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Abstract
The Koronivia JointWork on Agriculture (KJWA) and the Sustainable Development Goals (SDG) have brought agriculture onto
the agenda of solutions to tackle climate change and sustainable development. The first KJWA roadmap came to an end in 2020.
The conclusions will be reported at the UNFCCC COP 27 in 2022. Several options for the future of KJWA are on the table. We
review the literature to take stock of the contribution of science to the first KJWA period and discuss on how research could help
to strengthen the case for keeping up the work of KJWA. This paper reviews 175 peer-reviewed publications on technical
(agricultural practices), socioeconomic, and policy actions or innovations that support and strengthen the role of sustainable
agriculture on the global development agenda. The considerable diversity of science-based actions and innovations presented in
the agricultural sector should contribute to the success of KJWA in putting agriculture on the climate agenda. In addition to the
climate agenda, the review highlights the multi-functionality of sustainable agriculture which targets food security issues, of
course, but also the 17 SDGs. Our review shows that KJWA has been extensively documented in the scientific literature on
agricultural practices, the socioeconomic dimensions, and policies supporting actions. Nevertheless, research has to make special
efforts (i) to set up methods that allow data comparisons and collections, and at the same time (ii) to tackle synergies and trade-
offs in the achievement of the SGDs. The nexus approach could also provide a framework for the future of the KJWA process.
The science-based evidence should continue to pave the way for the future KJWA to become an actionable structure within the
UNFCCC arena. Echoing the previous assessment, the KJWA process should keep all stakeholders on board, including
researchers.

Keywords UNFCCC . Climate change . Food security . Sustainable Development Goals . Multifunctionality . Nexus approach

1 Introduction

Agriculture plays a vital, multifunctional role for humanity,
providing people with food and supplying industry with raw
materials. However, agriculture generates a series of

environmental problems. Agriculture uses 70% of freshwater
resources (Contestabile and Kabat 2013) and is responsible
for deforestation, particularly in the tropics (Franco-Solís
and Montanía 2021). Among these environmental impacts,
23% of total net anthropogenic greenhouse gas (GHG) emis-
sions, which drive climate change, derive from Agriculture,
Forestry and Other Land Use (AFOLU) (IPCC 2019).
Agriculture is also largely impacted by climate change. The
predicted changes in climate are expected to have profound
effects on soil fertility and water availability, crop yields
(Abd-Elmabod et al. 2020; Assad et al. 2020; Defrance et al.
2020), global food supplies, prices, and the world economy
(Liu et al. 2020). In the twenty-first century, agriculture faces
important challenges in terms of production and environmen-
tal preservation, which will deeply impact people in every
country.

Considering these global issues on food security and cli-
mate change, the United Nations introduced the Sustainable
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Development Goals (SDGs) and 169 targets to eradicate pov-
erty, end hunger, improve human well-being, reduce environ-
mental threats, and achieve sustainable development world-
wide by 2030, ensuring that no one is left behind. Given that
821 million people go hungry, and every third person is mal-
nourished, agriculture is at the core of this 2030 Agenda.
Implementing sustainable agriculture is a key driver for
achieving many SDG targets (FAO 2018). The Paris
Agreement calls for an urgent plan of action to limit global
warming to 1.5°C. Echoing this agreement, the 23rd

Conference of the Parties (COP) to the United Nations
Framework Convention on Climate Change (UNFCCC)
brought agriculture into international climate negotiations
through the Koronivia Joint Work on Agriculture (KJWA)
decision (UNFCCC 2018, COP decision 4/CP.23). KJWA
requests the two Subsidiary Bodies of the UNFCCC [the
Subsidiary Body for Scientific and Technological Advice
and the Subsidiary Body for Implementation] to jointly ad-
dress issues related to agriculture with particular focus on the
vulnerabilities of agriculture to climate change and essential
support for food security (Drieux et al. 2019).

Several scientists have been involved in the KJWA pro-
cess to bring science-based evidence into the debates held
at the meetings addressing the five interrelated thematic
topics of KJWA: (i) methods and approaches for assessing
adaptation, adaptation co-benefits and resilience (topic B);
(ii) improved soil carbon, soil health and soil fertility un-
der grassland and cropland as well as integrated systems,
including water management (topic C); (iii) improved nu-
trient use and manure management towards sustainable
and resilient agricultural systems (topic D); (iv) improved
livestock management systems (topic E); and (v) socioeco-
nomic and food security dimensions of climate change in
the agricultural sector (topic F). Topic A meant to deepen
preliminary work before KJWA broadly covers all the 5
specific topics. The added value of the multi-stakeholder
mechanism set up by KJWA has been recognized, along
with the contribution of science. The first KJWA roadmap
came to an end in 2020. The conclusions will be reported
at UNFCCC COP 27 in 2022. Several options for the
future of KJWA are on the table: “(i) Parties make full
use of the opportunities represented by KJWA to move
on from formal discussions to concrete actions on the
ground, (ii) technical and/or financial priorities are clearly
stated “No-regrets options,” the modalities to guarantee
their realizations paving the way for the next KJWA
roadmap, (iii) extending the existing roadmap, or (iv) no
agreement between Parties” (Drieux et al. 2021).

As a part of the process, research may inform decisions
about the future of KJWA. The objectives of this review are
(1) to strengthen the credibility of the Koronivia process to
target food security, climate change, and most of the 17 SDGs
and (2) to provide science-based evidence to plan the topics

for the next round of workshops and expert meetings framing
the future of the KJWA process.

Does science-based evidence point to a specific working
agenda for the future of the KJWA?

To answer this question, this scientific review aims to syn-
thesize the scientific knowledge related to past KJWA topics
as regards the 17 SDGs. We hypothesize that, through this
review, a large diversity of agricultural practices, socioeco-
nomic organizations or policies that benefit farmers, society
and the environment will help to underline scientific inputs
into the KJWAprocess. Finally, we discuss how science could
support the case to keep up KJWAwork within the UNFCCC
organization and, more broadly, boost the position of sustain-
able agriculture on the 2030 Agenda (Fig. 1).

2 Material and methods—identification
of the articles reviewed

The literature review comprised four main steps: (i) identifi-
cation, (ii) screening, (iii) eligibility, and (iv) analysis (Fig. 2).
The identification process included the search for keywords
related to KJWA and SDG targets to provide database publi-
cations for the screening process. This step combined the A,
B, C, D, E, and F topics KJWA and SDG keywords (Supp.
Info. Tables S1 and S2) to determine all the publications that
establish links between KJWA topics and the SDG targets,
using the Web of Science (WoS) database (43,000 refer-
ences). Topic A represented the KJWA broadly with unspe-
cific keywords (i.e., agriculture, climate change and develop-
ment). Topics B, C, D, E, and F focused on specific keywords
on soils, nutrient use, water, livestock, methods for assessing
adaptation, socioeconomics, and food security dimensions
(see Table S1). For this step, we used PubMed as an additional
database to complement the WoS results, particularly for
SDGs 4, 5, 7, and 16. For this step, we used a combination
of three conditions:

– The function “AND” between KJWA keywords, to ob-
tain specific documents about KJWA topics,

– The function “OR” between SDG keywords to obtain
multiple documents about SDGs,

– The function “AND” between the first and second condi-
tion to obtain a combination of papers that talk about both
KJWA topics and SDGs

We next collected 7221 papers [6,350 from the WoS data-
base and 921 from PubMed, 1 April 2020 (Defrance and
Ramifehiarivo 2020)]. The screening and eligibility process
(the second and third steps) applied a set of criteria to select
publications by period, study type, and country studied. Our
identification process includes the search for keywords in

102 Page 2 of 23 N. Ramifehiarivo et al.



papers published before the KJWA decision. The period
1990–2018 was chosen, and we aimed to analyze the science
inputs into the KJWA process launched in 2017.We based the
analysis of the evolution of relevant keywords on this time

series. To select study types, R software was used to automat-
ically read the title, abstract, keywords and journal types in our
database (WoS + PubMed) to search for all publications that
mentioned at least one of the following words: “review,”

Fig. 1 Framework of the paper: an iterative approach from KJWA to SGDs to conclude on Post 2021 KJWA key issues

Fig. 2 The four steps for the
literature review
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“article,” “analysis,” “meta-analysis,” “synthesis,” “study
case,” “case of study.” Any publications without these words
were excluded from our analysis.

The same method was used for all abstracts or titles that
mentioned the country studied according to the World Bank
list, or at least one of the following words: “Global,”
“Regional,” “United Nations,” and “FAO.” After the screen-
ing process focussed on the 2008–2018 period, we reduced
our bibliographic database to 464 papers. We also classified
the papers by considering country income based on the World
Bank classification proposed in 2019 (https://datahelpdesk.
worldbank.org/knowledgebase/articles/906519) for
bibliometric analysis.

The eligibility process meant reading the titles and abstracts
of the 464 articles. Articles (title, abstract) documenting re-
search perspectives on (i) agricultural practices, (ii) socioeco-
nomic dimensions of agricultural systems at local or global
scale, or (iii) policies supporting action which could benefit
farmers or nurture decision-makers and target agriculture were
selected for in-depth reading. Once the eligibility process was
completed, we moved on to the analysis, based on a synthesis
of the 175 selected papers, supplemented by recent citations
completing the argumentation. The list of the references at the
end of the paper only includes the references quoted in the
manuscript. The lists of the references selected by the screen-
ing (n = 464) and the eligibility (n = 175) steps of the biblio-
graphic analysis were available in Defrance and
Ramifehiarivo (2020).

The three main points—(i) agricultural practices, (ii) socio-
economic dimensions, and (iii) policies supporting actions—
structured the synthesis of the 175 papers read in-depth. For
each of these points, we identified existing practices, organi-
zation, actions or any innovations that help target climate is-
sues, i.e., adaptation and mitigation issues; agricultural issues,
i.e., resources (soil, water, organic and nutrient resources),
livestock, and plant productivity issues; and food security is-
sues, i.e., plant productivity, food utilization, food accessibil-
ity, and food stability issues.

3 Scientific literature on KJWA focused
on several SDGs

Our results show that the scientific literature publication dy-
namic is influenced by the political agenda. Although there
were publications prior to 2010, a jump in the numbers for
each KJWA topic is particularly noticeable after 2010. As
topic A was very broad and covered agriculture, climate
change and development keywords (Supp. Info Table S1), it
featured most commonly, with nearly 200 references in 2018.
By contrast, topics B and D appeared in only around 15 ref-
erences in 2018 (Fig. 3). The scientific literature anticipates
political agendas, but the number of papers being published

has accelerated, echoing their main deliverables (e.g., IPCC
AR4, UN SDGs, UNFCC KJWA topics, Fig. 3).

The scientific literature covers all countries, even though
there are disparities in the number of articles and in terms of
the KJWA keywords evoked (Table S3, supp info). The num-
ber of articles on or from rich countries (high-income country
(HIC)) is higher in all years and for all topics. The number of
references remains limited for lower middle-income countries
(LMC) and low-income countries (LIC), especially for studies
which target topic B of KJWA (Methods and approaches for
assessing adaptation, mitigation co-benefits and resilience).

The scientific literature selected on the KJWA keywords
refers to all the SDGs, but especially to SDGs 2 (Zero hunger),
15 (Life on land) and 13 (Climate action) (Fig. 4). These three
SDGs were included in 80%, 60% and 25% of the references,
respectively. By contrast, SDGs 4 (Quality education) and 5
(Gender equality) were rarely referenced in papers related to
KJWA topics, accounting for less or just over 10% of refer-
ences across topics A, B, C, D, E, and even topic F focused on
the socioeconomic dimension.

Moreover, this bibliometric analysis shows that the topics
targeted by the Koronivia process concern every country
around the world and concern all 17 SDGs. Research on these
topics is very active to formalize knowledge on agricultural
practices and the organization (socioeconomic actions, public
policies) of markets and territories to achieve the objectives of
Koronivia and of the 17 SDGs.

4 Three main agricultural dimensions
addressed by KJWA keywords

4.1 Agricultural practices

The scientific-based evidence identified by the review con-
cerns plant and livestock potential, improvement of their man-
agement including manure management, and the natural re-
sources (soil, water and nutrients) for crop growth. The most
abundant references describe the interactions between
“Promoting soil organic matter management,” “Enhancing
water use efficiency,” and “Enhancing nutrient use efficiency”
and adaptation, mitigation, soil and water productivity agri-
culture issues (Table 1). We have not been able to establish an
exhaustive list of all the technical means proposed in the lit-
erature to combat climate change, and have only briefly de-
tailed some of them to highlight the diversity of the technical
means proposed by science, while showing how these tech-
niques also target several SDGs (Fig. 5).

4.1.1 Towards adaptation

Enhancing plant potential by crop diversification. New culti-
vars, diverse crop rotations and intercropping were put
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forward as ways of enhancing plant potential, meeting nutri-
tional needs, and increasing biodiversity. New cultivars for
cereals or grain legumes were selected for their high yield

and high quality potentials. At the same time, these cultivars
could enhance the diversification of cropping systems, in-
crease plant potential (Singh et al. 2015) and strengthen crop

Fig. 3 Number of publications (Web of Science) which reference the
different Koronivia topics (1990–2018). Topic A: meant to deepen
preliminary work before KJWA broadly covers all the 5 specific topics.
Topic B: methods and approaches for assessing adaptation, adaptation
cobenefits and resilience. Topic C: improved soil carbon, soil health
and soil fertility under grassland and cropland as well as integrated

systems, including water management. Topic D: improved nutrient use
and manure management towards sustainable and resilient agricultural
systems. Topic E: improved livestock management systems. Topic F:
socioeconomic and food security dimensions of climate change in the
agricultural sector. AR 4 and AR 5: Fourth and fifth Assessment Report
of IPCC

Fig. 4 Scientific papers related to Koronivia topics and referencing SDGs. For each KJWA topic, the number in bold indicates the number of
publications, and the percentage refers to the proportion of these papers that reference each SDG (with percentages higher than 50% in red)
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capacity to adapt to environmental changes (Bedoussac et al.
2015; Ortiz et al. 2008). The diversification of cropping sys-
tems, such as cereals intercropped with grain legumes, is also
often put forward as a way of sustaining agriculture
(Bedoussac et al. 2015; Chuku and Okoye 2009; Ortiz et al.
2008). Some studies reported that with intercropping, total
grain production increases, the protein concentration of cereal
grain improves, while weeds, pests, and diseases are reduced,
and soil properties are improved (Lopes et al. 2016; Smith and
McSorley 2000). Atmospheric N2 fixed by N-fixing legumes
could benefit associated cereal crops, reducing the need for N
mineral fertilizer, and therefore lowering the environmental
footprint of manufactured mineral fertilizers (Crews and
Peoples 2004, 2005; Partey et al. 2018). Nevertheless, all
these practices need to consider the possible crop competition
for water, nutrients, and light.

Because a mere 1% of available tree species have been
studied for their agricultural potential (Shelef et al. 2017),
investing in the diversification of agricultural products could
be a priority for not only climate but also health, biodiversity,
or the farmer’s financial income. The diversification of crops
provides consumers with a wider variety of commodities, pro-
viding a large spectrum of vitamins and micronutrients lead-
ing to better health (SDG3) (Misselhorn et al. 2012). The use
of native and local plants to increase genetic diversity and
enhance dietary options could also be promoted. In addition,
the use of wild species is likely to enhance biodiversity
(SGD15) (Lidder and Sonnino 2012).

Enhancing livestock potential by breeding, nutrition, and pas-
ture management. Four main incremental adaptations to en-
hance livestock capacity under climate change are reported

(Escarcha et al. 2018): (i) breeding, i.e., alleviation of heat
stress by selection of heat-tolerant species and breeds,
disease-resistant breeds, and adapting animals to local condi-
tions; (ii) improving nutrition in quality and in quantity
(Moore et al. 2009; Scasta et al. 2016); (iii) increasing the
efficiency of land and water use by managing pastureland
differently (e.g., pasture irrigation, area enclosure); and (iv)
enhancing livestock management by managing pests, weeds,
and disease. Adapting the health, diet, and productivity of
livestock to climate change is essential for a large majority
of people who depend on livestock for their own diet, jobs,
or income. Fostering higher animal welfare and productivity
achieves a set of SDGs targets (Keeling et al. 2019).

4.1.2 Towards mitigation

Improving crop management to reduce GHG. In the agricul-
tural sector, several mitigation strategies have emerged: (i)
avoiding emissions by planting energy crops (SDG 7), by
converting agricultural waste to fuel (CO2 reduction), by using
organic and slow-releasing N fertilizer (N2O reduction), or by
controlling soil drainage (N2O, CH4 reduction); and (ii) in-
creasing carbon capture by increasing biomass production
with, for instance, agroforestry or cover crops (e.g., Lin and
Xu 2018; Tongwane and Moeletsi 2018; Wang et al. 2017).

Optimizing manure management to reduce CH4 and N2O
Manure is a source of GHG emissions, mainly methane CH4

and nitrous oxide N2O. The emissions discharged depend on
manure composition, local management practices (treatment,
storage, and field application), and climatic conditions
(Petersen et al. 2013). Composting to manure is an efficient

Agricultural practices

Innovation at farm scales to sustain 

ressources (soil, water, nutrients)

Mitigation and adaptation to climate

Food security

Socio economic conditions

Capacity building

Economic tools

Work conditions 
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Market development
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Fig. 5 Actions, conditions, and
practices in agriculture identified
in the scientific literature
addressed by KJWA keywords
and targeted SDGs. The size of
the boxes indicates the number of
scientific papers captured by the
review. Agricultural practices: 73
publications. Socioeconomic
conditions: 36 publications.
Policies supporting actions: 35
publications
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mitigation option (Novak and Fiorelli 2010), but a combina-
tion of techniques seems to increase this efficiency (Chadwick
et al. 2015). For example, adding straw to manure or
dewatering manure reduce GHG emissions. Improving ma-
nure storage and techniques for rapid incorporation into soil
are also proposed (Minet et al. 2016; Nicholson et al. 2004).
Moreover, these composts could be sold at higher prices than
standard composts, thus enhancing producers’ incomes (SDG
2 and SDG 1). Composts could also be used to control crop
pests by removing the need for chemicals (Murrell 2017), the
production of which results in GHG emissions (SDG 12.4).
Producing biogas frommanure and waste processing is anoth-
er practice proposed to avoid emissions from fossil sources
(SDG 7) (Tsai and Lin 2009).

Enhancing livestock potential through genetics, nutrition,
and animal welfare to reduce GHG. Genetic strategies include
breeding (e.g., cross-breeding with a native breed) to improve
the animals’ efficiency leading to a reduction in the total num-
ber of heads, and thus in the total GHG emissions, required for
a given production level (Escarcha et al. 2018). Nutritional
strategies include increased crop and tree fodder cultivation,
competition (feed-food) for cereal grains in ruminant diet,
balanced feed rations, provision of clean drinking water, and
improved feed storage for periods of scarcity. For instance, a
good mitigation option for ruminants is the supply in high
digestibility forages, and the inclusion of energy-dense feeds
(e.g., cereal grains) in the ration (Pereira et al. 2015). Welfare
management strategies include (i) shade and shelter available
in grassland and silvo-pasture to decrease heat stress, and (ii)
hygienic practices to prevent vector-borne-diseases and epide-
miological surveillance (Shinde and Sejian 2013).

4.1.3 Towards both adaptation and mitigation

Promoting soil organic matter management. As soil organic
stock is the biggest carbon reservoir in the terrestrial ecosys-
tems, increasing that stock drew much attention. Soils and
agriculture have been recognized as part of the solution to
limit climate change (Minasny et al. 2017; Soussana et al.
2019). All forms of crop management that favor soil organic
matter inputs, such as cover crops, grassland, crop residue
management, or agroforestry, are practices aimed at increas-
ing or maintaining soil organic carbon stocks (Cardinael et al.
2018; Chenu et al. 2019; Fujisaki et al. 2018). These agricul-
tural practices based on soil organic carbon management
achieve three outcomes: (i) increased productivity for im-
proved food security (SDG 2, SDG 1, SDG 8); (ii) improved
adaptation and resilience to climate change and variability;
and (iii) reduced greenhouse gas emissions (mitigation)
(SDG 13) (Lipper et al. 2014). Some of the main practices
are (Zougmoré et al. 2018):

& Conservation agriculture, which is referred to as (i) soil
conservation by non-inversion tillage or no tillage, ii) crop
rotations, and (iii) soil cover with cover crops, managed
natural flora, stubble, mulching or crop residues (Stagnari
et al. 2010; Zheng et al. 2016). These practices can also
limit soil erosion, reduce the risk of surface water pollu-
tion, increase drainage and water-holding capacity (SDG 6
and 12), improve soil structure and stability, increase soil
organic carbon (SOC) and soil biodiversity (SDG 15)
(Busari et al. 2015; Dumanski and Peiretti 2013; Lal
2009; Powlson et al. 2011).

& Organic farming, which prohibits the use of chemicals
(SDG 12) to produce healthier foods (SDG 3) and allows
higher sales prices to generate economic growth and help
combat poverty (SDG 8 and SDG 1) (Bedoussac et al.
2015; Mie et al. 2017; Rahmann et al. 2009). As tillage
is generally considered to increase SOCmineralization, in
organic farming, soil perturbation to control weeds could
be counterproductive to enhance C stocks. However, re-
cent meta analysis showed high variability of the impact
of no tillage on SOC sequestration. There was may be an
additional SOC storage in superficial soil layers, but no or
little SOC sequestration for the whole soil profile (Chenu
et al. 2019). The origin of these impacts must be more
thoroughly studied.

& Agroforestry, defined as the integration of trees and shrubs
with livestock and/or crops. This is widespread on all con-
tinents (Andrieu et al. 2017; Arevalo 2016; Manalo et al.
2016; Mbow et al. 2014; Stavi and Lal, 2013; Zougmoré
et al. 2018). For example, improved fallowsmean planting
mainly perennial legume trees (as in the case of a fertilizer
tree system) and shrub species (e.g., Cajanus cajan,
Sesbania sp., Glyricidia sp.) in rotation with cultivated
crops (e.g., maize). This is popular because it increases
soil carbon sequestration, reduces GHG emissions, im-
proves the soil’s physical properties, enhances water fil-
tration, and leads to reduced water runoff and soil erosion
relative to the production systems. Improved fallows, in
the case of shrub species, are likely to increase fodder
availability during dry periods and provide substantial bio-
mass for charcoal production (SDG 7) (Partey et al. 2017).
Agroforestry also provides co-benefits by increasing bio-
diversity (SDG 15) and produces socioeconomic benefits
(SDG 1, 8) (Hernández-Morcillo et al. 2018).

Other practices have been studied, but their carbon and en-
ergy balance need to be evaluated and their effects on fertility
transfers at different scales are undocumented. Among these
practices, the use of stable compounds such as biochar as a soil
amendment, or as part of an organic amendment (e.g., compost
or manure), may be a cost-effective and low-risk alternative to
improve agricultural productivity and to mitigate climate
change over the long term (Lal 2009; Mehmood et al. 2017).
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Promoting mixed crop-livestock farming systems. The mixed
crop-livestock systems are extensively documented and pro-
moted as a way of adapting to and mitigating climate change.
It enhances the efficiency of the nutrient cycle, promotes the
sustainable management and efficient use of natural resources
(SDG 12, 15), strengthens soil functioning and health (SDG 3)
while maintaining or improving economic returns (SDG 1, 8)
(Hassen et al. 2017; Luscher et al. 2014). Moreover, integrated
crop-livestock systems have been described as being less vul-
nerable to disease and climate variability and as increasing
profitability (SDG 8) (Stark et al. 2016). Mixed crop-livestock
systems are very diverse. Some examples include temporary
grassland or sod-based crop rotations (2–10 years of perennial
forage, i.e., sod with 1–8 years of crops), grazing winter cover
crops in cash-crop rotations, crop residue grazing, and dual-
purpose cereal crops for grazing and grain harvesting (e.g.,
wheat) (Faust et al. 2018). Other examples also exist combining
aquaculture with crop production such as the shrimp and rice
system (SDG 14). Promoting aquaculture and seafood produc-
tion is highly recommended for better health (SDG 3) and can
also contribute to food security (Bostock et al. 2016).

Enhancing water use efficiency and soil conservation. Given
the importance of soil (SDG15) andwater resources (SDG6) for
agricultural production, there is a need for practices designed to
combat soil degradation and water scarcity (Raclot et al. 2018).
Diverse soil and water conservation techniques have been docu-
mented, such as conservation agriculture (see Sect. Promoting
soil organic matter management), to combat these threats. Many
of them can greatly influence GHG emissions (SDG 13)
(Kassam et al. 2011). Enhancing water use efficiency and soil
conservationmaintains or promotes biomass production and ben-
efits carbon capture from the atmosphere through the biomass,
while soil organic carbon stocks increase. These techniques
could imply irrigation equipment or techniques based on slope
correction to avoid water losses (Batey 2009; Ramos and
Martínez-Casasnovas 2007;Williams andWeil 2004). Themod-
ification of irrigation equipment, e.g., conversion of flood, sprin-
kler, andmicrojet irrigation to drip systems could save up to 34%
irrigation water (Goodwin and O’Connell 2017; Thacker et al.
2008). Nevertheless, by maintaining soil moisture, irrigated soil
affects soil microbial activities and soil respiration. The overall
CO2 balance must be monitored under such contexts, which
remain poorly studied at this stage.

Water-saving irrigation technologies and strategies also in-
clude (i) water management such as alternative wet and dry,
which is used in “System of Rice Intensification” to reduce
water depletion, increase nutrient availability, decrease CH4

and N2O emissions, and increase farmers’ income
(Humphreys et al. 2010; Li et al. 2009), and (ii) plant man-
agement such as de-branching and canopy hedging to reduce
transpiration (Goodwin et al. 2006).

Enhancing nutrient use efficiency Fertilizer application should
always be based on plant demand and soil nutrient status to
reduce the environmental impact of fertilizer uses. Integrated
Soil Fertility Management (ISFM) is seen as a key element in
the transformation towards a sustainable intensification of ag-
ricultural practices (Holden 2018). ISFM relies on (i) proper
fertilizer management, (ii) use of improved varieties, (iii) the
combined application of organic inputs and fertilizer, and (iv)
adaptation of input application rates to within-farm soil fertil-
ity gradients (Vanlauwe et al. 2010). Mapping of soil proper-
ties and yields will help to calculate fertilizer dose, i.e., com-
position, time of application, and location to a very precise
scale (plots of less than 1 m2) (Arrouays et al. 2020; Iticha and
Takele 2019). ISFM echoes SDG 12 for achieving sustainable
management (efficient use of natural resources in synergy
with increasing yields, SDG 12.2) and the adoption of the 4
Rs (right source, right rate, right time, right place) fertilization
techniques (Tongwane and Moeletsi 2018). The objective of
these techniques, along with a modification of the fertilizer
types, is to reduce environmental impacts such as phosporus
or nitrate leaching and N2O emissions, while maintaining
yields (King et al. 2015; McNeill et al. 2005; Pan et al.
2017; Stoate et al. 2009; Wakeel et al. 2017).

4.2 Socioeconomic dimensions

There is much less scientific-based evidence on the socioeco-
nomic dimensions than scientific-based evidence on agricul-
tural practices (Tables 1 and 2). Research proposes innova-
tions but the adoption of any kind of technology would de-
pend on productivity options, climate risk efficiency, and the
ability to meet end-user and market demands (Siddique et al.
2012). This review does not look in-depth at innovative local
practices that are important for enhancing the sustainability of
agriculture. However, the review identified socioeconomic
(Table 2) and political supports needed to successful upscal
science-based on-farm practices (Table 1) (Makate 2019;
Giller et al. 2009; Ojiem et al. 2006, Table 3). Technology
proposals are reportedly less widely adopted when their ben-
efits or effects have to be considered over the long term.
Transition towards and adoption of all these practices involves
more than education, policy and outreach. It also requires
consideration of nonmaterial factors associated with culture,
values, ethics, identity and emotion that operate at individual,
household and community scales, and interact with regional,
national, and global processes (Gosnell et al. 2019). The ref-
erences identified by this analysis show that supporting capac-
ity building of all stakeholders, developing economic tools,
and improving working conditions and farmers’ livelihoods
are the main entry to reducing vulnerability and improving
adaptation of agricultural systems and rural populations. We
noticed a surprising abundance of references on “enhancing
farmer’s knowledge” and “increasing market access”
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(Table 2). This could echo the need to implement innovations
concerning agricultural practices proposed in Table 1, espe-
cially the need to diversify agricultural productions. As in
Sect. 4.1, we have not been able to establish an exhaustive list
of all the scientific-based evidence in the papers, so have only
briefly detailed some of them to highlight the diversity of the
socioeconomic actions proposed by science and show how
these actions may also achieve several SDGs (Fig. 5).

4.2.1 Supporting capacity building

Enhancing farmers’ knowledge. Farmers need to acquire the
basic knowledge before they can adopt and implement tech-
nology on their own farms. This capacity building will help
them to plan any changes in their traditional practices, i.e., to
plan and potentially choose between all the technical options
on offer. For example, the conservation agriculture approach
needs a lot of information before it can be adapted and then
adopted in a specific environment. Farmers need to know
about soil and plant vulnerabilities (erosion, pests, etc.), along
with the methods available to combat these vulnerabilities
(i.e., genotype choice, crop rotation, nutrient management,
hedges, fungicide application, etc.) (Stagnari et al. 2010).

Professional expertise should be mobilized to train farmers,
extension services and organizations in new agricultural tech-
niques. Technicians should promote the best land-use system
for carbon sequestration, or GHG mitigation potential and
productivity (Lin and Xu 2018; Wang et al. 2017).

Capacity building should not only focus on technical oper-
ations but should also spotlight the economic and marketing
specificities of production to help farmers to be included in the
overall food value chain (Adenle et al. 2018).

Encouraging experience sharing and community-based ap-
proaches. Sharing experiences among primary producers not
only improves their technical knowledge but also encourages
community resilience and social relations (Cheng et al. 2017),
while reinforcing their confidence and empowerment. In ad-
dition, farmers’ knowledge is valuable in enlightening the
results of research. For example, Kenyan farmers adapted re-
searchers’ proposals by integrating their need to boost maize
yields in 2008. During experiments, the Kenyan researchers
showed that the most successful arrangement for boosting
maize yields was crop rotation with the inedible legume
mucuna (Mucuna pruriens), using fertilizers. However, the
farmers intercropped maize with edible soya beans and did
not use fertilizers. The reason given was that it was deemed
socially unacceptable to grow a crop that could not be eaten.
In addition, the farmers found new uses for mucuna (Watts
and Scales 2015).

The creation of platforms to enhance experience sharing is
put forward as a way of supporting the dissemination of

sustainable agriculture (Partey et al. 2018). Participatory re-
search and farmers’ networks contribute to reinforcing these
platforms (Weber et al. 2018). Providing these platforms
brings together stakeholders with different backgrounds and
interests (men and women farmers, traders, food processors,
researchers, government, etc.) and offers a wide diversity of
technologies. They could play a key role in promoting sus-
tainable agriculture at local, regional and national scale.

Empowering women. Across developing countries, where
smallholder family farms prevail, gender equity (SDG 5) is a
key challenge for sustainable agriculture. Women perform the
majority of agricultural tasks and are highly affected by food
and cash shortages due to imbalances intra-household and in
society. The lower level of adoption of new techniques among
women is explained by lower access to resources and less
secure tenure. Women are also often neglected by information
and service providers (Kristjanson et al. 2017), even though
they are key stakeholders. For example, in the livestock sector,
where about two-thirds of poor livestock keepers (farm ani-
mals) are estimated to be women (Nirmala et al. 2012).
Adequate support with training, integration of good practices,
and livestock management knowledge and skills building
(feed, management of animal diseases) are likely to improve
women’s capabilities and lead to higher productivity while
improving the well-being of poorer households (Bain et al.
2018; Mottet et al. 2018; Shang et al. 2016). It appears essen-
tial to provide women with technical education (SDG 4)
(Brandth 2006; Trauger et al. 2008) and encourage them to
participate in agricultural income management programmes
and microfinance opportunities.

However, all these education programmes must be adapted
to the specific needs and knowledge of women. They should
be based on prior socioeconomic and gender analysis to build
gender-appropriate information to support sustainable agricul-
ture (Jost et al. 2016). Agricultural development decision-
makers and project designers need to “design with gender in
mind” (Negin et al. 2009). Stronger female participation in
participatory research approaches could also provide some
insights into women’s adaptive capacity and identify new pro-
posals to develop sustainable agriculture.

Empowering women through agriculture also has the po-
tential for cascading effects through households and commu-
nities due to women’s role as managers of daily life, including
health, children’s education and welfare, and market activity
(Negin et al. 2009). Thus, agricultural development needs to
address persistent gender gaps to achieve sustainable agricul-
ture (Misselhorn et al. 2012; Doss et al. 2018; Pattnaik et al.
2018).

Our review did not capture youth and vulnerable people as
the keywords selected to represent SDG 5 on gender equality
only focused on women (Mat Sup. Table 1). Young people
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often do not have access to land, input or financial capital and
they do not participate in decision making of the household or
villages, their voices are poorly studied (Amsler et al. 2017).
Yet, young people have probably an understanding of climate
change and idea and opinions on how to adapt to it. Specific
research and attention are needed on youth population.

4.2.2 Economic tools to reduce vulnerability and improve
adaptation

Increasing market access. Using innovative technologies
could increase farmers’ income. There are several examples
in the literature. Conservation agriculture can improve rural
incomes and livelihoods by reducing production costs, espe-
cially on small and medium-scale farms (Hobbs et al. 2008;
Marahatta 2014). Organic farming could be a lever to enhance
economic growth and fight poverty, as organic farm produce
is usually sold at a higher price than conventional farm pro-
duce (SDG 8 and SDG1) (Rahmann et al. 2009). Agroforestry
practices could improve farmers’ livelihoods, enhance their
income, and reduce their economic vulnerability through the
diversification of agricultural and forestry products while re-
ducing GHG emissions (Rakotovao et al. 2021).

Improvement of opportunities and diversification of mar-
ketable products are the most commonly identified proposals
for providing a safe economic route for farmers (Hernández-
Morcillo et al. 2018). In developing countries, markets rely on
infrastructures such as roads to be developed to reduce trans-
portation costs and boost access to output markets (Altieri
et al. 2012; Holden 2018). These opportunities and diversifi-
cation are possible when there is greater diversity in the crop
production system, and if farms are able to integrate a carbon
market. Integrating trees, compost, SRI or any other agricul-
tural techniques that limit GHG emissions are ways of secur-
ing a range of multiple ecosystem services and perhaps, in the
medium term, earning money on the emerging carbon market
for agriculture (Bryan et al. 2010; Rakotovao et al. 2021; van
Oosterzee et al. 2014). However, this market for farmers is
still disconnected from the current financial realities.

Favoring access to microfinance. Microfinance appears as a
potential solution for supporting direct climate change ad-
aptation actions in the agricultural sector. Microfinance is
a formalized financial service to low-income and disad-
vantaged households that are not served by the conven-
tional banking sector. Supporting households with micro-
credit reduces their vulnerability to the adverse impact of
climate change and enhances their access to agricultural
inputs (Antwi-Agyei et al. 2015). However, micro-credit
may not be enough to cover all requirements for agricul-
tural climate action (Peterson 2012).

Developing insurance tools.Agriculture insurance is a valuable
tool for managing climate-related shocks and supporting farmers
willing to change their agricultural practices. Insurance helps
reduce farmers’ losses in the event of a climate disaster
(Budiman et al. 2016). Index-based weather insurance is one
such financial tool. It pays out benefits based on predefined levels
of weather variables such as annual rainfall, temperature, floods
or droughts. Furthermore, providing index-based weather insur-
ance reduces the production risk and enhances technology adop-
tion (Holden 2018). Agriculture insurance has to secure the
whole agri-food value chain. It could also be a proposal for
reinforcing the links between all stakeholders in that production
value chain (Janzen et al. 2016).

4.2.3 Improving working conditions and farmers’ livelihoods

Better working conditions and productivity gains are the two
main incentives that support farmers. Different approaches have
been put forward to evaluate the extent to which farmers’ gains
meet their needs and match their way of life. For example, in
livestock farming, the Qualification and Evaluation of Work
method (QuaeWork) is one such approach, used by stakeholders
(advisors and researchers) to identify the trade-offs in resources
as well as the labour allocation of a livestock system. The
QuaeWork method takes into account (i) the duration of routine
work and of the seasonal work in the calculation of the system’s
productivity and (ii) the flexibility (room for manoeuvre) and
adaptability to internal and external events. The QuaeWork
method should help to improve work efficiency and flexibility
with regard to unknowns (e.g., climatic hazards, uncertainties
over labour availability) and to other farm activities, including
free time (Hostiou and Dedieu 2011).

4.3 Policies supporting actions

Financial or/and resource constraints denote economic disin-
centives to investment in agriculture (Giller et al. 2009). Time
can also be a deterring factor to investment into new farming
systems (Baudron et al. 2007). Farmers tend to consider argu-
ments about the immediate costs and benefits in light of the
production constraints or food insecurity they face. It can be
difficult to adopt proposals that bring benefits in the medium
or long term, or that involve potential risks. Consequently,
although biophysics, techniques and socioeconomic drivers
(Tables 1 and 2) must be taken into consideration, the political
environment and policy decisions also influence the future
sustainability of agriculture (Archer et al. 2008; Fałkowski
2017). There is less scientific-based evidence on policies
supporting actions to invest in the agricultural sector for cli-
mate change issues than for food security or global agricultur-
al issues (Table 3). The references identified during our ana-
lysis include a few references on policies that support invest-
ments in infrastructure or inmarket development, but very few
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policies that protect farmers and equitable decisions with
knowledge shared between stakeholders. An urgent need for
references on developing tools to guide policy is also apparent
(Table 3). The on-farm and socioeconomic proposals seen in
the previous paragraphs need to be supported by political in-
centives and investments if they are to be applied effectively.
Again we have not produced an exhaustive list of all the pol-
icies supporting actions reported by the scientific analysis and
papers, and instead only briefly detail some of them, while
showing how these policies can also achieve several SDGs
(Fig. 5).

4.3.1 Investing in sustainable agriculture

Smallholding agriculture produces the largest share of food
calories and supports 2–2.5 billion people on the planet, most
notably in developing countries. A vast majority of Nationally
Determined Contributions (NDCs) propose action in the agri-
cultural and forestry sector to mitigate climate change or to
adapt to it. However, only 10% of the Green Climate Fund
budget finances projects in agriculture or forestry (Buto et al.
2021). Considering the multifunctional role of agriculture in
economic, social and environmental issues, especially
targeting SDG 10 – Reduced inequality (Rusu and
Simionescu 2016), investment policies should increase the
focus on the agricultural sector to encourage and support
farmers to adopt or maintain sustainable practices.

Investing in infrastructure. Increasing investments in agricul-
tural extension and infrastructure, especially irrigation, roads,
and energy, should enhance the rates of return on investments
in the agricultural sector. For example, in landscape and water
management, agricultural policy should promote flexible crop
irrigation through investment in irrigation infrastructure (SDG
9) to protect the water ecosystem (Froger et al. 2012;
Rodenburg et al. 2014).

In addition to rural areas, agricultural policies should also
invest in the promotion of urban and peri-urban agriculture
with tree planting, crop farming and waste recycling activities.
This could support both agricultural production and sustain-
able cities (SDG 11), i.e., livelihood improvement, poverty
reduction, global warming reduction, and urban food security
(Lwasa et al. 2015).

Investing in market development. To promote sustainable
agriculture, policies have an important role to play through
the development and support of local or regional markets.
Policies that support small farms by correcting for the market
failures inherent in smallholder agriculture, especially in the
early phases of agricultural development, are a particularly
promising strategy to achieve pro-poor growth (Birner and
Resnick 2010). The necessary market information systems

should provide support with product valuation and deliver
comprehensive, analytical information on other aspects of
the markets. Policies should promote local or inter-regional
trade for agricultural products, support market prices, and de-
velop product marketing (e.g. organic product, Fair Trade)
and new markets. For instance, the success of agroforestry
systems also depends on the existence of and access to a
market for all agroforestry products. This potential market
would encourage farmers to improve genetic resources and
tree planting (Mbow et al. 2014). Another recommended strat-
egy is promoting conservation agriculture, creating another
income stream for resource-poor farmers through payments
for ecosystem services, e.g., carbon sequestration in terrestrial
ecosystems (Lal 2009). However, access to this market for
smallholder farmers is still a mirage (Lestrelin et al. 2019).

4.3.2 Protecting farmers’ well-being, economic
self-sufficiency and health

Securing land tenure. Land is one of the few productive assets
owned by the rural poor. Insecure access to land or land tenure
often contributes to the unsustainability of agriculture. Land
tenure policies are important when faced with the case of
large-scale land acquisition for agriculture. While such acqui-
sitions can provide benefits for host governments, they also
have negative impacts on food and tenure security, and on the
livelihoods and peace of local communities (SDG 16) (Carter
et al. 2017).

Insecure land tenure undermines the incentives for small-
holders to invest in crop diversification and other techniques
(Mbow et al. 2014; Rodenburg et al. 2014). This is felt even
more strongly among women farmers. However, the willing-
ness of policymakers to create a policy environment that se-
cures people’s position on their own land would improve the
adoption and upscaling of the proposed technologies (Partey
et al. 2017). In many parts of the world, land tenure depends
on “co-viability where the social system relies on the ecolog-
ical system in which they live and on which they remain
dependent for their reproduction and survival.” Therefore,
policies need to focus on environmental rights that reflect
cultural and ecological realities to be effective in the long term
(Barrière 2008).

Supporting credit provision. Farmers’ income and capital can
lead to better adoption of practices (Prokopy et al. 2008).
Policies should promote the provision of credit to enhance
farmer productivity through improving livestock, purchasing
agricultural inputs and acquiring land (Hassen et al. 2017;
Holden 2018). For example, supporting credit for livestock
could help farmers because farm animals are a major asset,
representing both capital and, in many cases, a source of in-
come (Mottet et al. 2018).
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Regulating the use of pesticides and genetic resources There
is a strong requirement (SDG 17) to protect farmers and people’s
well-being (SDG 3) from threats from agriculture. Biodiversity,
including soil biodiversity (SDG 15), is also targeted by agri-
environmental policies (Putten et al. 2010). For example, because
of the (environmental and health) risks associated with pesticide
use, Latin American countries have established laws and regula-
tions to control the production and use of pesticides (Furley et al.
2018). All these regulations targeted more food security issues
than climate issues (Table 3). However, regulating the use of
pesticides and genetic resources can indirectly affect the adapta-
tion and mitigation of agricultural practices to climate change
through crop diversification and livestock welfare (see Sect. 4.1).

4.3.3 Supporting equitable policy decisions with knowledge
shared between all stakeholders

Gathering data and farmers’ perceptions on agricultural prac-
tices. Agricultural adaptation and mitigation policies should be
inclusive, considering the equality of opportunity, and should
benefit vulnerable regions and people (SDG 10) (Luo et al.
2017; Tongwane and Moeletsi 2018). The lack of data and
scarcity of long-term studies on agricultural practices at all
scales and all over the world impede the development of sus-
tainable agriculture adapted to each specific environment. Thus,
it is more important than ever to document and provide figures
on current agricultural practices and their agronomic, socioeco-
nomic, and environmental performances. Specific policies
should aim at improving knowledge and information sharing
and include all stakeholders, from extension services to farmers
and research and development, to identify and disseminate best
practices both at local and national scale. Policies should en-
courage interdisciplinary and transdisciplinary research
(Chevallier et al. 2020). Knowledge on traditional and local
indigenous practices should be incorporated into the design
and implementation of climate adaptation strategies (Antwi-
Agyei et al. 2015). A key recommendation for policies is to
reinforce bottom-up and top-down synergies with monitoring,
evaluation and learning actions, considering both research con-
tributions and farmers’ views (Bizikova et al. 2015, 2014). In
particular, this participatory research and knowledge sharing
should focus on smallholders, women, youth, and poor
resource-dependent communities, on the networks that facili-
tate linkages among sector stakeholders, and on extension offi-
cers through increased staff numbers and staff training
(Hernández-Morcillo et al. 2018).

Investment in research and monitoring should also support
long-term studies to provide data and inventories on the over-
all diversity of agricultural production systems in order to
inform public policy on their potential impacts on different
issues (e.g., health, livelihood, economy and environment).
Special efforts are needed to set up methods that allow data
comparisons and collections.

Developing tools to monitor and assess progress. The scien-
tific literature offers tools and frameworks to improve agricul-
tural and climate policies. For example, calculators to assess
the GHG balance of agricultural and forestry scenarios at land-
scape scale, or the use of the marginal abatement cost curve
(MACC). The MACC approach is a framework commonly
used to summarize information on potential mitigation efforts
and can help in identifying the most cost-effective managerial
and technological GHG mitigation options (Eory et al. 2018).
To guide policy, research needs to develop models that can
evaluate adaptation technologies in different environmental
and socioeconomical contexts (Furuya et al. 2015; Pellerin
et al. 2017; Rakotovao et al. 2021). There is also a need to
better align international support and national priorities by
promoting better monitoring of the agricultural projects im-
plemented across multiple funding agencies (Tongwane and
Moeletsi 2018). Tools to appraise the social dimension (e.g.,
labor conditions, quality of life, and societal impacts) of sus-
tainable agriculture are still under debate and development.

Empirical evidence shows that it is difficult to implement
policies and to explain why and how policy changes leading to
pro-poor agricultural growth happen. Inconsistency between
different policies focusing on different stakeholders or scales
need to be identified to limit the inequities and support sus-
tainable agriculture at a global scale. For example, in the case
of European Union (EU), subsidies for production and exports
helped EU farmers but made competition difficult for local
producers in developing countries (Bureau and Swinnen
2018). Thus, the success of policies depends on diverse fac-
tors. For example, in China, rural institutional innovation,
technology change, market reform and investment in agricul-
ture are the four major drivers that contributed to China’s
agricultural growth in the past, but the challenge of resources
and environmental degradation have intensified, while con-
cerns about sustainable agricultural development are rising
(Huang and Yang 2017). There is a need to consider interac-
tions and interdependency between all the drivers of sustain-
able agriculture (Chevallier et al. 2020).

5 Document synergies and trade-offs
within the different components
of sustainable agriculture

Our review shows that KJWAhas been abundantly document-
ed in the scientific literature. Because the multiple dimensions
of agriculture could be seen as part of the global food systems,
where climate, land, soil, and biodiversity converge, scientific
papers reviewed pointed out the fact that KJWA topics are
also targeted towards several SDGs (Fig. 5) and not only cli-
mate issues. Indeed, sustainable agriculture could be consid-
ered as one of the most efficient ways of achieving a “just and
safe space,” i.e., a space that considers both the planet’s limits
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(Rockström et al. 2009) and socioeconomic concerns (O’Neill
et al. 2018; Raworth 2017). However, only few papers con-
currently documented the synergies and trade-offs of the ag-
ricultural practices, or economic and political incitations pro-
posed to tackle climate change mitigation. While mitigation
and adaptation programs would bring immense benefits to
society, it could also be disruptive and costly for some, at least
in the short term. Thus, research on climate policy has to focus
on how low-carbon transitions in agriculture, or in any other
sector, can be implemented justly, equitably, and politically
smoothly (Green and Gambhir 2020). Similarly, the adoption
of the Sustainable Development Goals has paved the way for a
transformative agenda to “leave no one behind.” To do so,
interdisciplinary, inclusive and participatory research are pro-
gressively developing, through different framework and ap-
proach (e.g., nexus, value-chain or agroecology).

Since 2015, the United Nations considers the nexus ap-
proach as key to supporting countries to achieve this ambitious
agenda. Exploring and documenting these interactions between
SDGs could help to achieve the SDGs (Nilsson et al. 2016;
Pedercini et al. 2019; Pradhan et al. 2017). The nexus method
integrates multiple sectorial elements, energy, climate, soil and
water, and food production within an overarching governance
approach. Nexus thinking is normatively argued to help transi-
tion societies towards greener economies and the wider goal of
sustainable development (Benson et al. 2015). The nexus ap-
proach needs: (i) to consider all selected approaches—techni-
cal, socioeconomic, and political—with the same weight; (ii) to
support farmers with all aspects: food security, income, and
climate; and (iii) to reduce farmers’ exposure to shocks and to
strengthen their resilience by enhancing their individual and
collective capabilities and by addressing these interconnected
difficulties. Progress in implementing the nexus approach has
been hampered by a lack of clarity about what it means, both in
theory and in practice, and how it meaningfully contributes to
supporting achievement of the SDGs. Howe (2019) proposed
four changes that make the approach more effective: the com-
mon acceptance of impacts, an alignment of efforts across the
SDG targeted by the nexus, a focus on collective outcomes, and
more holistic assessments. There is also a need to reinforce
nexus implementation both at a local scale and national scale.
In our review, few nexus emerged from 12 of the 175 publica-
tions reviewed (Albrecht et al. 2018; Benson et al. 2015; Elum
et al. 2017; GhaffarianHoseini et al. 2016; Harvey 2014;
Kristjanson et al. 2017; Lal 2013; Misselhorn et al. 2012;
Mpandeli et al. 2018; Singh et al. 2015; Sonwa et al. 2012;
Tian et al. 2018). We have identified four major nexus to be
considered:

& The Water-Energy-Food nexus considers the three most
important resources to human life and well-being (Benson
et al. 2015; Fabiani et al. 2020; Misselhorn et al. 2012;
Mpandeli et al. 2018; Sonwa et al. 2012; Tian et al. 2018).

& The Food-Energy-Climate nexus stresses interactions be-
tween food and bioenergy demand under climate change,
emphasizing several tensions: (i) more food results in more
climate change; (ii) burning fossil fuels accelerates climate
change; (iii) failure to find alternative energies results in un-
ending economic depression; (iv) biomass energy alterna-
tives increase demand for land; and (v) climate change neg-
atively impacts land productivity, requiring more land for
food supply (Albrecht et al. 2018; Elum et al. 2017;
Harvey, 2014; Renzaho et al. 2017; Turner et al. 2018).

& The Water-Soil-Waste nexus stresses interlinkages be-
tween the use of water and waste in agriculture, land ten-
ure, and soil management. It emphasizes several tensions:
(i) economic growth and an increase in gross domestic
product lead to the generation of waste or by-products,
along with the contamination and eutrophication of soil
and water resources; (ii) the international trade in
food/feed products involves the transfer of virtual water,
which is a serious issue when water-scarce countries ex-
port virtual water to water-endowed countries; (iii) the
sustainable intensification of agroecosystems (Avellan
et al. 2017a, 2017b; Bouma 2021; Lal 2013).

& Agriculture-Biodiversity-Climate nexus. Although not
documented in our bibliometric analysis, the relationships
between SDGs 2, 15, and 13 are at the heart of recent
international panels (IUCN = Common ground; restoring
land health for sustainable development; UNEP =Making
peace with nature; IPBES-IPCC = Biodiversity and cli-
mate change). In our analysis (Sect. 4.1), we also discuss-
ed the synergies between biodiversity conservation or en-
hancement in or between agricultural plots and adaptation/
mitigation of climate change. Better documenting syner-
gies and trade-offs between these two joint challenges
(biodiversity and climate change) in agriculture, however,
remains essential to consolidate the role of agriculture and
sustainable food systems on the 2030 agenda.

In order to propose “no-regrets” actions taking into account
trade-offs and synergies within these nexus, different points of
view and perspectives from diverse stakeholders are needed.
“No-regrets” actions should be actions increasing resilience,
dealing with different types of hazards in a timely, efficient,
and equitable manner. Research can be envisaged through:

& Value chain approach in agriculture: Historically, agricul-
tural production has focused on producing generic com-
modities for the feed. Today, agricultural production is
seen as a segment of sustainable food system, which is
defined as “a food system that ensures food security and
nutrition for all in such a way that the economic, social and
environmental bases to generate food security and nutri-
tion of future generations are not compromised” (HLPE
2017). Value chain that is a broad spectrum of activities
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that are required to bring a product or service from con-
ception, through the different phases of production, deliv-
ery to final consumers, and final disposal after use (Gomez
and Ricketts 2013), should be documented accordingly to
the various food systems. In today’s telecoupled world,
the interplays between diets and production systems need
to be documented to support sustainable development,
conserve biodiversity, climate mitigation, land degrada-
tion (Chotte and Orr 2021; Pradhan and Kropp 2020;
Wang et al. 2022).

& Agroecology could be seen as a lever for synergizing these
nexus, since agroecology is seen as going beyond mere
food production, being part of the global food systems
(Caron et al. 2018). Agroecology brings together technical
and socioeconomic aspects and targets the multiple func-
tions of agriculture. It is gaining in importance in discus-
sions about sustainable food systems (Gascuel-Odoux
et al. 2022). This is reflected in the ten principles defined
by the FAO and their links with the SDGs (FAO 2018).

6 Conclusion: research needs
for the implementation of this new KJWA

The science-based evidence has paved the way of the KJWA
which has came to an end in 2020. Our review reveals few
research gaps which need to be addressed to keep nurturing
the future KJWA process.

Based on this rewiew and analysis, we would recommend
an extension of the KJWA process. For this extension, we
recommend to align the future Koronivia to the nexus ap-
proach and to promote

& Research on implementations and impacts of public policy
at different levels and for diverse stakeholders. This could
include the effects of setting up grants or implementing
qualifications/certification of the production/distribution
practices, and the role of the private sector in innovative
incentives on diverse targets, not only climate targets.

& Research on multicriteria analyses on value-chain and on
various territories need to be developed. The monitoring
tools are currently lacking.

& Research for scaling up agroecology and on how to assess its
multi-functionality (Wiget et al. 2020). Methods with large
sets of indicators have been published to assess how agricul-
tural systems target multiple challenges and SDGs.
However, improvements in these assessments are needed to
better understand societal, environmental and technological
dynamics, the possible conflicts between values within agri-
cultural systems (Renn et al. 2020) and the positive and
negative drivers in the transition of agriculture towards
agroecology.

& Research to propose effective monitoring methods. For
example, the definition of the criteria and indicators re-
quired to evaluate the impacts of policies need to be ad-
dressed. This definition could be itself a research topic:
e.g., which indicator, to what reference or baseline to com-
pare, are the criteria and indicators appropriate and legitim
for all the stakeholder of the system assessed.

& “In situ” experimentations, meta-analysis of data from
these experimentations but also modelisations to identify
trade-offs and synergies of agricultural practices and eco-
nomic or policy actions on several SDGs in various con-
text. We have noticed that case studies, on agronomy,
water and soils, production systems are numerous. It is
necessary to promote in situ experimentations and data
organization of these case studies in various contexts to
allow meta analysis on the impact of these case studies on
several SDGs.

& Research on the vulnerability of rural youth, and the role
of women, the working conditions that affect production
systems, as well as the need to share the financial risks of
innovation.

To conclude, we think that interdisciplinary and participa-
tory research programs would boost the future of KJWA.
Research should help to evaluate the impacts of the multi
dimensions of agriculture and identify their synergies and
their trade-offs to make KJWA contributing a sustainable de-
velopment for all.
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