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SUMMARY
Increasing nitrogen (N) deposition often tends to negatively impact the functions of belowground ectomycor-
rhizal networks, although the exact molecular mechanisms underlying this trait are still unclear. Here, we
assess how the root-associated fungus Clitopilus hobsonii establishes an ectomycorrhiza-like association
with its host tree Populus tomentosa and how this interaction is favored by organic N over mineral N. The
establishment of a functional symbiosis in the presence of organic N promotes plant growth and the transfer
of 15N from the fungus to above ground plant tissues. Genomic traits and in planta transcriptional signatures
suggest that C. hobsonii may have a dual lifestyle with saprotrophic and mutualistic traits. For example,
several genes involved in the digestion of cellulose and hemicellulose are highly expressed during the inter-
action, whereas the expression of multiple copies of pectin-digesting genes is tightly controlled. Conversely,
the nutritional mutualism is dampened in the presence of ammonium (NH4

+) or nitrate (NO3
�). Increasing

levels of NH4
+ led to a higher expression of pectin-digesting genes and a continuous increase in hydrogen

peroxide production in roots, whereas the presence of NO3
� resulted in toxin production. In summary, our

results suggest that C. hobsonii is a facultative ectomycorrhizal fungus. Access to various forms of N acts
as an on/off switch for mutualism caused by large-scale fungal physiological remodeling. Furthermore, the
abundance of pectin-degrading enzymeswith distinct expression patterns during functional divergence after
exposure to NH4

+ or organic N is likely to be central to the transition from parasitism to mutualism.
INTRODUCTION

Plant-microbe interactions are profoundly affected by environ-

mental conditions.1,2 For example, exposure to bright light trig-

gers pathogenic behavior by the fungusDiplodiamutila (Botryos-

phaeriales, Ascomycota), whereas reduced illumination favors

endophytic development.3 The impact of nutrient levels on sym-

biotic behavior is also recognized.4–7 High levels of nitrogen

(N) and phosphorus (P) often prevent establishing mutualistic in-

teractions, as manifested in N-fixing rhizobia, arbuscular mycor-

rhizal (AM), and endophytic fungi. The molecular mechanisms

linking nutrient levels to symbiosis are investigated in detail

during N-fixing in leguminous plants.8 Legumes use two

signaling peptides, the C-terminally encoded peptides and the

CLAVATA3/endosperm surrounding region-related peptides, to

inversely regulate nodulation.9 The expression of these genes

is under the control of the nodule inception transcription factor,

allowing the plant to sense, and appropriately respond to,

changing levels of N.10 The recent discovery of a P-sensing
Current Bio
pathway regulated by a network of phosphate starvation

response transcription factors in AM symbiosis11 suggests that

symbiotic plants are evolved robust and conserved mechanisms

to respond to changing nutrient levels.12

A less investigated, but equally important, question is how

symbiotic microbes sense soil nutrient forms available to them.

Globally, the ongoing deposition of high levels of anthropogenic

N, primarily in mineral form, poses amajor ecological threat. This

raises an intriguing question about how the unbalanced N cycle,

the changing ratio of organic and mineral N, and the resulting

ecological consequences impact on biotic interactions, such

as plant-microbe symbiosis. Large-scale ecological observa-

tions suggest that the disruption of belowground ectomycorrhi-

zal (ECM) networks and the increase of tree pathogen diversity

correlate closely with increasing N deposition.13–18 However,

the mechanisms underlying the mycorrhizal dysfunction remain

poorly explained.

Filamentous fungi are known to exhibit divergent physiological

behaviors when utilizing different N forms. Most ECM fungi
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preferentially utilize organic N, such as amino acids, followed by

ammonium (NH4
+),19–21 whereas only a small proportion of taxa

appear to readily metabolize nitrate (NO3
�) as sole N source.13,22

These foraging preferences presumably correlate with the N sta-

tus of their soil habitats.23,24 It is tempting to speculate that

changes in available N forms could lead to a reprogramming of

fungal metabolism and then alter the beneficial interactions

with hosts. Gallart et al.25 found that organic N favored the

growth of ECM and endophytic fungi, whereas mineral N stimu-

lated the proliferation of saprotrophic/parasitic fungi in soils, ul-

timately causing disease symptoms in plants16,26 and reducing

Hartig net depth.15 It is found that different N forms drastically

change the physiological status of the versatile basidiomycetous

mutualistic endophyte Serendipita indica. In this relationship,

mineral N supply change the interaction between the plant and

S. indica, shifting it from mutualistic to antagonistic.27 With re-

gard to root dark septate endophytes (DSEs), organic N supply

is more likely to be beneficial for plant-DSEs associations.28,29

In the case of alga-protozoan symbiotic association, organic N

rather than mineral N stabilizes cooperation within the holo-

biont.30 These pieces of evidence raise the question of how

different N forms affect the fate of plant-fungus symbiotic

associations.

In the present study, we tackled this question by focusing on a

novel tree-fungus association involvingClitopilus hobsonii (Ento-

lomataceae, Agaricales). This species is considered a soil

decomposer because it is widely found in debris of herbaceous

or woody plants.31,32 Also, in our previous studies, C. hobsonii

could be identified from ECM root tips of oak tree species (Quer-

cus spp.).33,34 Of note, we did not have direct evidence for sup-

porting it as an ECM fungus associated withQuercus. Therefore,

we remain cautious to consider it a root endophyte, character-

ized by its ability to promote tree growth and nutrient uptake,

especially under low K+ conditions.33,35 To investigate how this

beneficial association responds to different forms of N, we ad-

dressed the following questions: (1) How does the fungus

respond to different N forms at the physiological and molecular

levels? (2) How do different N forms influence the plant-

C. hobsonii interaction? (3) What are the main genetic processes

contributing to the outcome of this dynamic interaction? (4) Does

C. hobsonii share genomic idiosyncrasies (e.g., a restricted set

of plant cell-wall degrading enzymes [PCWDEs]) with ECM

fungal genomes?

RESULTS

C. hobsonii preferentially forages organic N
We measured the in vitro N requirements of C. hobsonii by

growing the fungus on three N sources. Using NO3
� as an N

source, the mycelium produced sparse colonies, with only a

thin layer of aerial mycelium, indicating a very poor ability to uti-

lize this N source. This treatment accelerated hyphal growth

(12 days, ANOVA, F = 94.596, df = 26, p < 0.001) (Figures S1A

and S1B). In contrast,C. hobsonii grewwell on NH4
+ and organic

N, with colonies growing on the latter being clearly distinguish-

able by their larger diameter. Mycelia produced the largest

biomass on a liquid medium containing organic N (30 days,

ANOVA, F = 180.69, df = 14, p < 0.001) (Figure S1C), exhibiting

a clear preference toward organic N over NH4
+ and NO3

�. The
5236 Current Biology 32, 5235–5249, December 19, 2022
different N forms had differential quantitative effects on the

growth and morphology of mycelium. It is also noted that NH4
+

uptake led to a rapid drop of pH, from 5.8 to 2.8, suggesting

that the fungus released H+ into the medium (Figure S1D). The

pH values remained unchanged on NO3
� or increased slightly

in the presence of organic N. In addition, the three N forms

also changed the ability of the mycelium to penetrate through

a cellophane membrane. Penetration was more pronounced on

organic N medium (Figure S1E).

C. hobsonii forms a mutualistic interaction with plants if
organic N is available, whereas mineral N sources
trigger parasitism
When poplar cuttings were grown on NH4

+- or NO3
�-containing

media, shoot growth was considerably reduced in the presence

of C. hobsonii, and the development of newly grown roots was

completely arrested with wilting and falling leaves. Under these

conditions, fungal hyphae even extended to aboveground plant

tissues including stems and leaves. After a prolonged exposure

to the mycelium, signs of shoot necrosis appeared (Figures 1A

and S2A), indicating aggressive fungal colonization. In contrast,

no conspicuous disease development was observed when the

plants and the fungus were cultured in the presence of organic

N, and hyphae growing outside the inoculated roots did not

extend to the aboveground tissues (Figure 1A). Furthermore,

numerous adventitious roots were produced after 2 weeks of in-

cubation. This beneficial interaction appeared to be stable over

months of co-cultivation (Figure S2B). Initially, a mixture of five

amino acids was used as an organic N source, whereas in later

experiments, we confirmed the beneficial effect of organic N

by using bovine serum albumin (BSA) (Figure S2C). Taken

together, these findings suggest that C. hobsonii behaves as a

beneficial biotrophic fungus in the presence of organic N,

whereas acting as a pathogen when fed on mineral N. Notably,

WGA staining confirmed that C. hobsonii developed intercellular

hyphae resembling the Hartig net and mycorrhizal mantle-

like structures inside the roots 1 month post-inoculation

(Figures 1B and 1C). Furthermore, non-ECM roots were heavily

colonized by microsclerotia-like structures consisting of aggre-

gates of spherical hyphal cells (Figure S3). These, in most cases,

filled entire root cells, reminiscent of DSE interactions. This colo-

nization pattern was analogous to that observed in the symbiotic

system between sweetgum tree and C. hobsonii.35

Based on the observed phenotypic alterations of inoculated

plants, we speculated that the fungus was parasitic when grown

on mineral N. H2O2 generation from the oxidative burst is a

common plant immune response in both pathogenic and bene-

ficial plant-fungus interactions.36 Thus, H2O2 abundance was

measured and compared in roots under the three N form-

plant-fungus combinations, across two time points. Histological

imaging showed the most prominent dark brownish-red precip-

itate staining in root tips after 12 h post-inoculation in the pres-

ence of NH4
+. Under organic N condition, H2O2 production

was less pronounced but still evident (Figure 1D). In contrast,

almost no H2O2 generation was observed in NO3
� (Figure 1D)

(ANOVA, F = 43.372, df = 92, p < 0.001). 60 h post-inoculation,

root H2O2 contents increased significantly in the presence of

NO3
�, whereas a reduction was seen under organic N condition

(ANOVA, F = 42.364, df = 96, p < 0.001). The accumulation of
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Figure 1. Organic N triggers ectomycorrhizal development in plant-C. hobsonii association

(A) Impact of three N forms on the outcomes of plant-C. hobsonii interactions. Under organic N condition, the fungus benefits poplar growth, improving

adventitious rooting. Plant growth is severely inhibited upon inoculation under mineral N (either NH4
+ or NO3

�) conditions, and mycelia are extended to

aboveground plant tissues. Plants are photographed at 4 weeks after incubation.

(B) Ectomycorrhizal-like root development, photographed by an ultra-depth-of-field optical microscope.

(C) Transverse section of ectomycorrhizal root tips. Plant cell walls are stained with PI and fungal hyphae are labeled withWGA. Mantle-like structures, and Hartig

nets are indicated by white arrows. M, mantle; H, Hartig net.

(D) Quantification of DAB staining intensity at 12 and 60 h after root inoculation, showing contrasting H2O2 production under the three N forms conditions. At least

12 root tips from each treatment group are inspected for greater accuracy. Statistical significance is calculated using ANOVA (p < 0.05). Error bars represent SD of

replicates. Different lowercase letters indicate significant differences.

(E–H) In each comparison, 12 plants per treatment are used to measure plant phenotype, including root fresh weight (E), number of root tips (F), root length (G), and

shoot fresh weight (H) at 40 days after incubation. Statistical significance between inoculated and control groups is calculated using Student’s two-sample t test.

(I) Measurement of nutrient concentrations (N, P, and K) of belowground and aboveground tissues.

(J) Setup of microcosms for testing N transfer from the mycelia to plant roots. A fungal plug is placed on one side of a split Petri dish containing the organic N

medium and grown for 1 week before gnotobiotic plants are placed into the system. A sterile, moistened cotton wool ball is added to protect the plant from drying

out. 15N tracer is added to a round chamber in the hyphal compartment.

(K) d15N signature detection from the shoots and leaves of plants, indicating active N transfer from C. hobsonii to plants. Error bars represent SD of replicates.

See also Figure S2.
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Figure 2. Organic N-fed C. hobsonii triggers adventitious rooting in detached leaves and promotes growth in cell suspensions

(A) Mycelia pre-grown on NH4
+ or NO3

� induced leaf bleaching and dark-brown lesions, respectively, whereas leaves show no symptoms under organic N

condition. Leaves of similar size and age are covered with sterile glass slides to guarantee tight contact. Cultures are maintained at 24�C under a 12 h light/12 h

dark cycle in a growth chamber. After 1 week incubation, leaves are photographed.

(B) Organic N-fed mycelia trigger adventitious rooting from the cut end of petioles. Leaves are recorded by an ultra-depth-of-field optical microscope after

4 weeks of inoculation. Newly emerging roots are indicated by a red arrow.

(C) Effects of crude extracts from mycelia fed on three N forms on the growth of poplar suspension cells. Poplar suspension cells are indicated by black arrows.

(legend continued on next page)
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H2O2 was continuous under NH4
+ condition (Figure 1D). It is thus

apparent that roots infected by the fungus under three N forms

conditions exhibited different cellular responses. In the presence

of NH4
+, the fungus causesmore severe oxidative damage to the

root tissues and the ingress was accompanied by a marked

burst of H2O2 production. In contrast, a sudden increase of

H2O2 production was detected at the second time point in the

presence of NO3
�. This pattern probably reflected a delayed

onset of the pathogenic interaction. It appears that the fungus,

grown on organic N, induced a similar defense process but

with a milder oxidative burst. Altogether, H2O2 changes seen

during the early infection stage suggested a dynamic symbiosis

ranging from parasitic to mutualistic.

Under organic N condition, root fresh weight, total root num-

ber, total root length, and fresh shoot weight all increased after

inoculation with C. hobsonii (Student’s two-sample t test, p =

0.015, p < 0.001, p = 0.017, and p = 0.074, respectively)

(Figures 1E–1H). Notably, N concentrations in the shoots and

roots of inoculated plants were higher compared with mock-

inoculated plants (Student’s two-sample t test, p < 0.001 and

p = 0.021, respectively) (Figure 1I). In comparison, p concentra-

tion only increased slightly in roots (Student’s two-sample t test,

p = 0.079), whereas p concentration in shoots and potassium

concentration in whole plants were not affected by the fungus

(Figure 1I).

In the microcosm system used to track the transfer of 15N be-

tween partners, the compartments allowed mycelia growth over

the barrier, but roots could not penetrate 15N containing

compartment (Figure 1J). Therefore, the uptake of 15N in the

root of the plant was entirely dependent on transport via the

fungal mycelium. C. hobsonii-inoculated plants were cultivated

in the presence of 15N-labeled glycine for 4 weeks. Evidence

for the incorporation of 15N in both stems and leaves indicated
15N translocation from the fungus to the aboveground parts of

the host plant (Figure 1K). As similar isotope signatures were

not detected in control plants, leakage of 15N from the small Petri

dish containing the isotope could be excluded. Additionally, API-

ZYM assays revealed a strong trypsin reaction in mycelia grown

in the presence of organic N, whereas the same assay was nega-

tive when the fungus was grown on mineral N (Figure S4; STAR

Methods). These data implied a trypsin-like proteolytic activity

that degrades organic N before it is being provided to the plants.

This was consistent with the notion of a mineralization process

taking place in C. hobsonii before the N was transferred to the

plants.

Mycelia fed on organic N trigger adventitious rooting on
detached leaves
Fungal development and plant responses were also examined

using detached leaves. The leaves showed no necrotic symp-

toms, and adventitious rooting was initiated at the cut end of

the petioles in the presence of C. hobsonii grown on organic N.
(D–G) Comparison of the effect of crude fungal extracts on the proliferation and siz

an ANOVA. Different lowercase letters are indicating significance levels. Cell sus

(H) Phytohormone concentrations in extracts from mycelia and filtered culture

replicates. IAA, indole-3-acetic acid; IBA, indole-3-butyric acid; ABA, abscisic ac

JA, jasmonic acid; MeJA, methyl jasmonic acid; GA3, gibberellin A3.

See also Figure S5.
In these cultures, after 1 week, hyphae were already approach-

ing the leaf margin and petioles (Figure 2A). After 4 weeks of

inoculation, sometimes, even ECM-like structures were

observed on newly emerging roots (Figure 2B). In contrast,

when leaf tissues were incubated in media supplemented with

mineral N, the pre-grown C. hobsonii damaged the detached

leaves (Figure 2A). The latter were completely bleached when

the fungus was cultured in the presence of NH4
+, whereas

C. hobsonii caused some decay of the detached leaves when

grown under NO3
� condition. Leaves from the three control

groups remained almost completely green and healthy but failed

to develop adventitious roots.

We decided to investigate further how detached leaves

respond to exposure to soluble fungal metabolites released

into the media. The fungal colonies were pre-grown on a cello-

phane membrane covering the medium. The membranes con-

taining the attached mycelia were removed with forceps after

2 weeks. This way water-soluble metabolites that diffused

through the cellophane membrane were retained in the agar me-

dium. Detached leaves showed a substantial increase of rooting

efficiency when plated on the agar medium that previously sup-

ported the fungus in the presence of organic N (Figure S5). In

contrast, leaves placed on agar media that previously had

C. hobsonii growing under mineral N conditions were suscepti-

ble to the deleterious effects described above (Figure S5). These

observations suggested that C. hobsonii, when grown under

either NH4
+ or NO3

� conditions, produce diffusible compound(s)

inhibiting plant development (Figure S5).

The crude extracts of C. hobsonii grown on organic N
promote poplar cell growth
The aim of this series of experiments was to ascertain whether

crude extracts of the fungus grown utilizing the three distinct N

forms had any effect on poplar cell growth. Such analysis may

provide clues regarding how various N forms regulate fungal pri-

mary or secondary metabolism. Crude extracts were derived

from both lyophilized mycelia and filtered culture media. When

these crude extractswere derived frommycelia grown on organic

N medium, a significant increase in the size of the cultured cells

was seen after 10 days (ANOVA, F = 207.331, df = 277,

p < 0.001). A significant increase in cell density was also observed

at this time point (ANOVA,F = 14.818, df = 10, p = 0.002). A similar

trend was seen when using extracts of the filtered culture media.

Both cell size (ANOVA, F = 8.977, df = 293, p < 0.001) and cell

density (ANOVA, F = 13.381, df = 11, p = 0.017) showed signifi-

cant increases after 10 days. In contrast, both poplar cell density

and size were severely reduced when the cells were exposed to

extracts from mycelial or filtrates of NO3
�-grown C. hobsonii,

suggesting the release of toxic or inhibitory compound(s)

(Figures 2C–2G). The growth of suspension cells was not signifi-

cantly affected by crude extracts derived from NH4
+-grown

mycelia when compared with the control group.
e of suspension cells (six time points). Statistical significance is calculated using

pensions are grown at 26�C in darkness with shaking at 110 rpm/min.

medium. Error bars represent SD of the mean values from three biological

id; TZR, trans-zeatin-riboside; SA, salicylic acid; MeSA, methyl salicylic acid;

Current Biology 32, 5235–5249, December 19, 2022 5239



A

252 223 179 156 123 97 16 0 Mya

Genome size (Mb)Lifestyle Family Suborder

S Tricholomataceae

Tricholomatineae

Agaricineae

Pluteineae

Tricholomataceae

Lyophyllaceae

Entolomataceae

Mycenaceae

Hydnangiaceae

Hydnangiaceae

Hymenogastraceae

Agaricaceae

Pluteaceae

Serendipitaceae

Tricholomataceae ?

M

S

S

S/MS/M

S

Gene number

43.49

175.75

41.63

36.93

211.36

65.97

60.71

52.58

38.23

30.40

35.72

24.98

14,880

22,885

15,561

49,694

19,049

23,132

17,553

15,382

10,438

11,084

11,767

12,710

M

M

M

S

S

E/ME/M

CAZYmes

0.4

Biosynthetic gene clusters

C. hobsonii
H. marmoreus 
T. matsutake
L. nuda

C. gibba
M. galopus

L. amethystine 
L. bicolor

H. cylindrosporum 
A. bisporus 
V. volvacea
S. indica 

AA CBM
CE GH GT PL Indole

NRPS
NRPS-like

T1PKS
Terpene

SiderophoreB C

Calibration points
C. hobsonii
H. marmoreus 
T. matsutake
L. nuda

C. gibba
M. galopus

L. amethystine 
L. bicolor

H. cylindrosporum 
A. bisporus 
V. volvacea
S. indica 

L. nuda

T. matsutake

H. marmoreus

C. hobsonii

M. galopus

C. gibba

L. bicolor
L. amethystine

H. cylindrosporum

A. bisporus

V. volvacea

S. indica

C. puteana

D. primogenitus F. pinicola
G. trabeum

H. pinastri

S. himantioides−0.25

0.00

0.25

0.50

−0.4 −0.3 −0.2
PC1 (96.8%)

a
marmoreus

. gibba
A. bisporus

olvacea

a
m

. 
vol

PC
2 

(2
.1

%
)

T. matsutake

L. bicolor
L. amethystine

cylindrosporum
a

T. m

L. amethystine

cy
a

L. a

puteana

D. primogenitus F
G. trabeum

astri

S. himantio

White-rot and other saprotrophs

Ectomycorrhizal/Endophytic fungi

Brown-rot

Figure 3. Genome overview of C. hobsonii and related species and comparative phylogenomics

(A) Phylogenomic species tree constructed with 1,654 core orthologous single-copy genes using MrBayes v3.1.2 using the GTR model of substitution, with

gamma-distributed rate variation. Three calibration points are used to generate a time-calibrated phylogeny. Members within Agaricales across eight families,

possessing lifestyle of saprotrophic (S) and mycorrhizal fungi (M), are indicated. S. indica, either endophytic (E) or mycorrhizal, is selected as an outgroup.

Calibration points are indicated by gray arrows. Gene numbers and genome size for all species are shown on the right panel.

(B) The number of genes (secreted and non-secreted) annotated as CAZymes, as well as the number of BGCs involved in secondary metabolite biosynthesis are

indicated as bubbles. The bubble size is proportional to the number of genes from each functional family. The left panel shows themaximum likelihood phylogeny.
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(C) Principal component analysis (PCA) inferred from the secreted CAZymes of 18 fungal species. Saprotrophic fungi (gray and dark blue), with an exception of
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By using HPLC-MS profiling, a total of ten common phytohor-

mones were detected in mycelial extracts. Indole-3-acetic acid

(IAA) and salicylic acid (SA) were the most abundant metabolites

(Figure 2H). In addition, other phytohormones were detected at a

much lower concentration in the culture filtrates. Unfortunately,

unambiguous identification of the toxic compound(s) produced

by NO3
�-grown C. hobsonii was not possible due to the lack of

available reference libraries.

Features of saprotrophic and mutualistic lifestyles are
imprinted in C. hobsonii genome
We next sought to determine if the gene repertoire of C. hobsonii

displayed any footprint of the ECM mutualism, i.e., a restricted

set of genes coding for PCWDEs and toxin biosynthesis en-

zymes. To our knowledge, this was the first phylogenomic anal-

ysis of a member of the Entolomataceae family. C. hobsonii was
5240 Current Biology 32, 5235–5249, December 19, 2022
placed as a sister clade toHypsizygus marmoreus, a typical sap-

rotrophic species (Figure 3A). Of note, we found that the Lyo-

phyllaceae and Tricholomataceae could not be distinguished

clearly due to the polyphyletic nature of the Clitocybe genus.

This observation was consistent with previous studies.37–39

Despite this discrepancy, all members from Lyophyllaceae, Tri-

cholomataceae, Entolomataceae, and Mycenaceae fell within

the suborder Tricholomatineae,40 encompassing both mycor-

rhizal and saprotrophic taxa. The most recent common ancestor

of C. hobsonii and H. marmoreus was estimated to have existed

ca. 101 Ma (95% CI, 97.7–123.0) (Figure 3A).

We then characterized the repertoire of genes coding for

PCWDEs and biosynthetic gene clusters (BGCs), which play an

important role in interactions between plants and fungi.

Compared with ECM fungi, C. hobsonii genome encoded a

larger set of carbohydrate-active enzyme (CAZyme) genes
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Figure 4. Transcriptional signature of fungal genes related to plant cell-wall degradation

(A) Expressed genes involved in the deconstruction of cellulose.

(B) Expressed genes involved in the deconstruction of hemicellulose.

(C) Expressed genes involved in the deconstruction of pectin. Z score-transformed expression data are visualized by heatmaps in each cluster (left panel). The

color key from blue to red indicates low to high gene expression. Gene expression fold changes (green, upregulated; violet, downregulated) are calculated for

each pairwise comparison (middle panel). Genes are considered to be significantly differentially expressed at a false discovery rate (FDR) < 0.05, |logFC| R 1

(indicated by an asterisk). Bar plots of the averaged normalized expression values for each cluster of CAZymes genes (right panel) are generated. Statistical

(legend continued on next page)
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(348 genes), similar to, or slightly lower than, those of saprotro-

phic and endophytic fungi, such as H. marmoreus, Lepista

nuda, Clitocybe gibba, Volvariella volvacea, and S. indica (Fig-

ure 3B). A total of 36 BGCs were identified. This number was

higher than that reported in ECM and endophytic fungi but less

than would be expected in saprotrophic fungi. We applied prin-

cipal component analysis (PCA) to the set of CAZyme reper-

toires. To this end, we additionally included six brown-rot taxa

for comparison. The first two PCs together explained 98.9% of

the total variance. Clear separation of saprotrophic and ECM/

endophytic groups was seen along PC2, and it also appeared

that ECM/endophytic groups were intermediate between

white-rot and soil decomposer saprotrophs and brown-rot fungi

(Figure 3C). In this analysis, within the white-rot and other sapro-

trophic group, C. hobsonii was the species nearest to the ECM/

endophytic group, pointing to its dual saprotrophic/mutualistic

lifestyle.

Transcriptomic evidence for maintenance and
breakdown of mutualism
The mycelial transcriptional profiles of the fungus grown on the

three N sources, litters, and in planta were analyzed using RNA

sequencing. Overall the expression of 6,834 genes was signifi-

cantly altered (moderated t test, |logFC| R 1, false discovery

rate [FDR] < 0.05), accounting for 53.77% of all predicted genes.

This represents the total number of different expression genes

(DEGs) found for each pairwise comparison between cultured

mycelia across all six conditions and those cultured on litters

(Table S1). To narrow down our analysis, we focused on the dif-

ferential expression of transcripts coding for secreted CAZymes,

core BGC genes, and genes involved in N metabolism, including

N uptake, transport, and amino acid hydrolysis.

A closer look at the expressions of PCWDEs revealed that a vast

array of genes encoding cellulolytic, hemicellulolytic, and pectin

degradation enzymes showed an altered expression when RNA

was derived from mycelia grown in vitro and in planta on organic

N (Figures 4A–4C). For instance, several transcripts of GH5-7

(QYL0002452, QYL0003145, and QYL0006393) and GH7

(QYL0007527, QYL0007528, QYL0011344, and QYL0011696)

were downregulated in planta. Conversely, the abundance of tran-

scripts of genes including AA9 (QYL0004189, QYL0006400,

QYL0010460, QYL0010461, QYL0010462, QYL0010595, and

QYL0011057), GH3 (QYL0003256 and QYL0003842), GH12

(QYL0002014 and QYL0010372), GH16 (QYL0009546 and

QYL0010986), and GH31 (QYL0006372) was preferentially

expressed in the symbiotic stage (Figures 4A and 4B).

Similarly, genes related to pectin degradation including

CE8 (QYL0004181, QYL0009507, and QYL0009957), GH28

(QYL0006994, QYL0009508, and QYL0010179), and several

members in the PL family (QYL0005585, QYL0011544,

QYL0001206, and QYL0008510) were selectively expressed in
significance is calculated using theMann-Whitney U test. Different lowercase lette

than 5 across all samples are excluded for analysis. NH4
+-S, in planta gene expr

condition; Org-N-S, in planta gene expression under organic N condition; NH4
+-H

in vitro gene expression under NO3
� condition; Org-N-H, in vitro gene expression

same abbreviations are shown below. GHs, glycosyl hydrolases; GTs, glycosyl t

auxiliary activities; PLs, polysaccharide lyases. In total, 21 RNA samples are pre

See also Table S3.
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planta, whereas they were barely detected in the absence of the

host (Figure 4C). Some of these PCWDEs were likely to be

required for plant cell-wall loosening. Among these, the roles of

AA9, GH28, and GH12 in modification of cell wall have been func-

tionally verified.41–44 Interestingly, the expression of these pectin-

digesting genes, e.g., GH28 (QYL0006606, QYL0006994, and

QYL0006995), CE8 (QYL0009507 and QYL0009957), and PL1

(QYL0011644), was also highly induced in planta under NH4
+ con-

dition (Figure 4C). The reciprocal association between logFC and

FDR of these genes across four pairwise groups was shown.

Furthermore, by plotting the average normalized expression

values of each dataset, we observed that genes involved in the

degradation of plant cell wall were expressed at much higher

abundance under NH4
+ and organic N conditions, both in vitro

and in planta (Figures 4A–4C). In conclusion, the secreted

PCWDEgenes ofC. hobsonii showed contrasting expression pro-

files in free-living mycelia and in planta, when grown on organic N

or NH4
+.

Looking at the distribution of 39 core BGC genes across

different scaffolds (Figure 5A), we observed that their expression

patterns were distinct, with almost no overlap between gene

expression seen in planta and in vitro stages under organic N

condition (Figure 5B). It is worth noting that a suite of core

BGC genes showed much higher expression in NO3
�-fed

mycelia. For example, transcripts encoding terpene synthase

and non-ribosomal peptide synthetase (NRPS) located on

the scaffold 4 (QYL0008032 and QYL0008086), scaffold 8

(QYL0001787), and scaffold 12 (QYL0000065) were significantly

more abundant in vitro, indicating an improved capability to syn-

thesize secondary metabolites. However, most core BGC genes

were either moderately expressed or expressed at low levels

when the fungus was grown utilizing NH4
+, both in vitro and

in planta.

Next, the transcriptional profile of N assimilation pathways

was analyzed (Figure 6A). As expected, genes coding for nitrate

reductase (NR) (QYL0010885) and nitrite reductase (Nir)

(QYL0011931) were upregulated by NO3
� depletion (Figure 6B).

The pathway-specific transcription factor, nit-4 (QYL0010058),

involved in N utilization was also significantly upregulated both

in planta and in vitro under NO3
� conditions (Figure 6B). Genes

encoding for NO3
� transporters (NRTs) were not found in the

C. hobsonii genome.45 It is unlikely that these genesweremissed

because of incomplete genome coverage, as the C. hobsonii

genome assembly encompasses 98.4% of the conserved Basi-

diomycota single-copy gene set.45 Thus, the absence of NRTs

provided a likely explanation for the very poor growth of the fun-

gus on NO3
� as the sole N source. Three NH4

+ transporter (AMT)

transcripts (QYL0003392, QYL0000700, and QYL0000737)

showed similar expression patterns (Figure 6B). Regarding

amino acid uptake, a greater proportion of amino acid trans-

porter genes (AAT) (QYL0004305, QYL0005669, QYL0008241,
rs indicate significance level (p < 0.05). Genes withmaximum FPKM values less

ession under NH4
+ condition; NO3

�-S, in planta gene expression under NO3
�

, in vitro (free-living mycelia) gene expression under NH4
+ condition; NO3

�-H,
under organic N condition; L-H, in vitro gene expression cultured on litters. The

ransferases; CBMs, chitin-binding motifs; CEs, carbohydrate esterases; AAs,

pared.
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Figure 5. Transcriptional signature of secondary metabolite biosynthetic genes

(A) Diagram illustrating the location of 39 core BGC genes on scaffolds.

(B) Z score-transformed expression data, visualized by heatmaps. The color key from blue to red indicates low to high gene expression. Gene expression fold

changes (green, upregulated; violet, downregulated) are calculated for each pairwise comparison (middle panel). Genes are considered to be significantly

differentially expressed at a false discovery rate (FDR) < 0.05, |logFC| R 1 (indicated by an asterisk). For simplicity, only one pairwise comparison of NO3
�-H

versusOrg-N-H is shown. Bar plots of averaged normalized expression values are generated. Statistical significance is calculated using theMann-Whitney U test.

Different lowercase letters indicate the level of significance (p < 0.05). Genes withmaximum FPKM values less than 5 across all samples are excluded for analysis.

See also Table S3.
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and QYL0008968) was upregulated in the presence of NO3
�. In

contrast, under organic N, their expressions were slightly or

even strongly downregulated in symbiotic roots (Figure 6B).

Sub-clustering analysis was conducted to determine whether

there were transcriptionally distinct states for organic N-fed

mycelia (Figure S6). This analysis identified ten distinct sub-

clusters. Of these, sub-cluster 9 was particularly characteristic,

where the expression levels of 536 genes were much higher

in organic N-fed mycelia than in those fed on mineral N

(Figure 6C). According to the results of Kyoto encyclopedia of

genes and genomes (KEGG) pathway enrichment analysis, the

upregulated DEGs were significantly enriched in the pathway

associated with valine, leucine, and isoleucine degradation (Fig-

ure 6D). These findings imply that an organic N mineralization

process is already active before the mutualistic interaction

occurs.

Finally, to identify more additionally important DEGs linked

to lifestyle-related traits, we narrowed down the comparison

to genes exhibiting the highest fold changes, some showing

>100-fold change in expression. For example, the striking

overexpression of two genes coding for cerato-platanin

(QYL0008591 and QYL0006142) and M35 deuterolysin metallo-

proteases (QYL0010117) was seen in the presence of NH4
+ or
NO3
�, respectively. These drastic changes in expression levels

were seen both in vitro and in planta. These two genes are highly

induced during pathogenic interactions.46,47 Additionally, we

found that transcripts coding for clitocypin cysteine proteinase

inhibitor (QYL0006421) were overrepresented during themutual-

istic interaction when compared with the levels seen during min-

eral N feeding. This pattern was also recorded in poplar ECM

symbioses15,48 (Figure S7). These results provide the evidence

of a striking metabolic reprogramming during the parasitism-

mutualism shift.

DISCUSSION

The work presented here provides several lines of evidence sup-

porting the existence of a novel, unexpected mechanism, driven

by available N forms, for the maintenance and breakdown of a

plant-fungusmutualism. Here, we show that organic N facilitates

the accommodation ofC. hobsonii in roots, where the fungus be-

haves as a facultative ECM fungus, whereas both NO3
� and

NH4
+ may easily render this association parasitic. This supports

previous reports that N forms govern the development of host-

microbe relationships. Thus, such conditional mutualism is likely

more widespread than previously thought.
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Figure 6. Transcriptional signature of fungal N transporters and metabolism

(A) The diagram illustrates N transportation, mineralization, and metabolism in fungi.

(B) Heatmap showing the expression profile of genes coding for NO3
� reductases (Nr), nitrite reductases (Nir), NIT-4, ammonia transporter (AMT), and amino acid

transporter (AAT). The color key from blue to red indicates low to high gene expression. Bar plots of the averaged normalized expression values are generated.

Statistical significance is calculated using the Mann-Whitney U test. Different lowercase letters indicate the level of significance (p < 0.05). Genes with maximum

FPKM values less than 5 across all samples are excluded for analysis. PTR, peptide transporter.

(C) Gene expression model of sub-cluster 9, showing the highest average normalized expression level under organic N condition indicated by a violet dotted

circle. All genes with similar expression patterns are clustered by complete linkage clustering based on the average Euclidean distance (see Figure S6).

(D) KEGG pathway enrichment analysis of expressed genes from the sub-cluster 9. Bars show the enrichment score (�log10 (p-adjusted)) of the pathways in the

dataset. In all cases, the valine, leucine, and isoleucine degradation pathway with the highest enrichment score is indicated by a black arrow.

See also Figure S6 and Table S3.
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Our work extends previous ecological observations pointing

out the negative impact of mineral N on plant-fungus symbioses.

By building a novel experimental model system, we are able to

infer causal mechanisms underlying such scenario. A key point

is that N form-mediated maintenance and/or breakdown of

mutualism is tightly regulated by multi-faceted mechanisms.

One of the main causes of the mutualism-parasitism shift

could be an extensive reprogramming of fungal metabolism in

response to exogenous organic or mineral N supply.

C. hobsonii growth well on organic N, utilizing either protein or

amino acids, suggesting its pre-adaptation to substrates en-

riched in organic N sources. This mechanism is known to facili-

tate ECM establishment.49 Intriguingly, mycelial and culture
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filtrate extracts under organic N growth condition are beneficial

to poplar cell growth. This may be related to the ability of

C. hobsonii to synthesize IAA. It should be noted that although

the fungus also produces high level of SA, its role in promoting

mutualism remains unknown. More surprisingly, NO3
� uptake

by C. hobsonii appears rather limited due to the lack of NRT

genes. A similar phenomenon is described in several ECM fungi

and in the endophyte S. indica.13,46,50 N limitation is recognized

as a key signal for activating the virulence of plant pathogens.51

Although we are not able to identify the toxic metabolites

released by C. hobsonii into its growth medium, it appears that

NO3
� induces the production of compounds highly toxic to pop-

lar cells. This mechanism may have far reaching implications in



Figure 7. A schematic illustration of N form-mediated mutualism-parasitism transition in the poplar-C. hobsonii association

It is proposed that fungal physiological behavior and gene expression are remodeled when sensing different N forms, ultimately governing the outcome of

interaction. Under NH4
+ condition, acidification of the growth substrate and upregulation of genes coding for pectin-degrading enzymes (such as GH28 and PL1)

are recorded, potentially accounting for the breakdown ofmutualism. In this scenario continuous high H2O2 production suggests that the root cells are destroyed.

Under NO3
� condition, the fungus lacks NO3

� transporter genes and could not assimilate NO3
�. Such N starvation leads to the overexpression of genes related to

N uptake, metabolism, transportation, and autophagy. Genes involved in secondary metabolite biosynthesis (such as terpene synthase and NRPS) are highly

induced, leading to potential toxin production, as evidenced by strong inhibition of poplar cell growth exposed to crude extracts. On organic N, the fungus

mineralizes the amino acids to allow plants to have sufficient access to available N. In addition, phytohormones, mainly IAA, produced by the fungus, could

improve root development. Genes encoding AA9, GH3, GH12, GH16, GH31, GH43, PL1, CE4, and GH28 are clearly upregulated during symbiotic interaction.

This transcriptional pattern contributes to the plant cell-wall remodeling and development of ectomycorrhizal structures, indicating that C. hobsonii is experi-

encing an intermediate status between obligate saprotrophy and symbiotrophy. Such facultative symbiosis is consistent with a tight control of H2O2 production in

roots. Among these, the abundance of pectin-degrading enzymes (GH28, PL1, and CE8) with distinct expression patterns during functional divergence after

exposure to NH4
+ or organic N is likely to be central to the transition from parasitism to mutualism.
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the pathogenic behavior of C. hobsonii. The upregulation of

numerous transcripts coding for terpene synthase and NRPS-

like genes may be a mechanism leading to mycotoxin biosyn-

thesis.52,53 Another intriguing, albeit little studied aspect of

fungal physiology is the abundant expression of genes related

to N uptake, metabolism, and transportation in vitro and in planta

in the presence of NO3
�. N starvation while growing on NO3

�

may trigger autophagy in C. hobsonii, leading to an increased

expression of N transporters, with the aim to reallocate nutrients

within the mycelium.54,55 Another plausible explanation is that

translocation of N from plant to fungus could also happen

when N is supplied in the form of NO3
�.56

The overall similarity of the repertoire of PCWDE genes be-

tween C. hobsonii and typical ECM fungi supports a convergent

evolution.57,58 This study, as well as our previous work,35 pro-

vides experimental evidence of the endophytic and mycorrhizal

potential of C. hobsonii. These observations may fit well the

‘‘waiting room’’ hypothesis that the fungus has a dual trophic sta-

tus (saprotrophy and endophytism). C. hobsonii has the potential
to behave like an ECM associate when facing suitable hosts and

growth conditions.59 Thus, both genomic features and experi-

mental data likely support the contention that an incomplete

switch from saprotrophy to symbiotrophy is taking place in

C. hobsonii. A set of PCWDE genes acting on cellulose and hemi-

cellulose are strikingly upregulated in the presence of organic N,

indicating the induction of activities for plant cell-wall degrada-

tion. Cellophane membrane decay further supports the penetra-

tive capacity of organic N-fed mycelia, thereby promoting root

colonization by C. hobsonii. Not surprisingly, the expression of

these genes is drastically downregulated in the presence of plant

roots, with a concomitant upregulation of another subset of

genes. Among these, 6 copies of copper-dependent lytic poly-

saccharide monooxygenase (LPMO-AA9 family) genes are abun-

dantly expressed during beneficial interactions. Genomic and

transcriptomic analyses support the notion that the AA9 family

might be acting as a genetic determinant of fungal mutualism60

and is induced during ECM development.42 Unexpectedly,

most genes involved in pectin hydrolysis are highly expressed
Current Biology 32, 5235–5249, December 19, 2022 5245
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in planta. This pattern seems to fine-tune the attenuation of plant

immune responses, helping to establish and develop successful

ECM symbioses.61 However, at this stage, we are not able to

identify specific genes involved in this process. The role of plant

immune responses is further supported by 3,30-diaminobenzidine

(DAB) staining, demonstrating that H2O2 production significantly

decreases in the roots by a later time point. This raises the possi-

bility that the tight control of H2O2 production could be crucial for

establishing beneficial interactions.62 The presence of fairly

aggressive enzymes affecting the host plant is comparable with

that found in ericoid and orchid mycorrhizal fungi and the ECM

fungus Tuber melanosporum.57,58,63,64 Taken together, the differ-

ential PCWDE profiles of C. hobsonii observed during the mutu-

alistic interaction suggest a ‘‘gentle’’ remodeling of the plant

cell wall. However, we cannot rule out possible further changes

beyond the time points used in our work.

Mechanisms leading to the breakdown of mutualistic interac-

tion under NH4
+ condition are distinct. In accordance with previ-

ous reports, in the presence of NH4
+, a rapid decrease of the pH

of the medium is recorded.65,66 This low pH environment could

favor optimal fungal growth,66 whereas upregulating the expres-

sion of certain PCWDEs ultimately contributes to pathoge-

nicity.67,68 Genes encoding enzymes acting on pectin (CE8,

GH28, and PL1) are expressed at higher levels in planta. The

ongoing H2O2 bursts seen in the roots probably result from

pectin breakdown caused by these polygalacturonases. An

intriguing point is that other transcripts from each of the above

three gene families are also significantly upregulated during

the mutualistic interaction, suggesting a functional divergence

of multiple duplicated genes, as shown in pine and poplar

ECMs.44,69 This could be due to diversifying selection or horizon-

tal gene transfer.70,71 Presumably, gene expression changes

due to copy-number variations within several CAZyme families

may correlate with their dual nature, exhibiting either mutualistic

or pathological traits.69

In sum, the increasing anthropogenic N deposition may thus

possibly alter the balance between saprotrophism, parasitism,

and mutualism in many plant-microbe interactions. Our work

further highlights the serious concern that if these root-inhabiting

fungi are suppressed by NO3
� leaching into forest ecosystems,

there will be a particular risk of increasing disruption of below-

ground mutualism, and a dangerous negative feedback can

develop over time (Figure 7). The biological and practical impli-

cations of these findings are 3-fold: (1) N forms should be recog-

nized as important trophic factors regulating mutualism. (2) The

preference for organic N among ECM fungi, DSE, and Sebaci-

nales endophytes supports the concept that N forms in forest

soils play a key role in shaping the contributions of root-associ-

ated fungal guilds. (3) The potential utilization of fungi favoring

organic N sources may be capitalized upon in sustainable forest

management relying on organic rather than mineral fertilizers.
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Tissue OCT-Freeze Medium Sakura Finetek, Lot: 1035-00

Wheat Germ Agglutinin- Alexa Fluor 488 conjugate Thermo Fisher Lot: 2155276

Propidium iodide Sigma-Aldrich CAT# 25535-16-4

Tween 20 Sinopharm Chemical Reagent CAT# 9005-64-5
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Lactic acid Sinopharm Chemical Reagent CAT# 50-21-5

Trypan blue Sangon Biotech CAT# 72-57-1

Glycerol Sinopharm Chemical Reagent CAT# 56-81-5

3, 3’-diaminobenzidine Sigma-Aldrich CAT# 868272-85-9

TRIzol Reagent Invitrogen, CA, USA CAT# 15596026

Deposited data

Assembled genome of Clitopilus hobsonii QYL-10 NCBI JADPMO000000000

Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under NH4
+ condition-repeat 1

This work NCBI: SRR13089187

Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under NH4
+ condition-repeat 2

This work NCBI: SRR13089186

Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under NH4
+ condition-repeat 3

This work NCBI: SRR13089185

Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under NO3
- condition-repeat 1

This work NCBI: SRR13089184
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Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under NO3
- condition-repeat 2

This work NCBI: SRR13089183

Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under NO3
- condition-repeat 3

This work NCBI: SRR13089182

Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under organic N condition-repeat 1

This work NCBI: SRR13089181

Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under organic N condition-repeat 2

This work NCBI: SRR13089180

Raw reads of transcriptome of C. hobsonii (free-living

mycelia) under organic N condition-repeat 3

This work NCBI: SRR13089179

Raw reads of transcriptome of C. hobsonii (in plant)

under NH4
+ condition-repeat 1

This work NCBI: SRR17930468

Raw reads of transcriptome of C. hobsonii (in plant)

under NH4
+ condition-repeat 2

This work NCBI: SRR17930467

Raw reads of transcriptome of C. hobsonii (in litter)

under NH4
+ condition-repeat 2

This work NCBI: SRR17930466

Raw reads of transcriptome of C. hobsonii (in litter)

under NH4
+ condition-repeat 3

This work NCBI: SRR17930465

Raw reads of transcriptome of C. hobsonii (in plant)

under NH4
+ condition-repeat 3

This work NCBI: SRR17930464

Raw reads of transcriptome of C. hobsonii (in plant)

under NO3
- condition-repeat 1

This work NCBI: SRR17930463

Raw reads of transcriptome of C. hobsonii (in plant)

under NO3
- condition-repeat 2

This work NCBI: SRR17930462

Raw reads of transcriptome of C. hobsonii (in plant)

under NO3
- condition-repeat 3

This work NCBI: SRR17930461

Raw reads of transcriptome of C. hobsonii (in plant)

under organic N condition-repeat 1

This work NCBI: SRR17930460

Raw reads of transcriptome of C. hobsonii (in plant)

under organic N condition-repeat 2

This work NCBI: SRR17930459

Raw reads of transcriptome of C. hobsonii (in plant)

under organic N condition-repeat 3

This work NCBI: SRR17930458

Raw reads of transcriptome of C. hobsonii (in litter)

under NH4
+ condition-repeat 1

This work NCBI: SRR17930457

Experimental models: Cell lines

Poplar suspension cell line Qu-2 Prof. Guanzhen Qu,

Northeast Forestry

University, China

N/A

Experimental models: Organisms/strains

Tricholoma matsutake JGI https://mycocosm.jgi.doe.gov/Trima3/

Trima3.home.html

Laccaria bicolor JGI https://mycocosm.jgi.doe.gov/Lacbi2/

Lacbi2.home.html

Laccaria amethystina JGI https://mycocosm.jgi.doe.gov/Lacam2/

Lacam2.home.html

Clitocybe gibba JGI https://mycocosm.jgi.doe.gov/Cligib1/

Cligib1.home.html

Hypsizygus marmoreus JGI https://mycocosm.jgi.doe.gov/Hypma1/

Hypma1.home.html

Lepista nuda JGI https://mycocosm.jgi.doe.gov/Lepnud1/

Lepnud1.home.html

Hebeloma cylindrosporum JGI https://mycocosm.jgi.doe.gov/Hebcy2/

Hebcy2.home.html

(Continued on next page)
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Volvariella volvacea JGI https://mycocosm.jgi.doe.gov/Volvo1/

Volvo1.home.html

Serendipita indica JGI https://mycocosm.jgi.doe.gov/Pirin1/

Pirin1.home.html

Agaricus bisporus JGI https://mycocosm.jgi.doe.gov/Agabi_

varbisH97_2/Agabi_varbisH97_2.home.html

Mycena galopus JGI https://mycocosm.jgi.doe.gov/Mycgal1/

Mycgal1.home.html

Serpula himantioides JGI https://mycocosm.jgi.doe.gov/Serla_

varsha1/Serla_varsha1.home.html

Coniophora puteana JGI https://mycocosm.jgi.doe.gov/Conpu1/

Conpu1.home.html

Dacryopinax primogenitus JGI https://mycocosm.jgi.doe.gov/Dacsp1/

Dacsp1.home.html

Fomitopsis pinicola JGI https://mycocosm.jgi.doe.gov/Fompi3/

Fompi3.home.html

Gloeophyllum trabeum JGI https://mycocosm.jgi.doe.gov/Glotr1_1/

Glotr1_1.home.html

Hydnomerulius pinastri JGI https://mycocosm.jgi.doe.gov/Hydpi2/

Hydpi2.home.html

Software and algorithms

ImageJ Li et al.72 https://imagej.nih.gov/ij/

OrthoFinder v2.3.8 Emms and Kelly73 https://github.com/davidemms/OrthoFinder

MUSCLE v3.8.31 Edgar74 http://www.drive5. com/muscle

MrBayes v3.1.2 N/A https://nbisweden.github.io/MrBayes/

manual.html

PAML v4.9 N/A http://abacus.gene.ucl.ac.uk/software/

paml.html

dbCAN2 web-based meta server Zhang et al.75 http://cys.bios.niu.edu/dbCAN2

Signal P Almagro Armenteros et al.76 http://www.cbs.dtu.dk/services/SignalP/

antiSMASH v 4.0.2 Blin et al.77 http://antismash.secondarymetabolites.org

Cutadapt v1.9 Martin78 https://cutadapt.readthedocs.io/en/stable

HISAT2 v2.0.4 Kim et al.79 https://daehwankimlab.github.io/hisat2

StringTie v1.3.6 N/A http://ccb.jhu.edu/software/stringtie

RSEM v1.3.0 Li and Dewey80 http://deweylab.biostat.wisc.edu/rsem

EdgeR v3.12.0 Robinson et al.81 http://bioconductor.org

R version 3.0 Zhang et al.82 https://www.r-project.org/

KOBAS Xie et al.83 http://kobas.cbi.pku.edu.cn/home.do

IBM SPSS Statistics 20 IBM SPSS http://www.spss.com.cn
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact: Zhilin Yuan

(yuanzl@caf.ac.cn)

Materials availability
This study did not generate any new unique reagents or materials to report.

Data and code availability
Raw reads of transcriptome were submitted to the NCBI SRA database under accession numbers SRR17930457, SRR17930458,

SRR17930459, SRR17930460, SRR17930461, SRR17930462, SRR17930463, SRR17930464, SRR17930465, SRR17930466,

SRR17930467, SRR17930468, SRR13089187, SRR13089186, SRR13089185, SRR13089184, SRR13089183, SRR13089182,
e3 Current Biology 32, 5235–5249.e1–e7, December 19, 2022

mailto:yuanzl@caf.ac.cn
https://mycocosm.jgi.doe.gov/Volvo1/Volvo1.home.html
https://mycocosm.jgi.doe.gov/Volvo1/Volvo1.home.html
https://mycocosm.jgi.doe.gov/Pirin1/Pirin1.home.html
https://mycocosm.jgi.doe.gov/Pirin1/Pirin1.home.html
https://mycocosm.jgi.doe.gov/Agabi_varbisH97_2/Agabi_varbisH97_2.home.html
https://mycocosm.jgi.doe.gov/Agabi_varbisH97_2/Agabi_varbisH97_2.home.html
https://mycocosm.jgi.doe.gov/Mycgal1/Mycgal1.home.html
https://mycocosm.jgi.doe.gov/Mycgal1/Mycgal1.home.html
https://mycocosm.jgi.doe.gov/Serla_varsha1/Serla_varsha1.home.html
https://mycocosm.jgi.doe.gov/Serla_varsha1/Serla_varsha1.home.html
https://mycocosm.jgi.doe.gov/Conpu1/Conpu1.home.html
https://mycocosm.jgi.doe.gov/Conpu1/Conpu1.home.html
https://mycocosm.jgi.doe.gov/Dacsp1/Dacsp1.home.html
https://mycocosm.jgi.doe.gov/Dacsp1/Dacsp1.home.html
https://mycocosm.jgi.doe.gov/Fompi3/Fompi3.home.html
https://mycocosm.jgi.doe.gov/Fompi3/Fompi3.home.html
https://mycocosm.jgi.doe.gov/Glotr1_1/Glotr1_1.home.html
https://mycocosm.jgi.doe.gov/Glotr1_1/Glotr1_1.home.html
https://mycocosm.jgi.doe.gov/Hydpi2/Hydpi2.home.html
https://mycocosm.jgi.doe.gov/Hydpi2/Hydpi2.home.html
https://imagej.nih.gov/ij/
https://github.com/davidemms/OrthoFinder
http://www.drive5.%20com/muscle
https://nbisweden.github.io/MrBayes/manual.html
https://nbisweden.github.io/MrBayes/manual.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://cys.bios.niu.edu/dbCAN2
http://www.cbs.dtu.dk/services/SignalP/
http://antismash.secondarymetabolites.org
https://cutadapt.readthedocs.io/en/stable
https://daehwankimlab.github.io/hisat2
http://ccb.jhu.edu/software/stringtie
http://deweylab.biostat.wisc.edu/rsem
http://bioconductor.org
https://www.r-project.org/
http://kobas.cbi.pku.edu.cn/home.do
http://www.spss.com.cn


ll
Article
SRR13089181, SRR13089180, and SRR13089179. Genomic and transcriptomic sequencing data generated in this study are avail-

able at the National Center for Biotechnology Information under BioProjects PRJNA675211 and BioSample SAMN16692392. Acces-

sion numbers for the assembled genomes are JADPMO000000000.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Gnotobiotic poplar cuttings and fungal culture conditions
Experiments were performed with clones of P. tomentosa cuttings. In detail, virus-free plants were propagated bymicro-cuttings and

cultured on half-strength Murashige and Skoog (MS) medium84 with 2% (w/v) sucrose, and 0.1 mg l-1 indole-3-butyric acid (IBA) at

26 �C using a 10 h 12,000-lux light/14 h dark cycle in a growth chamber for rooting. After 3-4 weeks, uniform cuttings with well-devel-

oped roots were selected to carry out the inoculation experiments. The strain QYL-10 of C. hobsoniiwas isolated from ECM root tips

of Quercus lyrata33,34 and identified by Peng et al.45 The ex-type living culture CGMCC 20208 was deposited in the China General

Microbiological Culture Collection Center. The isolate was kept as mycelial suspensions in 20% (v/v) glycerol at -80 �C until its

use. The colonies were grown on potato dextrose agar (PDA) medium for one week at 24 �C.

In vitro fungal growth under three N forms
To assess the effect of N forms on the fungal growth and physiology, NH4Cl, Ca (NO3)2, and amixture of acidic, neutral, and aromatic

amino acids [(glutamine (Glu), glycine (Gly), valine (Val), leucine (Leu), and phenylalanine (Phe)] (organic N) were separately added into

basemediumwith a final concentration of 3.57mM for all N forms.We used amino acidmixtures as they constitute amajor reserve of

soil organic N.85 The basemedium contained (l-1): 2.0 g glucose, 0.30 g KH2PO4, 0.14 gMgSO4,H2O, 50mgCaCl2, 25mgNaCl, 3mg

ZnSO4, 12.5 mg ferric EDTA and 0.13 mg thiamine HCl, pH 5.8 prior to autoclaving. The organic N solutions were filter-sterilized with

0.22 mm Millipore filters and added into the autoclaved N-free basal medium.29 The solid medium was prepared with 6.0 g l-1 Bacto

Agar (Difco Laboratories, MI, USA). The colony diameter was measured every 2 days for 12 days. The measurement was performed

for at least five replicates per condition.

Fungal liquid cultures were initiated by inoculating 10 one-week-old mycelial plugs (5 mm-diameter) to 100ml of the liquid medium

with different N sources. After 4 weeks stationary incubation in the dark at 24 �C, the mycelia were filtered, then oven-drying at 65 �C
to constant weight. The initial and final pH value of liquid medium were measured by SevenCompact pH meter (Mettler Toledo, Zur-

ich, Switzerland) (Figure S1).

METHOD DETAILS

Experimental design of dual interactions under three N forms
Three experimental designs were utilized during this work. First, plant–fungus co-cultures were constructed on solid medium with

different N forms. Two 5-mm diameter mycelial plugs of actively growing fungus were placed on medium in sterile glass culture con-

tainers 650 ml in volume, 22 cm in height, and 9 cm in diameter. Controls consisted of mock inoculated sterile PDA plugs. Uniformly

sized cuttings were transplanted into another container after one week (two plants per container) in contact with the mycelium. The

main purpose of pre-inoculating the media with C. hobsonii was to avoid the potential effects of root exudates on modifying fungal

metabolism.86 These microcosms were kept in growth chambers at 26 �C using a 10 h 12,000-lux light/14 h dark cycle. Three rep-

licates of each treatment group were set up (four plants per replicate). Plant growth and different nutrient concentrations were

measured after 4 weeks of incubation. Additionally, a small portion of the colonized roots was used to observe fungal colonization

patterns.

Second, detached living poplar leaves were used to assess whether changes in fungal metabolism, caused by different N forms,

affected aboveground plant tissues. According to a method described by Kaldorf et al.,27 two 5-mm diameter plugs were inoculated

in Petri dishes containing media with different N forms. These cultures were incubated in the dark for one week. At this point, leaves

from gnotobiotic poplar cuttings were cut and placed on the surface of fungal colonies. The leaves were covered with a sterile glass

slide to guarantee tight contact with the fungus. Conditions during incubation were the same as described above. After one week

incubation, leaves were photographed. At the end of the experiment (4 weeks of incubation), the morphological characteristics of

the leaf margin, potential leaf lesions, and the cut ends of petioles were recorded by an ultra-depth-of-field optical microscope (Key-

ence, Osaka, Japan).

Third, we obtained crude extracts from liquid cultures of C. hobsonii to treat the poplar suspension cell line Qu-2 derived from a

hybrid poplar (P. alba3 P. berolinensis). The suspension cells were cultured using the method described by Liu et al.87 Fungal liquid

cultures were initiated from one-week-old PDA by inoculating ten mycelial plugs, 5 mm-diameter each, into 500 ml of liquid media

supplemented with the three N forms as described above. Flasks were incubated at 26 �C in the dark, without shaking. After one

month, the mycelia were harvested using filter paper. The culture filtrate and mycelial mats were separately extracted twice with

acetone and ethyl acetate. Solvents were evaporated under vacuum on a rotary evaporator at 45 �C to yield residues. These

were lyophilized to constant weight using a vacuum-freeze drier (Labconco, KS, USA). The residues were re-dissolved in sterile wa-

ter, passed through a 0.22-mmMillipore filter, and quantified before addition to the cell culture at a final concentration of 50 mg ml-1.

Sterile water served as control. During these experiments 500 ml of extract solution was added to suspension cell cultures. The cells
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were sampled every 2 days, and the number of cells per unit volume was counted using a hemocytometer. Each experiment was

performed in triplicate.

Cellophane penetration test
To mimic the process occurring during the early stages of fungal colonization when hyphae penetrate root tissues, we compared the

impact of N forms on fungal infection ability by using an in vitro penetration assay.88 Autoclaved colorless cellophane sheets were

placed on plates88 containing the above-mentioned three N form-based media and the center of each plate was inoculated with

a plug (5 mm-diameter). After 2 weeks at 24 �C in the dark, the cellophane sheet with the fungal colony was removed. The presence

or absence of fungal mycelia on the underlying medium was recorded after incubation of the plates for an additional period of 2 days

at 24 �C in the dark. All experiments included at least three biological replicates.

Plant phenotypic assay
Fresh roots and shoots were weighed. Total root length, root surface area, root volume, number of root tips, were determined using

image analysis software (Regent Instruments, Quebec, Canada). Total N, P and K concentrations in above and belowground plant

parts were quantified by the Kjeldahl digestion procedure,89 Mo-Sb colorimetric method after digestion with H2SO4-H2O2
90 and ICP-

AES system of iCAP 6300 (Thermo Fisher Scientific, CA, USA), respectively. All experiments included at least three biological

replicates.

In vitro fungal phytohormone production
We used modified Melin-Norkrans (MMN) medium without malt extract and vitamin B1 for fungal culturing and phytohormone mea-

surements.91 The mycelium of C. hobsonii was grown at pH 5.8 and 24 �C for 3 weeks. We did not compare the phytohormone

profiling of the fungus grown on the three N forms for two reasons due to the very poor growth of C. hobsonii on NO3
�. First, our

main purpose was to evaluate its potential to produce phytohormone in vitro. Second, the very poor growth of C. hobsonii under

NO3
� condition prevented us from obtaining adequate mycelial biomass for sample preparations. We quantified the concentrations

of phytohormones from themycelia and filtrates. The indole-3-acetic acid (IAA), IBA, abscisic acid (ABA), trans-zeatin-riboside (TZR),

zeatin, jasmonic acid (JA), gibberellins (GA), salicylic acid (SA), methyl jasmonic acid (MeJA), and methyl salicylic acid (MeSA) were

determined using reverse-phase liquid chromatography-tandem mass spectrometry (Thermo Scientific, MA, USA) with multiple re-

action monitoring using a stable isotope labeled internal standard.92 Three independent biological replicates were performed.

Isotopic tracing using 15N glycine labelling
To assess whether C. hobsonii translocate N to the host plant, we conducted isotope tracer experiments. 15N-glycine was selected

as the isotopic label for organic N uptake because glycine was more readily utilized by C. hobsonii than Glu, Val, Leu, or Phe. Micro-

cosms were constructed according to the method of Thoen et al.93 A 90-mm split Petri dish was used to create a plant and a fungus

compartment in each microcosm, with a barrier to prevent the leakage of the tracer between them. A 0.5-mm nylon mesh in the mid-

dle of these split Petri dishes acted as a barrier avoiding the growth of the plant roots into the fungal compartment. The split dish was

filled with 23 ml of organic Nmedium. On the fungal side of the microcosm, a small 35-mm diameter Petri dish was inserted and filled

with approximately 8.5 ml of organic N medium containing the 15N-glycine (at 99 atom% 15N excess). This small Petri dish acted as

an additional barrier, preventing the leakage of the tracer into the surrounding agar. A 5-mm diameter mycelial plug was placed on

one side of the split Petri dish. On the plant side a small hole was made, using a hot scalpel, to allow the shoot to grow outside of the

dish. Sterile seedlings were added to the plant side of the microcosm, restricting roots to the plant side. Petri dishes, sealed with a

double layer of Parafilm, were placed inside a bigger, 150 3 150-mm square Petri dish. A sterile, moistened cotton wool ball was

inserted into this square Petri dish, to protect the seedlings from drying out. The entire system was sealed with a double layer of Par-

afilm and then covered in aluminum foil to keep the roots in the dark.Microcosmsweremaintained in a growth chamber for 4weeks at

26 �C using a 10 h 12,000-lux light/14 h dark cycle. Some of the dishes, serving as controls, were not inoculated.

Given that shoots and leave tissues vary in isotopic composition, to ensure comparability the aboveground part of the plant was

divided into half of each shoot and half of the leaves. Before isotopic analysis, plants were finely ground and dried at 65 �C to a con-

stant weight, and then stored in scintillation vials. 15N levels in shoots and roots were measured using an IsoPrime100 isotope ratio

mass spectrometer (Isoprime, Cheadle Hulme, UK), following the manufacturer’s instructions. Stable isotope data were reported as:

d15N ð&Þ = ðRsample = Rstandard � 1Þ3 1000

where R was the corresponding 15N/14N ratio for either a given sample or the atmospheric N2 standard used for 15N isotopic frac-

tionation. The analytical precision of the isotopic measurements in multiple replicate analyses was 0.2&.

Semi-quantitative measurement of fungal enzymatic profiling
To measure enzymatic activities in fungal mycelia under different nitrogen form conditions, we employed API ZYM (BioMerieux, Ma-

drid, Spain) system, following themanufacturer’s instructions. The API ZYM strips consist of 20microcupules containing dehydrated

chromogenic substrates of 19 different enzymes and a control (a microcupule that does not contain any enzyme substrate). These

enzymes include three phosphatases (alkaline phosphatase, acid phosphatase and phosphohydrolase), three esterases (lipase,
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esterase–lipase and esterase), three aminopeptidases (leucine amino-peptidase, valine amino-peptidase and cystine amino- pepti-

dase), two proteases (chymotrypsin and trypsin), and eight glycosyl-hydrolases (b-galactosidase, b-glucosidase, N-acetyl-b- gluco-

saminidase, a-glucosidase, a-galactosidase, b-glucuronidase, a-mannosidase and a-fucosidase). The fungal samples were ground

under low temperatures. The enzyme extracts were prepared by mixing approximately 190 mg of fungal material powder from each

treatment with 4 ml sterile water. After the enzyme extracts had been prepared, an aliquot (65 mL) of the extract supernate was

dispensed into each of the 20 microcupules. The API ZYM strips were then covered and incubated at 37 �C for 4 h. After incubation,

30 mL of each reagent (ZYM A and ZYM B; BioMerieux) were added to all microcupules. After 5 min, a numerical value of 1-5 was

assigned to eachmicrocupule according to the colour chart provided by the manufacturer. For the purposes of this study, the results

were reported as reactions of not detected (0), very low intensity (1), low intensity (2), moderate intensity (3), high intensity (4) and very

high intensity (5) (Figure S4).

Confocal section and squash mounts for fungal visualization in roots
As themineral N was detrimental to plant–fungus associations, we set out to visualize patterns of fungal colonization of the roots under

organic N condition, in which the development of ECM-like structures appeared. A handful of well-developed ECM-like root tips

4 weeks post-inoculation were selected and fixed in 75% ethanol (v/v). The roots were then rinsed with 50 mM phosphate-buffered

saline (PBS, pH 7.4) and embedded in Tissue OCT-Freeze Medium (Sakura Finetek, CA, USA). Transversal sections (8-10 mm in thick-

ness) of root tips were prepared using a Thermo Cryostar NX70 freezingmicrotome (Thermo Fisher Scientific,Walldorf, Germany), and

dual staining of the fungal cell wall (Wheat Germ Agglutinin- Alexa Fluor 488 conjugate, WGA-AF488) (Thermo Fisher Scientific, MA,

USA) and the plant cell wall (Propidium iodide, PI) (Sigma-Aldrich, MO, USA) was carried out.94 Samples were infiltrated with the stain-

ing solution (20 mg ml-1 PI, 20 mg ml-1 WGA, 0.1% Tween 20 made up in PBS) for 4 h. All the sections were viewed at 400 to 10003

magnification under a confocal laser scanning microscopy (Carl Zeiss, Jena, Germany) equipped with ZEN2 software. Mantle-like

structures were only scored as present if layers of hyphae were present around all the examined root tip sections.

In addition, squashmounts were used as needed to observe potential infection structures in non-mycorrhizal roots. A subset of the

harvested roots was fixed in 50% ethanol (v/v) and stained with trypan blue.95 Roots were cleared with 5% KOH (w/v) at room tem-

perature for one week, acidified in 2% lactic acid (v/v) for 1–2 min followed by strained with 0.05% (w/v) trypan blue (dissolved in a

mixture of 1:1:1 lactic acid/glycerol/distilled water) for 3 h. The slides were photographed with a light microscope (Carl Zeiss, Jena,

Germany) (Figure S3).

In situ detection of hydrogen peroxide production in roots upon colonization
Given that reactive oxygen species (ROS) play an integral role as signaling molecules in plant immune response triggered by a fungal

infection,96 we performed in situ detection of hydrogen peroxide (H2O2) in the roots. We used the 3, 3’-diaminobenzidine (DAB,

Sigma-Aldrich, MO, USA) substrate as it efficiently reacts with H2O2 and forms reddish-brown polymer. Following the plant inocu-

lation procedure mentioned above, root samples collected at 12, and 60 h after inoculation were collected and incubated in 1 mg

ml�1 DAB in sodium citrate buffer at room temperature overnight, thenwashed and cleared with 10% (v/v) lactic acid.97 Stained roots

were imaged at a light microscope (Carl Zeiss, Jena, Germany) equippedwith an AxioCamMRc5 digital camera. At least twelve root

tips from each treatment were inspected. To quantify DAB staining results, the surface of brown areas of the DAB-H2O2 reaction were

scored with ImageJ (https://imagej.nih.gov/ij/).72

Phylogenomic and comparative genomic analysis
Near-chromosome-level assembly ofC. hobsoniiwas released,45 and genomic data from 17 Agaricales species with saprotrophic or

ECM lifestyles, which were referred to as close relatives of C. hobsonii, were downloaded from the JGI MycoCosm database. These

data were used for phylogenetic reconstruction and comparative genomic analysis (http://jgi.doe.gov/fungi).57,58 S. indicawas used

as an outgroup. We determined gene families or orthologous groups of these species by OrthoFinder v2.3.8 with the default inflation

parameter of 1.5.73 After filtering short low-quality genes (encoding proteins with < 200 amino acids), 1,654 single-copy gens were

used for constructing a phylogenomic tree. The single-copy orthologous protein-coding sequences were aligned using MUSCLE

v3.8.31.74 The unambiguously aligned conserved blocks were extracted using Gblocks 0.91bwith default parameters.98 The concat-

enated alignment was used to create a Bayesian inference of phylogeny using MrBayes v3.1.2 (https://nbisweden.github.io/

MrBayes/manual.html). Divergence time of each tree node was inferred using Bayesian Markov-chain Monte Carlo (MCMC) tree

(MCMCTree) package in PAML v4.9 (http://abacus.gene.ucl.ac.uk/software/paml.html) with the GTR nucleotide substitution model.

The phylogeny was calibrated using three calibration points as follows: Laccaria amethystina–L. bicolor, 17 Mya; Lepista nuda–Tri-

choloma matsutake, 96 Mya; Clitocybe gibba, 125 Mya.99

Our comparative analyses focused on gene categories involved in plant cell-wall degradation (PCWDEs), potential secondary me-

tabolites (e.g, biosynthetic gene clusters (BGCs)), and N metabolism. All predicted carbohydrate-active enzymes (CAZyme) gene

models were functionally annotated using the dbCAN2 web-based meta server (http://cys.bios.niu.edu/dbCAN2).75 We focused

on the secreted CAZyme repertoires, as they were released into the medium or the plant apoplastic space to degrade extracellular

cellulose, pectin, lignin, and other polymers. To identify the secreted CAZymes, Signal P (http://www.cbs.dtu.dk/services/SignalP/)76

a dedicated web program was used. The BGCs were predicted using antiSMASH v 4.0.2 (http://antismash.secondarymetabolites.

org).77
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Genome-wide fungal transcriptomic signatures in vitro and in planta

Transcriptomic analysis was performed for C. hobsonii in vitro (feeding on three N forms and autoclaved litters) and in planta. For

in vitro assay, fungal colonies were grown on agar media containing three N sources (as described above) covered with cellophane

membranes for 2 weeks at 24 �C. The mycelium grown on each plate was gently scraped from the cellophane, then mycelia were

collected, snap frozen in liquid nitrogen, and stored at �80 �C until further analysis. The mixed poplar and oak leaf litters were ster-

ilized by autoclaving at 121 �C for 30min and transferred to the surface of sterile agarmedia.We harvested the samples until the litters

were heavily colonized by C. hobsoniimycelium. For in planta assay, fungal transcripts were investigated in infected roots grown on

three N conditions. After 12 days of co-cultivation, the colonized roots were used for RNA extractions. The total number of different

expression genes (DEGs) found for each pairwise comparison between cultured mycelia across all six conditions and those cultured

on litters (Table S1). Summary of RNA-seq data from 21 libraries was shown in Table S2. Transcripts with FPKM (the fragments per

kilobase per million mapped reads) values equal to or greater than 5 in at least one sample were provided in Table S3.

RNA isolation and RNA-seq analyses
Total RNA was extracted using TRIzol Reagent (Invitrogen, CA, USA), according the manufacturer’s instructions (Invitrogen). The

RNA quality was determined by 2100 Bioanalyser (Agilent, CA, USA) and quantified using the ND-2000 (NanoDrop Technologies,

Wilmington, DE, USA). The RNA was then reverse-transcribed to create the final cDNA library, by following the protocol of the

mRNA-Seq sample preparation kit (Illumina, CA, USA). Paired-end RNA-seq sequencing library was sequenced with the Illumina

HiSeq xten/NovaSeq 6000 sequencer (23 150 bp read length) at Shanghai Majorbio Bio-pharm Technology (Shanghai, China) (Illu-

mina, CA, USA). For all RNA-seq experiments, three separate libraries were prepared from three biological replicates for each con-

dition. A total of 21 individual cDNA libraries were constructed.

To get high quality clean reads, raw reads were further filtered by Cutadapt v1.9 (https://cutadapt.readthedocs.io/en/stable).78 The

clean reads were obtained from the 21 libraries, ranging from 40.05 to 52.60 million for each sample. We mapped these reads to the

reference genome of C. hobsonii QYL-10 (http://www.ncbi.nlm.nih.gov/assembly/GCA_015708445.2) using HISAT2 v2.0.4 (https://

daehwankimlab.github.io/hisat2) software.79 HISAT2 allowsmultiple alignments per read (up to 20 by default) and amaximum of two

mismatch when mapping the reads to the reference. StringTie v1.3.6 (http://ccb.jhu.edu/software/stringtie) was used to perform

expression level for mRNAs by calculating FPKM (FPKM = [total exon fragments / mapped reads (millions) 3 exon length (kb)]). In

our case, we used a minimum expression cut-off of 5 FPKM in order to exclude genes that are expressed at low levels without bio-

logical relevance. DEGs between each sample were identified on the basis of FPKM values and pairwise comparisons using RSEM

v1.3.0 and EdgeR v3.12.0, with a false discovery rate (FDR) threshold of < 0.05 and |logFC| R 1.80,81 To identify more additionally

important DEGs linked to lifestyle-related traits, we narrowed down the comparison to genes exhibiting the highest fold changes,

some showing > 100-fold change in expression (Figure S7).

To determinewhether therewere transcriptionally distinct states for the fungus growing on three N sources, sub-clustering analysis

was conducted. More specifically, we used log-transformed FPKM values to perform the hierarchical clustering algorithm with the

hclust function in R version 3.0.82 Pathway enrichment analysis based on gene count assigned in specific KEGG pathways for upre-

gulated DEGs from organic N-fed mycelia were analyzed. The KEGG pathway analysis was performed by KOBAS (http://kobas.cbi.

pku.edu.cn/home.do).83

QUANTIFICATION AND STATISTICAL ANALYSIS

The normality and variance homogeneity of all phenotypic and physiological data sets were evaluated by the Shapiro-Wilk’s and Lev-

ene’s tests, respectively. All data sets were subjected to different statistical tests depending on the type of data. Significant differ-

ences (plant biomass, root traits, nutrient element concentrations) between inoculated and un-inoculated trees grown on organic N

condition were estimated with a Student’s two-sample t-test at P% 0.05 using the IBM SPSS Statistics 20 software program (SPSS

Inc., http://www.spss.com.cn). Significant differences (suspension cell diameter, numbers of suspension cell, DAB staining intensity,

fungal colony diameter, and dry weight of mycelia) were estimated with a one-way analysis of variance (ANOVA) using IBM SPSS

Statistics 20 software program (SPSS Inc., http://www.spss.com.cn). Each ANOVA was followed by the Tukey’s post hoc test at

P % 0.05. For comparison of averaged normalized expression values for each cluster of CAZyme genes, statistical significance

was calculated using the Mann–Whitney U-test at P % 0.05, which assumes the measurements on a rank-order scale but does

not assume normality of data. All data were expressed as mean values with standard deviations (SD).
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