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Hyperelastic or Hypoelastic Granular Circular Chain
Instability in a Geometrically Exact Framework

Noël Challamel, M.ASCE1; François Nicot2; Antoine Wautier3; Félix Darve4; and Jean Lerbet5

Abstract: This paper investigates several granular interaction laws used in the modeling of discrete granular media. In the considered model,
each grain interacts with its neighbors with a coupled shear-normal interaction law. The analysis is performed in a geometrically exact
framework allowing large rotation and displacement evolutions, without any geometrical approximations. It is shown that most of the granular
interaction laws available in the literature are classified as hypoelastic interaction laws, and we precise the requirements to build some
hyperelastic interaction laws that avoid artificial dissipation. We also show that the uncoupled granular interaction law is hyperelastic for
all the studied models. The analysis is applied to a paradigmatic elementary system of a granular loop with a diamond pattern (a four-grain
cyclic granular chain) loaded by concentrated forces. Instabilities are observed for large displacement of the diamond chain for all the clas-
sified models. It is observed that the discrepancies between each model may grow during the deformation process. The instability phenome-
non is associated with the appearance of a limit load for this granular structural problem due to large nonlinear geometrical effects. Blocking
phenomena may also appear for such granular structural systems due to secondary granular contacts. DOI: 10.1061/(ASCE)EM.1943-
7889.0002139. © 2022 American Society of Civil Engineers.

Author keywords: Discrete element method; Granular interactions; Dissipative phenomena; Hyperelastic interactions; Instability; Circular
pattern; Granular chain; Geometrical nonlinearity.

Introduction

The modeling of granular media using the so-called Discrete
Element Method (DEM) emerged in the 1970s with the develop-
ment of computational facilities (Cundall 1971). DEM applied
to discrete granular media is based on a modeling of each grain
as a rigid body (each grain can be idealized by a rigid disk in a
two-dimensional framework, or a rigid sphere in three dimensions),
which interacts with its neighbor through normal and shear

fundamental interaction laws (Serrano and Rodriguez-Ortiz
1973; Cundall and Strack 1979). The principle of this physically
based numerical method is to capture the complex macroscopic re-
sponse of granular media through elementary granular interactions.
In most of the available codes used currently, the interaction law
between two adjacent grains is defined in a rate form, generally
based in its simplest formulation, on a linear relation between
the rate of elementary forces at the grain interface (rate of normal
force and shear force) to the normal component and tangential com-
ponents of the relative velocities between two points belonging to
the interfacial region between the two grains. This linear relation
involves some stiffness parameters, namely the normal and tangen-
tial stiffness parameters. Inelastic granular interaction laws are
commonly used to upscale the complex features of grain interac-
tions to the macroscopic scale. However, even in the linear range
for the granular interaction, some unexpected results are found, and
still poorly documented. The pioneer formulations of Serrano and
Rodriguez-Ortiz (1973) and Cundall and Strack (1979) are only
based on rate equations, and are not introduced from energetic ar-
guments. In fact, it can be shown on simple examples (this will be
done in this paper), that this rate formulation is not a total differ-
ential of the state variables, so that these models can be considered
only as hypoelastic. In such a case, the model can be also classified
as strongly hypoelastic (see Lerbet et al. 2018 for this terminology).
It is not possible with such models to express the internal force
variables in terms of direct granular kinematic parameters by inte-
gration. This may lead to artificial energy dissipation phenomenon
through ratcheting effects, even if the granular interaction law is
linear. The so-called paradox of Green (Green and Naghdi 1971;
Knops 1982) with infinite dissipation in closed kinematic cycles
may be observed for such discrete granular models. McNamara
et al. (2008) specifically highlighted this paradox for the hypoelas-
tic model of Cundall and Strack (1979) on closed kinematic cycles.
McNamara et al. (2008) proposed a correction for the initial shear-
normal interaction law by relating the shear force multiplying by
the distance between the two grains, to the relative rotations
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between each grain. With such a correction, the granular interaction
becomes hyperelastic, in the sense that it can be derived from a
potential. This model is equivalent to consider that the grain inter-
actions is composed of normal translational springs with shear rota-
tional springs (see also Challamel 2015). This granular interaction
model can be also classified as a Green elasticity model (see again
Green and Naghdi 1971; Knops 1982 or more generally on elas-
ticity concepts, Rajagopal 2011). The model of McNamara et al.
(2008) is variationally founded and does not present the paradox
of possible artificial dissipation in close cycles. Furthermore, it
gives the same results as the hypoelastic DEM model of Cundall
and Strack (1979) for uncoupled granular motion (pure normal or
pure shear interaction modes).

Recently, Turco (2018) and Turco et al. (2019) developed an-
other hyperelastic formulation based on an energy expression con-
stituted of normal, shear, and bending kinematic interactions. Turco
(2018) studied the shear behavior of packing of nonuniform circu-
lar grains, and Turco et al. (2019) mostly focused on uniform cir-
cular grains with and without geometrical defects (based on the
same granular interaction model). When restricted to pure shear
and normal interactions, this granular interaction model is equiva-
lent to consider normal translational springs with shear translational
springs (see also Challamel 2015 who also presents such hypere-
lastic model compared to the one based on shear rotational springs).
The model can be also classified as a Green elasticity model
(see again Green and Naghdi 1971; Knops 1982 or more generally
on elasticity concepts, Rajagopal 2011). The model of Turco et al.
(2019), or equivalently the model of Turco (2018), is also variation-
ally founded and does not present the paradox of possible artificial
energy dissipation in close cycles. However, this hyperelastic model
(model of Turco et al. 2019) presents a surprising behavior where
the normal force is also affected by the rotation variables of each
grain. Moreover, the shear force with such a model depends on both
the shear stiffness and the normal stiffness parameters. Turco (2018)
and Turco et al. (2019) restricted their analysis to two-dimensional
packing of grains, whereas three-dimensional packing of grains has
been recently considered by Turco (2022).

In the present paper, we will present the response of a granular
loop (circular granular chain) under horizontal and vertical forces,
with hypoelastic and hyperelastic granular interaction models.
Starting with the incremental formulation of Serrano and Rodriguez-
Ortiz (1973) or Cundall and Strack (1979), which may be also
labeled as classical DEM model, we show how these strongly hy-
poelastic models can be modified into a weakly hypoelastic model
and a hyperelastic one. Eventually, the granular interaction models
may coincide with the initial DEM model in case of uncoupled in-
teraction laws (for pure normal interaction, or pure shear interac-
tion). By embedding the three interaction models into the four-
grain cyclic chain studied in detail by Nicot et al. (2016), we analyze
the relative contribution of the contact law and the nonlinear geom-
etry effects. This evolution problem has been formulated in rate form
using the initial DEM hypoelastic model, and integrated by a time-
discretization process. The four-grain structural problem has been
also reconsidered by Lerbet et al. (2018) with a discussion related
to stability of this so-called hypoelastic model. Nicot et al. (2017)
numerically studied the behavior of a predeformed granular column
with periodic initial pattern, and based on the hypoelastic granular
interaction law with shear and normal force coupling. The behavior
of a cyclic granular chain composed of six grains has been also ex-
tensively studied by Nicot and Darve (2011) in both the elastic and
the elastoplastic regimes. More recently, Challamel and Kocsis
(2021) studied the stability and the bifurcation behavior of a granular
column, based on a shear-bending granular interaction law, in a geo-
metrically exact framework. The instabilities of this granular column

was previously numerically studied by Hunt et al. (2010) in presence
of elastic confinement. Challamel and Kocsis (2021), following
the works of Challamel et al. (2020) and Lerbet et al. (2020) also
showed the link between the discrete granular problem and the
finite-difference formulation of a continuous Engesser-Timoshenko
column (also labeled Bresse-Timoshenko beam; see Challamel and
Elishakoff 2019). In the present paper, only a few grains are con-
sidered in order to investigate analytically the nonlinear evolution
problem and point out the relative effect of the type of contact law
(hypoelastic or hyperelastic) on the mechanical response of an
archetypal grain assembly. The classification of several granular
interaction laws available in the literature in terms of hyper or hy-
poelasticity has not been investigated in detail, to the authors’
knowledge. Furthermore, new, exact solutions for the static re-
sponse of a circular granular chain composed of a few rigid grains
connected by some hyperelastic or hypoelastic interaction law are
presented and commented on as a paradigmatic granular system
representative of some more complex granular structures.

Description of the Granular Model

The differences between each granular interaction model will be
highlighted more easily on a simple two-degree-of-freedom granu-
lar system (see Figs. 1 and 2). A regular assembly of four rigid disks
initially in contact is considered (Fig. 1). This structural problem
has been already studied in detail by Nicot et al. (2016) for this
so-called diamond pattern.

The elementary assembly of these four identical grains with
the same radius is assumed to be loaded by a system of two
perpendicular forces, aligned along the symmetry axis of the dia-
mond pattern, as illustrated in Figs. 1 and 2. For symmetrical rea-
sons, this problem is reduced to a two-degree-of-freedom system as
highlighted by Fig. 2. We consider the biaxial compression of a
two-degree-of-freedom granular system, with normal and shear in-
teractions between the two grains. Each grain has a radius denoted
by R. The two displacements (Δ1;Δ2) are associated with the ex-
ternal forces (F1;F2) in the same direction. It is possible to express

Fig. 1. A granular symmetrical cyclic chain composed of four identical
rigid grains: definition of kinematic parameters.
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this two-degree-of-freedom system using some alternative kin-
ematic variables, for instance the distance l between the center
of each grain and the orientation α of the axis defined by the line
intersecting the center of each grain with respect to the vertical axis.
We assume that in the initial configuration, the two grains are in
contact with no overlap, and the initial orientation angle is denoted
by α0.

The two equivalent kinematic variables (α; l) are expressed as a
function of the global displacements Δ1 and Δ2, and the geomet-
rical characteristics R and α0

tanα ¼ 2R sinα0 −Δ2

2R cosα0 −Δ1

and

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2R sinα0 −Δ2Þ2 þ ð2R cosα0 −Δ1Þ2

q
ð1Þ

In the particular case for which grains are assumed rigid without
normal interaction, the problem is reduced to a single-degree-of-
freedom system, with the following kinematic constraint

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2R sinα0 −Δ2Þ2 þ ð2R cosα0 −Δ1Þ2

q
¼ 2R ð2Þ

But, in the more general case considered in this paper, assuming
an extension or a penetration condition between the two grains,
leads to a true two-degree-of-freedom system. The following kin-
ematic relationship may be considered as well, for relating each set
of kinematic parameters:

cosα ¼ 2R cosα0 −Δ1

l
and sinα ¼ 2R sinα0 −Δ2

l
ð3Þ

The equilibrium of this granular system can be directly written
applying Newton’s second law of motion, relating the external
forces (F1;F2) to the internal forces (N;T) at contact

F1 ¼ 2N cosαþ 2T sinα

F2 ¼ 2N sinα − 2T cosα ð4Þ

N = normal force, which acts between the two grains (directed
toward the line connecting the center of each grain); and T =
tangential force, which is orthogonal by definition, to the normal
force. Note that the forces N and T as displayed in Fig. 1 corre-
spond to the forces applied by the left grain on the top grain.
F1 is the vertical force and F2 is the horizontal force. These equi-
librium equations are expressed in a geometrically exact frame-
work, which accounts for the geometrical change of the granular

evolution problem. Note that all four contacts in the diamond cell
have the same (N;T) for symmetry reasons. These expressions of
direct equilibrium forces may be equivalently obtained from the
principle of virtual work

δWext ¼ δWint with δWext ¼
F1

2
δΔ1 þ

F2

2
δΔ2

and δWint ¼ −Nδun þ Tδut ð5Þ

where the variations of normal displacement and tangential dis-
placements are related to the kinematic variables through the differ-
ential relation

δun ¼ δl et δut ¼ lδα ð6Þ

We note that it is not possible to choose ðun; utÞ as the state
variables of this system if ðl;αÞ are kinematic variables describing
the state of the system. In particular, we have

δut ¼ Aðα; lÞδlþBðα; lÞδα with Aðα; lÞ ¼ 0 and Bðα; lÞ ¼ l

ð7ÞIt is clear that

∂Aðα; lÞ
∂α ≠ ∂Bðα; lÞ

∂l ð8Þ

And then u̇t ¼ lα̇ is not a total differential of (l;α). As a con-
clusion, (un; ut) cannot be considered as the state variables of this
two-degree-of-freedom system.

That being underlined, the principle of virtual work is finally
expressed as

−Nδlþ Tlδα ¼ F1

2
δΔ1 þ

F2

2
δΔ2 ð9Þ

From the definition of the kinematic variables in Eq. (1), one
calculates the rate form of the kinematic variables

l̇ ¼ ∂l
∂Δ1

Δ̇1 þ
∂l
∂Δ2

Δ̇2 ¼
Δ1 − 2R cosα0

l
Δ̇1 þ

Δ2 − 2R sinα0

l
Δ̇2

¼ − cosαΔ̇1 − sinαΔ̇2 ð10Þ

The rate of the orientation variable is calculated as well as

α̇ ¼ ∂α
∂Δ1

Δ̇1 þ
∂α
∂Δ2

Δ̇2 ⇒ lα̇ ¼ sinαΔ̇1 − cosαΔ̇2 ð11Þ

Injecting both Eqs. (10) and (11) in the weak formulation of
equilibrium gives

NðcosαδΔ1 þ sinαδΔ2Þ þ TðsinαδΔ1 − cosαδΔ2Þ

¼ F1

2
δΔ1 þ

F2

2
δΔ2 ð12Þ

which of course is equivalent to the strong form of the equilibrium
equations Eq. (4).

In this paper, we investigate three classes of granular interaction
laws. The first class, which is widely used in the literature, is a
model introduced in a rate form, initially by the pioneer researchers
in the computation of granular material through DEM applied to
granular material (Serrano and Rodriguez-Ortiz 1973; Cundall and
Strack 1979). The simplified model based on the following incre-
mental relationship between the internal forces (normal force and
tangential force) and the kinematic variables:

Fig. 2. Interaction between the symmetrical four-grain system reduced
to a two-grain problem: initial configuration (each grain is constrained
in translation).

© ASCE 04022053-3 J. Eng. Mech.
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Ṅðα; lÞ ¼ −knl̇
Ṫðα; lÞ ¼ ktlα̇ ð13Þ

kn and kt = normal and tangential stiffnesses, which characterizes
this coupled granular interaction. Serrano and Rodriguez-Ortiz
(1973) also mentioned that the stiffness parameters may be depen-
dent on the internal force variables, which make the model even
more complex. In the following, we will assume that the stiffness
parameters kn and kt are constant. Eq. (13) expresses that the rate of
normal force is proportional to the normal component of the rela-
tive velocities of each grain initially in contact, whereas the rate of
tangential force is assumed to be proportional to the tangential
component of this relative velocity.

It is worth mentioning that Eq. (13) can be partially integrated,
for constant values of the stiffness parameters kn and kt, so that

Nðα; lÞ ¼ −knðl − l0Þ

Ṫðα; lÞ ¼ kt

�
− N
kn

þ l0

�
α̇ ð14Þ

Eq. (14) can be reformulated in a classical rate form

�
Ṅ ¼ KnðN;TÞl̇
Ṫ ¼ KTðN;TÞα̇

with

8><
>:

KnðN;TÞ ¼ −kn
KTðN;TÞ ¼ kt

�
− N
kn

þ l0

� ð15Þ

This definition of hypoelastic interaction law is in agreement
with the one of Truesdell in the restricted assumption of small strain
(Truesdell 1955; Ericksen 1958; Bernstein 1960). Usual DEM
models based on such constitutive laws are then undoubtedly of a
hypoelastic nature because lα̇ is not a total differential of ðl;αÞ. In
the following, it is referred to as strongly hypoelastic. It is also pos-
sible to propose some corrections to this contact law to build other
classes of granular interaction laws, such as hyperelastic granular
interaction laws.

Starting back from Eqs. (5) and (6), the variation of internal
work is presented in the following form:

δWint ¼ −Nδlþ Tlδα ð16Þ

So that the hyperelasticity condition for the elastic granular
interaction is

−∂Nðα; lÞ
∂α ¼ ∂½lTðα; lÞ�

∂l ð17Þ

This condition is fulfilled with the model of McNamara et al.
(2008)

�
Nðα; lÞ ¼ −knðl − l0Þ
lTðα; lÞ ¼ 4R2ktðα − α0Þ

with l0 ¼ 2R ð18Þ

It is possible for the model of McNamara et al. (2008) to build
explicitly the internal energy

Wint ¼
1

2
knðl − l0Þ2 þ

1

2
kt4R2ðα − α0Þ2 ð19Þ

It is worth mentioning that Eq. (18) can be also written with the
notation of McNamara et al. (2008) as

�
Nðα; lÞ ¼ knDn

Tðα; lÞ ¼ βktDt

with

�
Dn ¼ 2R − l

Dt ¼ 2Rðα − α0Þ
and β ¼ 2R

l

ð20Þ

In McNamara et al. (2008), the factor β ¼ 2R=l is denoted by α
[see Eq. (30) of McNamara et al. 2008]. It is worth mentioning that
the hyperelastic granular interaction law can be also presented in a
rate form as

Ṅðα; lÞ ¼ −knl̇
l̇Tðα; lÞ þ lṪðα; lÞ ¼ 4R2ktα̇ ð21Þ

or equivalently

Ṅðα; lÞ ¼ −knl̇
Ṫðα; lÞ ¼ 4R2kt

α̇lþ ðα0 − αÞl̇
l2

ð22Þ

The model of McNamara et al. (2008) coincides with the model
of Cundall and Strack (1979) for uncoupled granular interaction
motion, for a pure tangential motion

kn → ∞ ⇒

�
l ¼ 2R

ṪðαÞ ¼ kt2Rα̇
ð23Þ

or for a pure normal motion

kt → ∞ ⇒

�
α ¼ α0

ṄðlÞ ¼ −knl̇
ð24Þ

Some other possibilities can be built. In the specific case where
Nðα; lÞ only depends on l, we have the hyperlastic constraint on the
shear force constitutive law

∂Nðα; lÞ
∂α ¼ 0 ⇒ Tðα; lÞ þ l

∂Tðα; lÞ
∂l ¼ 0 ð25Þ

In this last case, the shear force Tðα; lÞ cannot depend solely on
the relative rotations of each grain. For instance, it is tempting to
replace the intergranular distance l by the initial intergranular dis-
tance l0 ¼ 2R in the tangential rate equation of the initial DEM
model, so that u̇t ¼ 2Rα̇ and the tangential force may be integrated

Ṅðα; lÞ ¼ −knl̇
Ṫðα; lÞ ¼ kt2Rα̇ ð26Þ

which may be equivalently written as

Nðα; lÞ ¼ −knðl − l0Þ
Tðα; lÞ ¼ −2Rktðα0 − αÞ ð27Þ

However, such a granular interaction law Eq. (27) which viola-
tes the hyperelastic criterion Eq. (25) is not hyperelastic. In other
words, Eq. (27) is not a Green elasticity granular interaction law (or
equivalently not a hyperelastic constitutive granular law). It is a
Cauchy elasticity granular interaction law, which cannot be derived
from a potential (also classified as a nonconservative elastic law). In
this sense, it is referred to as weakly hypoelastic. Even if the contact
forces can be expressed in a total form, energy dissipation can
occur in closed cycles of loading.

An alternative hyperelastic granular interaction law is the trans-
lational model of Turco (2018) or Turco et al. (2019; see also
Challamel 2015 for the introduction of this translational granular
model), which can be presented for the granular problem studied
in this paper as

© ASCE 04022053-4 J. Eng. Mech.
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Nðα; lÞ ¼ −kn½l − 2R cosðα − α0Þ�
lTðα; lÞ ¼ kn2R sinðα − α0Þ½l − 2R cosðα − α0Þ�

þ kt2R sinðα − α0Þ2R cosðα − α0Þ ð28Þ

It can be checked that the hyperelastic criterion Eq. (17) is veri-
fied for the hyperelastic model of Turco et al. (2019). Indeed,
the model of Turco et al. (2019) is based on the writing of the fol-
lowing internal energy, related to translational normal and shear
interactions:

Wint ¼
1

2
knðl − 2R cosðα − α0ÞÞ2 þ

1

2
kt4R2sin2ðα − α0Þ ð29Þ

Nonlinear Evolution for Hypo- and Hyperelastic
Granular Models

Hypoelastic Model

The hypoelastic model is not integrable. The rate form of the equi-
librium equations are obtained from Eq. (4)

Ḟ1 ¼ 2Ṅ cosαþ 2Ṫ sinα − F2α̇

Ḟ2 ¼ 2Ṅ sinα − 2Ṫ cosαþ F1α̇ ð30Þ

which can be equivalently written in a rate form, for the hypoelastic
model

Ḟ1 ¼ −2kn cosαu̇n − 2kt sinαu̇t − F2α̇

Ḟ2 ¼ −2kn sinαu̇n þ 2kt cosαu̇t þ F1α̇ ð31Þ

It is then possible to express this rate form of the load–displace-
ment relationship in case of hypoelastic granular interactions

�
Ḟ1

Ḟ2

�
¼ 2

�
kncos2αþ ktsin2α cosα sinαðkn − ktÞ
cosα sinαðkn − ktÞ knsin2αþ ktcos2α

��
Δ̇1

Δ̇2

�

þ α̇

�
0 −1
1 0

��
F1

F2

�
ð32Þ

which can be equivalently presented, using Eq. (11), in rate form
thanks to the following tangent stiffness matrix

�
Ḟ1

Ḟ2

�
¼

�
K11 K12

K21 K22

��
Δ̇1

Δ̇2

�
with K21 ≠ K12 ð33Þ

The terms of the tangent stiffness matrix of the hypoelastic
model are given by

K11 ¼ 2kncos2αþ 2ktsin2α − sinα
l

F2

K12 ¼ 2ðkn − ktÞ cosα sinαþ cosα
l

F2

K21 ¼ 2ðkn − ktÞ cosα sinαþ sinα
l

F1

K22 ¼ 2knsin2αþ 2ktcos2α − cosα
l

F1 ð34Þ

which is consistent with the results presented by Nicot et al. (2016;
note that the notation of the present paper slightly differs from the
one used by Nicot et al. 2016), asΔ1 andΔ2 stand for the displace-
ment of each grain in the direction of application of forces F1 and
F2, in the present work.

It is remarkable that the tangent stiffness matrix of this incre-
mental equation is not symmetric due to the hypoelastic nature of
the evolution problem. In general, no analytical solutions are avail-
able for this nonlinear rate equation. The evolution problem can be
numerically integrated with a discrete incremental approach, for
various loading paths. We mainly investigated the response of
the diamond pattern for fixed values of a lateral force and displace-
ment–controlled system in the other direction.

For a one-dimensional loading system, characterized by a fixed
value of F2, for instance, the rate equation relating the rate of force
to the rate of displacement is obtained from

Ḟ2 ¼ 0 ⇒ Ḟ1 ¼
K11K22 − K12K21

K22

Δ̇1 ð35Þ

This incremental relation is controlled by the sign of the deter-
minant detK. A limit load is obtained when

Ḟ1 ¼ 0 ⇒ detK ¼ K11K22 − K12K21 ¼ 0 ð36Þ

This is the stability criterion of the associated granular structural
system along the biaxial loading path with a constant lateral force.

It is possible to consider the dimensionless variables

F�
1 ¼

F1

kn2R
; F�

2 ¼
F2

kn2R
; l� ¼ l

2R
;

Δ�
1 ¼

Δ1

2R
; Δ�

2 ¼
Δ2

2R
and γ ¼ kt

kn
ð37Þ

The rate equations of the hypoelastic granular model expressed
in dimensionless form are written

�
Ḟ�
1

Ḟ�
2

�
¼

�
K�

11 K�
12

K�
21 K�

22

��
Δ̇�

1

Δ̇�
2

�

with

K�
11 ¼ 2 cos2 αþ 2γ sin2 α − sinα

l�
F�
2

K�
12 ¼ 2ð1 − γÞ cosα sinαþ cosα

l�
F�
2

K�
21 ¼ 2ð1 − γÞ cosα sinαþ sinα

l�
F�
1

K�
22 ¼ 2 sin2 αþ 2γ cos2 α − cosα

l�
F�
1 ð38Þ

Hyperelastic Model of McNamara et al. (2008)

Using both Eqs. (22) and (30), it is possible to express the incre-
mental equations for the hyperelastic granular interaction model of
McNamara et al. (2008)

�
Ḟ1

Ḟ2

�
¼

�
K11 K12

K21 K22

��
Δ̇1

Δ̇2

�
with K21 ¼ K12 ð39Þ

As this problem is conservative, the tangent stiffness matrix is
now symmetric for this (hyperelastic) structural problem. The terms
of the tangent stiffness matrix are given by

© ASCE 04022053-5 J. Eng. Mech.
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K11 ¼ 2kncos2αþ kt
8R2sin2α

l2
− 4Rkt2Rðα0 − αÞ

l2

× cosα sinα − F2

sinα
l

K12 ¼ 2kn cosα sinα − kt
8R2 sinα cosα

l2
− 4Rkt2Rðα0 − αÞ

l2

× sin2αþ F2

cosα
l

K21 ¼ 2kn cosα sinα − kt
8R2 sinα cosα

l2
þ 4Rkt2Rðα0 − αÞ

l2

× cos2αþ F1

sinα
l

K22 ¼ 2knsin2αþ kt
8R2cos2α

l2
þ 4Rkt2Rðα0 − αÞ

l2

× cosα sinα − F1

cosα
l

ð40Þ

It is easy to check that

K12 − K21 ¼ − 4Rkt2Rðα0 − αÞ
l2

þ F2 cosα
l

− F1 sinα
l

¼ 0

ð41Þ

due to the equilibrium equation

T ¼ F1 sinα − F2 cosα
2

¼ − 2R
l
kt2Rðα0 − αÞ ð42Þ

Because the model is integrable, the force-displacement rela-
tionship can be expressed directly using the following nonlinear
equations:

�
F1 ¼ 2N cosαþ 2T sinα

F2 ¼ 2N sinα− 2T cosα
and

�
Nðα; lÞ ¼ −knðl− 2RÞ
lTðα; lÞ ¼ 4R2ktðα− α0Þ

ð43Þ

It is possible to extract l as a function of α as

l ¼ 2Rþ F1 cosαþ F2 sinα
−2kn ð44Þ

Multiplying the first equilibrium equation Eq. (43) by l leads to

F1l ¼ −2knlðl − 2RÞ cosαþ 2 sinα4R2ktðα − α0Þ ð45Þ

The nonlinear equations are then obtained in a dimensionless
form [dimensionless variables defined in Eq. (37)] as

8<
: l� ¼ 1 − 1

2
ðF�

1 cosαþ F�
2 sinαÞ

F�
1l

� ¼ −2l�ðl� − 1Þ cosα − 2γðα0 − αÞ sinα
and

Δ�
1 ¼ cosα0 − l� cosα ð46Þ

In the specific case F�
2 ¼ 0 (uniaxial compression of the dia-

mond granular chain), Eq. (46) is reduced to the following form

−ðF�
1Þ2

sinα cosα
2

þ F�
1 sinαþ 2ðα0 − αÞγ ¼ 0 ð47Þ

We finally find the nonlinear load–rotation constitutive law

F�
1ðαÞ ¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γðα0−αÞ

tanα

q
cosα

ð48Þ

We then obtain for the initial load–rotation variable, the branch
with the minus sign

F�
1ðαÞ ¼

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γðα0−αÞ

tanα

q
cosα

ð49Þ

It is easy to check from Eq. (49) to check that the initial load
vanishes for the initial slope, i.e., F�

1ðα0Þ ¼ 0. Furthermore, the lin-
earized load–rotation relationship can be derived from Eq. (49)
using an asymptotic expansion

F�
1ðαÞ ¼

2γ
sinα0

ðα − α0Þþ · · · ð50Þ

It is also possible to express equivalently the evolution problem
in rate form. The rate equations of the hyperelastic granular model
expressed in dimensionless form are written

�
Ḟ�
1

Ḟ�
2

�
¼

�
K�

11 K�
12

K�
21 K�

22

��
Δ̇�

1

Δ̇�
2

�

with

K�
11 ¼ 2cos2αþ 2γ

sin2α
ðl�Þ2 −

2γðα0−αÞ
ðl�Þ2 cosαsinα−F�

2

sinα
l�

K�
12 ¼ 2cosα sinα− 2γ

sinαcosα
ðl�Þ2 − 2γðα0−αÞ

ðl�Þ2 sin2αþF�
2

cosα
l�

K�
21 ¼ 2cosα sinα− 2γ

sinαcosα
ðl�Þ2 þ 2γðα0−αÞ

ðl�Þ2 cos2αþF�
1

sinα
l�

K�
22 ¼ 2sin2αþ 2γ

cos2α
ðl�Þ2 þ 2γðα0−αÞ

ðl�Þ2 cosα sinα−F�
1

cosα
l�

ð51Þ

The uniaxial compression behavior of this cyclic granular chain
is first illustrated for F2 ¼ 0, γ ¼ 2, and α0 ¼ π=4. The case of the
initial configuration α0 ¼ π=4 will be mainly investigated in this
paper as a paradigmatic configuration. It is shown in Fig. 3 that the
response of the hyperelastic granular chain following Eq. (49)
presents a limit point with a maximum rotation α value, whereas
the load parameter is still continuing to increase. Fig. 4 represents
the same numerical test in the load–displacement ðF�

1;Δ
�
1Þ space

(for the hyperelastic granular chain). Each branch of Eq. (48) is
highlighted by the two colors in Figs. 4 and 5. Fig. 4 gives the
impression that there exists a bifurcation point, as the two solution
components apparently intersect. However, in Fig. 5, a three-
dimensional representation of the equilibrium paths is shown,
which clearly indicates here that there is no bifurcation, even if
multiple solutions may be obtained for a given load parameter. The
responses of both models, the hypoelastic and the hyperelastic
granular model, are compared in Fig. 6 in the load–displacement
space. The two models have the same initial load–displacement

© ASCE 04022053-6 J. Eng. Mech.

 J. Eng. Mech., 2022, 148(9): 04022053 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

IN
R

A
E

 o
n 

03
/0

1/
23

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



slope, which confirms that both models coincide when the nonlin-
ear effects of geometrical changes can be neglected. However, the
response for large displacements of both models may significantly
differ. In Fig. 6, a typical case of γ ¼ 2 was chosen, which means
that the shear stiffness kt was assumed to be larger than the normal
stiffness kn. This is probably unrealistic for most granular interac-
tions and a more realistic value of γ ¼ 0.5 (where the normal stiff-
ness is larger than the shear stiffness) was investigated in Fig. 7. It is
seen that the two hypoelastic and hyperelastic models for this load-
ing configuration give very close results. Fig. 8 represents a para-
metric study with respect to the shear stiffness ratio γ. It can be
observed that a limit state exists in term of rotation α for large values
of the shear stiffness ratio larger than unity. The asymptotic case

Fig. 4. Load-displacement curve for the hyperelastic granular model:
γ ¼ 2; F2 ¼ 0; and α0 ¼ π=4.

Fig. 5. Three-dimensional representation of the load-displacement-
rotation curve for the hyperelastic granular model: γ ¼ 2; F2 ¼ 0; and
α0 ¼ π=4.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1*

F 1
*

Hypoelastic model

Hyperelastic model

Fig. 6. Comparison of the load-displacement curves for both the hy-
perelastic and the hypoelastic granular model: γ ¼ 2; F2 ¼ 0; and
α0 ¼ π=4.

Fig. 3. Load-rotation curve for the hyperelastic granular model: γ ¼ 2;
F2 ¼ 0; and α0 ¼ π=4.
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γ ¼ 0 corresponds to a pure shear interaction. The existence of two
solutions for F�

1 for some values of α corresponds indeed to two
levels of grain interpenetration l�. In the general case where
F�
2 ≠ 0, in presence of lateral confinement, considering both equa-

tions Eq. (46) leads to the second-order polynomial expression of
F�
1, written as

−ðF�
1Þ2

sinα cosα
2

þ F�
1

�
sinα − F�

2

2
þ F�

2cos
2α

�

− F�
2 cosα

�
1 − F�

2

2
sinα

�
þ 2γðα0 − αÞ ¼ 0 ð52Þ

which generalizes Eq. (47). The load–rotation function can be
explicitly found from

F�
1ðαÞ ¼

sinα − F�
2

2
þ F�

2cos
2α� ffiffiffi

δ
p

sinα cosα
with

δ ¼
�
sinα − F�

2

2
þ F�

2cos
2α

�
2

þ 2 cosα sinα

�
−F�

2 cosα

�
1 − F�

2

2
sinα

�
þ 2γðα0 − αÞ

�
ð53Þ

As shown in Figs. 9–11, the response of the granular structural
model is very sensitive to the presence of the lateral load F2, which
may induce some instabilities with the appearance of a limit load,
both in the load–rotation diagram (Fig. 9) and the load–displacement
diagram (Fig. 10). The loss of stability of the initial path is checked
from the change in the sign of the determinant of the stiffness matrix.
This phenomenon is more specifically highlighted in a three-
dimensional space, where the load is shown to evolve with both
the rotation and the displacement in the direction of application of
the vertical force (Fig. 11). It is shown that, even in presence of
hyperelastic law with quadratic potential with respect to both the
intergranular distance and the shear rotation variable, strongly non-
linear geometrical effects may be responsible for the macroscopic
nonlinear response including possible instability such as limit point
behavior. Structural instabilities may arise even if the granular inter-
action is linearly elastic or hyperelastic (in the sense that it is asso-
ciated to a quadratic potential of the kinematic variables).

Hyperelastic Model of Turco et al. (2019)

The system of two nonlinear equations of ðl;αÞ of this model
(hyperelastic model based on normal and shear translational
springs see also Challamel (2015) for the introduction of this
translational-based interaction model) are summarized as

F1 ¼ 2N cosαþ 2T sinα

F2 ¼ 2N sinα − 2T cosα

and

Nðα; lÞ ¼ −kn½l − 2R cosðα − α0Þ�
lTðα; lÞ ¼ kn2R sinðα − α0Þ½l − 2R cosðα − α0Þ�

þ kt2R sinðα − α0Þ2R cosðα − α0Þ ð54Þ

The nonlinear equations of this model can be equivalently
rewritten as:

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1 1.25 1.5

F 1
*

 increasing

Fig. 8. Comparison of the load-rotation curves for the hyperelastic
granular model: γ ∈ f0.25; 0.5; 0.75; 1; 1.25; 1.5; 1.75; 2g; F2 ¼ 0; and
α0 ¼ π=4.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1*

F 1
*

Hypoelastic model

Hyperelastic model

Fig. 7. Comparison of the load-displacement curves for both the hy-
perelastic and the hypoelastic granular model: γ ¼ 0.5; F2 ¼ 0; and
α0 ¼ π=4.

Fig. 9. Comparison of the load-rotation curves for the hyperelastic
granular model with and without lateral load F2: F�

2 ∈ f0; 0.75g,
γ ¼ 0.5; and α0 ¼ π=4.
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l� ¼ cosðα − α0Þ − 1

2
ðF�

1 cosαþ F�
2 sinαÞ and

F�
1l

� sinα − F�
2l

� cosα
2

¼ sinðα − α0Þ½l� − cosðα − α0Þ�
þ γ sinðα − α0Þ cosðα − α0Þ ð55Þ

In absence of lateral load F�
2 ¼ 0, these equations reduce to

F�
2 ¼ 0 ⇒ − 1

4
sinð2αÞðF�

1Þ2 þ F�
1 sinð2α − α0Þ

þ γ sinð2α0 − αÞ ¼ 0 ð56Þ

or equivalently, for the initial nonlinear branch

F�
2 ¼ 0⇒F�

1ðαÞ

¼ 2

"
sinð2α−α0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ð2α−α0Þþ γ sinð2αÞ sinð2α0 − 2αÞ

p
sinð2αÞ

#

ð57Þ

Imposing the initial constraint F�
1ðα0Þ ¼ 0, gives the branch

with the minus sign

F�
2 ¼ 0⇒F�

1ðαÞ

¼ 2

"
sinð2α−α0Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ð2α−α0Þþ γ sinð2αÞ sinð2α0− 2αÞ

p
sinð2αÞ

#

ð58Þ

The differences between the two hyperelastic granular models,
namely the model based on shear rotational springs (model of
McNamara et al. 2008) and the model based on shear translational
springs (model of Turco et al. 2019; see also Challamel 2015) are
highlighted on Figs. 12 and 13. As shown from Figs. 12 and 13
(and as confirmed by an asymptotic analysis; Eq. (50) is valid for

Fig. 12. Representation of the load-rotation curve for the two hyper-
elastic granular models (model of McNamara et al. 2008 based on
rotational shear springs, and model of Turco et al. 2019 based on trans-
lational shear springs): F�

2 ¼ 0; γ ¼ 0.5; and α0 ¼ π=4.

Fig. 10. Comparison of the load-displacement curves for the hypere-
lastic granular model in presence of additional lateral load F2: F�

2 ¼
0.75; γ ¼ 0.5; and α0 ¼ π=4.

Fig. 11. Three-dimensional representation of the load-displacement-
rotation curve for the hyperelastic granular model: F�

2 ¼ 0.75; γ ¼ 0.5;
and α0 ¼ π=4.
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both hyperelastic models), the initial slope of both hyperelastic
models also coincide, which means that each model can be distin-
guished from each other, only for large displacement values of the
granular evolution process. While the two granular models behave
qualitatively the same with respect to the rotation parameter α, the
behaviors of both models diverge when expressed as a function of
the dimensionless displacement Δ�

1.

Unilateral and Blocking Phenomenon

The present granular model may account for the so-called unilateral
effect due to the possible asymmetry of the granular interaction in
tension and in compression. The generalization of Eq. (19) with the
so-called no-tension interaction law could be written from

Wint ¼
1

2
knhl0 − li2 þ 1

2
kt4R2ðα − α0Þ2 with hxi ¼ xþ jxj

2

ð59Þ

where hxi = Macaulay bracket. Moreover, it is possible to account
for the appearance of new contact conditions for the granular sys-
tem. For the granular diamond structure considered in the paper,
and in presence of pure shear interaction (which is asymptotically
recovered for γ ¼ 0), the hypoelastic model and the hyperelastic
model of McNamara et al. (2008) coincides

γ ¼ 0 ⇒ l ¼ 2R and T ¼ 2Rktðα − α0Þ ð60Þ

In this case, there is a specific phenomenon of blocking that
appears at the emergence of the contact with the second neighbor-
ing grain. In case of pure shear interaction, the coupling of both
the equilibrium equation and the elastic shear law gives the load–
rotation relationship

F1 sinα − F2 cosα ¼ 2T ¼ 4Rktðα − α0Þ and

Δ�
1 ¼ cosα0 − cosα ð61Þ

which may be expressed in dimensionless form by

F̂1 ¼
2ðα − α0Þ þ F̂2 cosα

sinα
where

F̂1 ¼
F1

2Rkt
and F̂2 ¼

F2

2Rkt
ð62Þ

Here, the dimensionless force variables have been normalized
with respect to the tangential stiffness parameters.

The blocking phenomenon also arises with the translational
shear spring model of Turco et al. (2019) in case of pure shear
interaction (kn → ∞)

γ ¼ 0 ⇒ l ¼ 2R cosðα − α0Þ ð63Þ

In this case, the evolution problem in case of pure shear inter-
action is governed by the following system:

F1 sinð2α − α0Þ − F2 cosð2α − α0Þ ¼ 2Rkt sinð2α − 2α0Þ and

Δ�
1 ¼ cosα0 − cosα cosðα − α0Þ ð64Þ

which may be expressed in dimensionless form by

F̂1 ¼
sinð2α − 2α0Þ þ F̂2 cosð2α − α0Þ

sinð2α − α0Þ
ð65Þ

Figs. 14 and 15 illustrates the nonlinear evolution of the com-
pression of the cyclic granular chain with pure shear interaction and
in absence of additional lateral load F2 ¼ 0. For the three granular
interaction models, the response is constituted of two branches, the
first (nonlinear) elastic branch and the emergence of the second
granular contact with a displacement-limited constraint. In this pure
shear interaction mode, the hypoelastic model coincides with the
hyperelastic granular model based on rotational springs. Each
branch is analytically given by

First branch∶ F̂2 ¼ 0 ⇒ F̂1 ¼
2ðα − α0Þ

sinα
and

Second branch∶α ¼ αmax ¼ π=3 ð66Þ

This rotation limited condition is equivalent to a displacement-
limited condition, expressed by

0

0.5

1

1.5

0 0.25 0.5 0.75 1 1.25 1.5

rotational shear springs

translational shear springs

Fig. 14. Load-rotation response of the cyclic granular chain under pure
shear interaction; First and second contact emergence: F�

2 ¼ 0; αmax ¼
π=3 (for the rotational shear spring model); and α0 ¼ π=4.

Fig. 13. Representation of the load-displacement curve for the two
hyperelastic granular models (model of McNamara et al. 2008 based
on rotational shear springs, and model of Turco et al. 2019 based on
translational shear springs): F�

2 ¼ 0; γ ¼ 0.5; and α0 ¼ π=4.
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α¼ αmax ¼ π=3 or equivalently

Δ�
I ¼Δ�

I;max ¼ cosα0 − cosπ=3¼
ffiffiffi
2

p − 1

2
for α0 ¼ π=4 ð67Þ

The granular system behaves like a displacement-limited
material (blocking phenomenon), as investigated at the material
scale by Challamel and Rajagopal (2016).

For the translational shear spring model of Turco et al. (2019),
the response is very close with the same displacement-limited
condition associated to a close rotation limited value

cosðαmaxÞ cosðαmax −α0Þ ¼
1

2
or equivalently

Δ�
I ¼Δ�

I;max ¼ cosα0 − cosπ=3¼
ffiffiffi
2

p − 1

2
for α0 ¼ π=4 ð68Þ

Furthermore, the (pure shear) response is almost piecewise lin-
ear. We show that such macroscopic nonlinearities (and nonsmooth
behavior) from a material point of view, may be induced by local
geometric nonlinearities at the microscopic scale. Blocking and
clogging phenomena are common phenomena observed in the
behavior of granular materials. For the coupled system with both
shear and normal interactions, the secondary contact is also respon-
sible of a nonsmooth behavior with a piecewise nonlinear response.

Conclusions

In this paper, we have investigated the nonlinear response of a
cyclic granular chain in presence of strongly nonlinear geometrical
effects. The general granular interaction laws considered here are
classified as hypoelastic and hyperelastic granular interaction laws.
Granular structural systems may present different kind of instabil-
ities including symmetrical pitchfork bifurcations with initial stable
branches or initial instable branches (as shown numerically by Hunt
et al. (2010) in presence of elastic surrounding medium). Challamel
and Kocsis (2021) have recently analytically shown that in absence
of external elastic confinement, initial stable pitchfork bifurcation
may also arise in the buckling and postbuckling of granular
columns. In the present paper, we show another instability phe-
nomenon related to a limit load with an exchange of stability. The
granular system may present a limit point behavior induced by the
geometrical nonlinear effects, as observed by Nicot and Darve
(2011) for granular circular chains (Nicot and Darve 2011; Nicot
et al. 2017) for a longitudinal granular column. Nonlinear

geometrical effects may be responsible of macroscopic granular in-
stabilities and possible strongly nonlinear behaviors, even if the lo-
cal granular interaction remains elastic and eventually linear. We
also showed, with this elementary granular system, the appearance
of some possible displacement-limited phenomena associated to
the emergence of secondary granular contacts (and possible
kinematics blocking constraints).

Data Availability Statement

All data, models, and code generated or used during the study
appear in the published article.
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