the effect of pedigree correction on GS accuracy. We 385 

plotted the correlation between GEBV and dEBV for the three traits according to the S0 scenario with and without 386 

pedigree correction (Fig. 7). For HT, DBH and SV, accuracy was slightly higher for dEBVC (0.46, 0.60 and 0.48, 387 

respectively) than for dEBVI (0.44, 0.55 and 0.48, respectively), with correction increasing accuracy by 5% for 388 

Mean Sd r Mean Sd r Mean Sd r

All 401 0.17 0.34 0.88 0.03 0.33 0.84 0.2 0.33 0.73

G0 44 0.20 0.35 0.92 0.04 0.31 0.89 0.23 0.38 0.75

G1 284 0.15 0.34 0.87 0.01 0.32 0.83 0.21 0.34 0.72

G2 73 0.20 0.35 0.89 0.12 0.35 0.85 0.16 0.30 0.76

HT DBH SV
Generations Size 1 
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HT and 9% for DBH (no change for SV). This benefit was also observed for the S1a and S2a scenarios (see Table 389

S3), for which dEBVC gave slightly higher accuracies for HT (16% improvement for S1a, and 6% for S2a), DBH 390 

(39% for S1a and 1% for S2a), and SV (3% for S1a and 8% in S2a). Pedigree correction (11.2% of POPGS) had a 391 

significant effect on GS accuracy: i) mainly for the more precisely measured growth traits, and ii) for the S1a 392 

scenario generating estimates for G1, the generation for which the largest number of corrections were made (41 of 393 

the 45 genotypes corrected belonged to G1). The S2a scenario remained the most accurate for growth traits, with 394 

a smaller effect of correction, probably due to the smaller number of pedigree corrections for G2 genotypes. 395 

Whatever the scenario, our findings suggest that pedigree correction should be performed to correct pseudo-396 

phenotypes before applying GS. 397 

We then compared the nine scenarios (S0, S1a, S1b, S2a, S2b, S2c, S2d, S3a and S3b) considering only pseudo-398 

phenotypes after pedigree correction, as shown in Fig. 8 (and Table S4). In the S0 scenario, genotypes were 399 

randomly assigned to either the CP (321 genotypes) or VP (80 genotypes), and the corresponding accuracies were 400 

higher for DBH (0.60), than for HT (0.46) or SV (0.48). This higher accuracy for DBH was observed in most of 401 

the scenarios tested. In the S1 scenarios, the addition of 20% of the G1 genotypes to the G0 genotypes used in the 402 

CP (S1b) improved accuracy to 55% for HT, 16% for DBH and 17% for SV, for the prediction of G1 genotypes. 403 

Overall, S1 accuracies were lower than the accuracies achieved for scenarios S0, S2a and S2b, which also used 404 

dEBVC as an input variable. In the S2 scenarios, dEBVC or dEBVC-T01 for all G0 (44) and G1 (284) genotypes were 405 

chosen for the prediction of G2 genetic values in the VP (73). Accuracy was higher for dEBVC (S2a and S2b) than 406 

for dEBVC-T01 (S2c and S2d), for which accuracy was non-significant for HT and, surprisingly, negative for SV. S2 407 

scenarios using dEBVC-T2 in the VP (S2b and S2d) were slightly more accurate than those using dEBVC (e.g. the 408 

S2b scenario gave increases in accuracy of 4% for HT, 6% for DBH and 23% for SV relative to the S2a scenario).  409 

The poor accuracy of scenarios S2c and S2d in comparison to scenarios S2a and S2b can be explained by 410 

the pseudo-phenotypes considered in CP. Indeed, even if dEBVC and dEBVC-T01 were highly correlated for 411 

generation G1, this was not the case when considering specifically the parents of the three main G2 families (which 412 

represents 77% of the VP). Scenarios S2a and S2b calibrated with dEBVC (including information from G2 413 

phenotypes) were more efficient to predict G2 genotypes than scenarios S2c and S2d based on dEBVC-T01 (including 414 

only G0 and G1 phenotypes). In the two S3 scenarios, following the addition of G2 genotypes to the CP (14 G2), 415 

accuracy was highest for the three traits when dEBVC-T2 was used: 0.65 for HT, 0.78 for DBH, and 0.59 for SV 416 

(Fig. 8). This suggests that the addition of G2 genotypes to the CP greatly influences the quality of prediction for 417 

the remaining G2 genotypes in the VP due to increased relatedness between CP and VP. In scenarios S3a and S3b, 418 

the accuracies for the three traits were more dispersed than in S0 and similar to those in S1b, scenarios for which 419 

iterations were also performed. This suggests that composition of CP was affecting prediction accuracy and thus 420 

its optimisation could maximise the accuracy of GS predictions.  421 

  422 
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Discussion 423 

 424 

GS implementation in an advanced forest tree breeding programme requires a better knowledge of the change 425 

in genomic prediction accuracy for quantitative traits over breeding generations. Such investigations have been 426 

conducted in conifers (Bartholomé et al., 2016; Isik et al., 2016; Thistlethwaite et al., 2019), but not in eucalypts. 427 

The advanced E. globulus breeding programme of Altri Florestal focuses on growth and survival, providing a great 428 

opportunity to evaluate GS accuracy over three breeding generations. 429 

The quantitative genetics of growth traits have been described in detail for E. globulus, with low to medium 430 

heritabilities, suggesting polygenic determinism for both primary and secondary growth traits (Lopez et al. 2002; 431 

Raymond 2002; Potts et al. 2004). The genetic architecture of this species has been studied and a large number of 432 

quantitative trait loci (QTLs) have been localised to different linkage groups, varying over time and/or 433 

environments (Freeman et al. 2013; Bartholomé et al. 2013, 2020). Genetic control has been shown to be mostly 434 

additive, although non-negligible dominance effects have also been identified (Denis and Bouvet 2013; Tan et al. 435 

2018; Thavamanikumar et al. 2020). In E. globulus, the reported coefficients for genetic correlations between 436 

height and diameter range from 0.55 to 0.93 (Volker et al. 1998; Hamilton et al. 2010; Rojas 2017). We observed 437 

strong additive genetic correlations between height and diameter for each generation (G0, G1, G2). Fewer data 438 

have been published on tree survival, even though this has become a key breeding objective for companies wishing 439 

to expand their planting areas to less optimal climatic conditions (Costa e Silva et al. 2008). Survival can be defined 440 

as the ability of a genotype to cope with a set of undefined environmental factors (both biotic and abiotic 441 

constraints), which is particularly important in the early stages of the tree's life (Lopez et al. 2002). Reported 442 

heritabilities for survival in E. globulus are low to moderate, ranging from 0.02 to 0.38 (Chambers et al. 1996; 443 

Lopez et al. 2002; Hamilton et al. 2015; Mora and Serra 2014). The genetic determinism of survival may varies 444 

over time, with the age of the tree (Dutkowski and Potts 1999) and the breeding generation considered. For long-445 

lived species, such as forest trees, the survival recorded at the start of a breeding programme may depend on 446 

genetic drivers different from those in contemporary measurements, due to changes in climate and the emergence 447 

of new pests. Conflicting results concerning the correlation between survival and growth have been published for 448 

E. globulus, from weak negative genetic correlations (Lopez et al. 2002; Mora and Serra 2014) to highly positive 449 

genetic correlations (Hamilton et al. 2010), and from non-significant phenotypic correlations (Lopez et al. 2002) 450 

to significant phenotypic correlations in a wide-ranging collection of open-pollinated E. globulus seeds from parent 451 

trees growing in native stands in Australia (Dutkowski and Potts 1999). We found weak genetic correlations 452 

between growth traits and survival in the studied breeding zone characterised by no major constraints related to 453 

coldness and drought. These correlations suggest the opportunity to select these two traits without trade-offs 454 

through this specific breeding zone, highlighting the importance of evaluating both of them in GS-based breeding 455 

strategies.  456 

Increasing numbers of studies are investigating the presence of pedigree errors in breeding programmes for 457 

forest trees (Isik 2014). Two principal types of error have been highlighted: i) identity errors (synonymous labels 458 

or genetically different clonal replicates), and ii) parentage errors, when either one or both documented parents are 459 

incorrect. In eucalypts, mislabelled ramets were found for four of 10 commercial clones from several organisations 460 

(Keil and Griffin 1994). Reported rates of parentage errors are highly variable, ranging from 2.8% in Picea rubens 461 

(Doerksen and Herbinger 2008), to 30.2% in Pseudotsuga menziesii and 33.3% in Pinus taeda (Adams et al. 1988). 462 
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In Pinus sylvestris L. seed orchards, ramet assignment error rates range from 5.8% to 37.7% (Przybylski et al. 463

2019). In a breeding population of Pinus radiata, 10% of documented relationships were found to be incorrect 464 

after pedigree verification (Kumar and Richardson 2005). Some progenies from open-pollinated families of Picea 465 

glauca were found to have a relationship coefficient of zero, suggesting pedigree errors (Gamal El-Dien et al. 466 

2016). Most of these pedigree verifications compared allelic consistencies between parents and progenies. We 467 

propose here an additional method based on comparison between A and G matrices applied to siblings for detecting 468 

pedigree errors. Our original approach identified 11.2% parentage errors in addition to the 5.3% identity errors 469 

detected by genomic fingerprinting. Our results confirmed the efficacy of SNP analyses for revealing incorrectly 470 

inferred relationships between individuals and for identifying previously unknown relationships as shown 471 

previously (Munoz et al. 2014; Tan et al. 2017; Lenz et al. 2020; Thumma et al. 2022). It remains tricky to define 472 

suitable thresholds for parentage errors in cases of large variances of pairwise relatedness estimators (Blouin 2003), 473 

as observed here within FS families. However, individuals for which more than 40% of G matrix coefficients 474 

deviated by more than 0.20 from the expected A coefficient were considered to have parentage errors. Our 475 

conservative approach allowed the most glaring pedigree errors to be corrected, thereby keeping the risk of false 476 

correction low. 477 

In most forest tree breeding programmes, genetic evaluations are performed with a BLUP analysis based 478 

on the mixed model methodology (Henderson 1975), and genetic covariances are expressed in the pedigree-based 479 

relationship matrix (the A matrix). EBV accuracies are, therefore, highly dependent on the correctness of the 480 

documented pedigree. In practice, the A matrix does not provide information about all existing relationships, 481 

whereas the G matrix can reveal undocumented relationships, pedigree errors, and capture the variation arising 482 

from Mendelian sampling (Powell et al. 2010). Both hidden and incorrectly documented relationships may affect 483 

the accuracy of genetic parameters, biasing EBV and, by extension, decreasing GS accuracy if EBV (or dEBV) 484 

are used as pseudo-phenotypes in GS methodology. We show here that, in Altri  multigenerational breeding 485 

programme, the 11.2% parentage errors revealed by G matrix information had a significant impact on EBV for the 486 

three traits studied, highlighting the importance of pedigree checking before running GS models with pseudo-487 

phenotypes. In Pinus pinaster polycross trials, EBV was shown to be improved by the use of a pedigree 488 

reconstructed from parentage analysis and allowing paternal identification (Vidal et al. 2015). In Populus nigra, 489 

pedigree-based BLUP models based on a corrected A matrix were found to be more accurate than models based 490 

on an uncorrected matrix (Pégard et al. 2020). The removal of pedigree errors had a negligible effect on additive 491 

genetic variance structure in Picea rubens, but the authors suggested that the population studied may have been 492 

too small for the assessment of variance components or that the magnitude of error was too small (Doerksen and 493 

Herbinger 2010). As Altri s largely ungenotyped, we can hypothesise that additional 494 

yet to be identified parentage errors may still bias E. globulus genetic estimates. 495 

We took the incompleteness of genotypic data and the heterogeneity of phenotyping due to the use of data 496 

from many trials of different ages into account by using GS models based on pseudo-phenotypes as done in several 497 

reports on forest tree species (Resende et al. 2012; Bartholomé et al. 2016; Isik et al. 2016; Thistlethwaite et al. 498 

2019). The pseudo-phenotypes came here from a meta-analysis of 31 trials located in the same breeding zone 499 

explaining that GxE interaction was not included in the model. When breeding value is used as a pseudo-500 

phenotype, deregression can improve GS accuracy by reducing estimate shrinkage toward parental means, and by 501 

taking into account the heterogeneity of EBV reliability (Garrick et al. 2009). This method generates contrasting 502 
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results, according to the deregression process used. In maritime pine, the use of either EBV or dEBV had no effect 503

on GS accuracy (Isik et al. 2016), whereas, in Douglas fir, the use of dEBV taking mean parental effect into account 504 

resulted in a much lower accuracy (Thistlethwaite et al. 2019). Despite these conflicting results, many GS studies 505 

in forest trees have used dEBV rather than EBV as the pseudo-phenotype in order to take into account phenotypic 506 

information from ungenotyped individuals, and is suitable in case of unbalanced data. For the three traits studied 507 

here, GS accuracy was estimated with dEBV, which was strongly correlated with EBV (>0.99). This strong 508 

correlation may be due to the use of a deregression process without the removal of parental average effect (as 509 

many crosses were of unknown paternity), as well as, to the high degree of relatedness in the POPGS and the large 510 

number of clonal copies, both of which contributed to the high accuracy of EBV regardless of the generation 511 

considered. For dEBVI and dEBVC, pedigree correction, principally applied to G1 genotypes, did not change GS 512 

accuracy (SV predictions in the S0 scenario) or increased it up to 39% for DBH in the S1a scenario. Munoz et al. 513 

(2014) reported higher predictive abilities (from 2% to 5%) for the use of dEBVC for various traits related to 514 

growth and tree architecture in loblolly pine. GS accuracy is commonly evaluated through the random allocation 515 

of individuals to either the validation or calibration population. With the S0 scenario encompassing the three 516 

generations indifferently, HT, DBH and SV GS accuracies (0.46, 0.60 and 0.48, respectively) were all consistent 517 

with published values in E. globulus (Durán et al. 2017; Ballesta et al. 2018). Even if the different scenarios implied 518 

a low number of genotypes (from 44 in the S1a scenario to 342 in the S3 scenario), the effective size of POPGS 519 

estimated from status number NS (Lindgren et al. 1996) was 34. This limited effective size as well as the high 520 

marker density (13.3 SNPs / cM in average) were both parameters impacting favourably accuracies of GS 521 

(Grattapaglia and Resende 2011). As suggested a study in maritime pine with NS=25 (Bartholomé et al. 2016), GS 522 

accuracy resulted more from the high relatedness between the CP and the VP than from historical LD associations 523 

between markers and QTLs. 524 

GS accuracy must be evaluated over generations to determine the value of GS for advanced breeding 525 

programmes. Through successive generations of a breeding process, genetic recombination between haplotypes 526 

may change the extent of LD, thereby limiting the efficacy of GS over several generations, as LD must be 527 

conserved between the CP and VP (Hayes et al. 2009a). The impact of such changes in LD over generations has 528 

mostly been investigated in simulation studies. For Eucalyptus, Denis and Bouvet (2013) found that GS accuracy 529 

decreased over successive breeding cycles for a breeding population with an effective size of Ne=100. As a means 530 

of coping with the loss of GS predictive ability across generations, predictive models should be refreshed by 531 

aggregating data from the two most recent breeding cycles, as in the simulations for oil palm performed by Cros 532 

et al. (2018). We investigated GS over generations with different scenarios (S1 and S2) in which the CP consisted 533 

of individuals from previous generations (G0, G1), used to make predictions for the most recent generations (G1 534 

and G2). We obtained moderate-to-high prediction accuracies, with a value of 0.68 for DBH in the S2a scenario, 535 

indicating that it was possible to predict G2 genotypes from data for the parents (G1) and grandparents (G0) in the 536 

CP. Moreover growth trait prediction remained similar to that for conventional cross-validation (S0), suggesting 537 

that the predictive model was not altered over generations. This conclusion is consistent with other reports for a 538 

five consecutive progeny set in Hordeum vulgare (Sallam et al. 2015) and in Avena sativa L. (Asoro et al. 2011). 539 

Similarly, Bartholomé et al. (2016) showed, in a study on Pinus pinaster, that high accuracies (0.70 for height and 540 

0.79 for circumference) could be obtained with only G0 and G1 genotypes for the CP, and G2 genotypes for the 541 

VP. In an F1 progeny test on Douglas fir, the accuracy of GS for juvenile height was evaluated at 0.9 in the F2 542 
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generation (Thistlethwaite et al. 2019). Here, we found that accuracy for the prediction of survival was slightly 543

lower for the per-generation scenario (S1 and S2) than for S0. Moreover, scenarios S2c and S2d, calibrated with 544 

dEBVC-T01, also provided strongly negative mean accuracies for SV prediction in G2 (-0.47 and -0.56, 545 

respectively). We can hypothesise that abiotic and/or biotic constraints affected the first two generations (G0 and 546 

G1) differently from the last generation (G2), making it difficult to predict complex traits, such as survival, with a 547 

CP and VP encompassing different environmental conditions. Accuracy decrease was also observed for growth 548 

traits when pseudo-phenotypes included in CP were poorly estimated (scenarios S2c and S2d vs. scenarios S2a and 549 

S2b). Interestingly, the addition of progeny genotypes (scenarios S1b, S3a and S3b) improved the prediction of both 550 

G1 and G2 genotypes for all the traits studied, to 0.65 for HT and 0.78 for DBH in the S3b scenario, and for SV, 551 

with an optimum of 0.59. This result was expected, as higher levels of relatedness between calibration and 552 

validation populations has been shown to improve GS accuracy in other species, such as Picea glauca (Beaulieu 553 

et al. 2014).  554 

 555 

Conclusion 556 

 557 

In conclusion, we report here encouraging results for applied GS in Eucalyptus globulus. Given the relatively 558 

small population size, we were able to predict the breeding value of the most recent generation reasonably 559 

accurately, by aggregating data from the first two generations. In addition, pedigree correction for identity and 560 

parentage errors increased the accuracy of GS for all traits. Including a few relatives from targeted families in GS 561 

models also improved accuracy for all traits. Further investigations in E. globulus are required, particularly as 562 

concerning optimisation of the calibration and validation populations, as proposed in GS approaches for other 563 

species (Ahmadi and Bartholomé 2022). As POPGS was not representative from the breeding population of Altri 564 

Florestal (POPTOT), this study must be considered as a proof-of-concept. Genotyping efforts in this breeding 565 

population will need to continue before implementing concretely GS. In addition, the genotyping of the base 566 

population could be compared with the 13 races and eight genetic groups defined in previous studies (Dutkowski 567 

and Potts 1999; Costa et al. 2017) to define meta-founders usable for GS (Legarra et al. 2015). An alternative to 568 

deregressed EBV for taking the performance of non-genotyped individuals into account would be so-called 569 

-  (Legarra et al. 2014). This methodology has recently been successfully tested in E. 570 

globulus (Callister et al. 2021; Quezada et al. 2022) as the training population size can be increased by including 571 

both genotyped and not genotyped individuals.  572 

  573 
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Figure captions: 814 

 815 

Fig. 1 Initial pedigree of the 412 POPTOT genotypes selected for genotyping (blue dots) (grey dots represent 816 

ancestors not available from clonal archives and lines indicate parent-progeny relationships documented in the 817 

initial pedigree) 818 

 819 

Fig. 2 Heatmap of the A coefficients (under the red diagonal) vs. G coefficients (above the diagonal) of 401 820 

individuals from POPGS. Two A matrix coefficients are shown: AI coefficients without the correction of pedigree 821 

errors (a), and AC coefficients with pedigree correction (b). In both cases, the 401 genotypes were ordered by 822 

generation, from top to bottom, and left to right (G0, G1, G2) 823 

 824 

Fig. 3 Distribution of G coefficients within two A classes: 0.25 (a and c) and 0.5 (b and d). The upper two 825 

histograms (a and b) show G distributions based on the initial pedigree (AI matrix), and the lower two histograms 826 

(c and d) show G distributions after pedigree correction (AC matrix) 827 

 828 

Fig. 4 Distribution of non-concordant SNPs number in the parent-progeny relationships (P/P). 829 

The threshold (115 non-concordant SNPs) 830 

represented by the red dotted line 831 

 832 

Fig. 5 Distribution of the percentage of half-sib and full-sib relationships differing from more 0.2 between A and 833 

 The threshold (40%) above which the pedigree was 834 

considered inconsistent is represented by the dotted line. 835 

a) AI was considered i.e. initial documented pedigree b) AC was considered i.e. pedigree after corrections 836 

 837 

Fig. 6 Genetic correlations between EBVC for tree height (HT-EBVC), diameter at breast height (DBH-EBVC) and 838 

survival (SV-EBVC) across the whole POPGS sample (in black) and in the three generations (G0 in red, G1 in 839 

green, and G2 in blue) of POPGS 840 

 841 

Fig. 7 GS accuracy of the S0 scenario for height (HT), diameter at breast height (DBH) and survival (SV), with 842 

either dEBVI (in grey) or dEBVC (in red) used as a pseudo-phenotype (the means are indicated by coloured dots) 843 

 844 

Fig. 8 Accuracy of GS models for height (HT), diameter at breast height (DBH) and survival (SV) according to 845 

the nine scenarios tested: S0 (in red), S1a and S1b (green), S2a, S2b, S2c, and S2d (blue), and S3a and S3b (purple). 846 

In all scenarios, deregressed and corrected EBV (dEBVC) were used as pseudo-phenotypes. Significance is shown 847 

for each assessment of accuracy in Table S4) 848 
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Supplementary material captions: 850 

 851 

Table S1 Settings for SNP quality control analysis in Axiom Suite Analysis software  852 

 853 

Table S2 Descriptive statistics for EBVC, EBVC-T01, EBVC-T2 and their mean accuracy (r) for tree height (HT), 854 

diameter at breast height (DBH) and survival (SV) for each generation of POPTOT 855 

 856 

Table S3 Mean accuracy with dEBVI or dEBVC, for height (HT), diameter at breast height (DBH), and survival 857 

(SV), for scenarios S0, S1a and S2a. (1) In S0, accuracy is the mean of 100 per-iteration accuracies, and the 858 

corresponding significance threshold is that for at least 95% of the 100 iterations 859 

 860 

Table S4 Significance of GS accuracies by scenario. In cases of iteration (*), the accuracy given is the mean of 861 

100 per-iteration accuracies, and the corresponding significance threshold is the threshold for at least 95% of the 862 

100 iterations. The most globally significant accuracies are shown in bold 863 

 864 

Fig. S1 Distribution of G coefficients according to AI or AC coefficients in POPGS 865 

 866 

Fig. S2 Regression of EBVI on EBVC for tree height (A), diameter at breast height (B), and survival (C) for the 867 

401 genotypes of POPGS. The black dots referred to the 356 genotypes without pedigree correction, and the red 868 

dots, the 45 genotypes for which the pedigree was corrected. Pearson correlation of EBVI with EBVC for the 45 869 

genotypes is indicated in red 870 

 871 

Fig. S3 Genetic correlations between EBVC for tree height (HT-EBVC), diameter at breast height (DBH-EBVC) 872 

and survival (SV-EBVC) across the whole POPTOT sample (in black) and in the three generations (G0 in red, G1 873 

in green, and G2 in blue) of POPTOT 874 

 875 

Fig. S4 Correlation matrix for the EBVC, EBVC-T01, and EBVC-T2 estimates for the three traits (HT, DBH and SV) 876 

based on the POPGS sample. Correlation coefficients are indicated for the whole POPGS population (in grey) and 877 

for each generation (G0 in red, G1 in green and G2 in blue). The significance threshold is indicated as follows: 878 

5% (*), 1% (**) and 0.1% (***) 879 
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