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Highlights: 15 

- Stakeholders need tools to assess environmental risks of pesticide 16 
- I-Phy3 assesses the risk on 3 environmental compartments (air / surface water / ground 17 

water) 18 

- Knowledge of recent studies and expertise on pesticides are combined in I-Phy3 19 

- I-Phy3 yielded better validation results than previous versions of the indicator 20 

- A good compromise between ease of use and predictive capability is offered by I-Phy3 21 

 22 

 23 

Abstract 24 

Stakeholders involved in actions to reduce the use and the impacts on the environment or 25 
human health of pesticides need operational tools to assess crop protection strategies in 26 
regard to these impacts. I-Phy3 brings together all improvements introduced since the first 27 
version of the indicator to better meet user’s needs and requirements of integrating processes. 28 
I-Phy3 was deeply modified to ensure its predictive quality. I-Phy 3 is structured in three levels 29 
of aggregation in form of hierarchical fuzzy decision trees designed with the CONTRA method. 30 
At the 1st level, five basic subindicators assess the risk of contamination (RC) for the different 31 
transfer pathways involved in surface water, ground water and atmosphere contamination: 32 
leaching, runoff, drainage, drift, volatilization. At the 2nd level, RC subindicators are aggregated 33 
with a toxicity variable (human or aquatic) in a risk indicator. At the 3rd level, the global indicator 34 
I-Phy3 results from the aggregation of three risk indicators for groundwater, surface waters 35 
and air.  I-Phy3 yielded better validation results than its previous versions. This effort to assess 36 
the predictive quality of the indicator should be pursued and completed by a feasibility and 37 
utility test by end-users. A subindicator on risk of soil contamination is a gap which remains to 38 
fill. 39 
 40 
 41 
 42 
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1.   Introduction 46 

The incredible and securing rise of agriculture production since the end of the Second World 47 
War, was favored partially by the widespread use of pesticides. Nevertheless, side effects on 48 
the environment (Richardson, 1998) and in particular on water quality (Flury et al., 1995; Grung 49 
et al., 2015; Lopez et al., 2015; Real et al., 2005), air (Hulin et al., 2021; Lichiheb et al., 2015) 50 
and accumulation in soil (Silva et al., 2019; Tang and Maggi, 2021) have been observed. These 51 
contaminations lead to exposure of non-target ecosystems as well as populations that may 52 
have ecotoxicological and/or toxicological impacts. Consequently, regulations on pesticide use 53 
have been continuously reinforced since the Council Directive 79/117/EEC with the Council 54 
Directive EC 1107/2009 es and the Pesticide Package 2009/128/CE on sustainable use of 55 
pesticides. This was amended by the Commission Directive (EU) 2019/782 introducing a 56 
monitoring of risk by the HRI indicator (Methodology for calculating harmonized risk indicators 57 
for pesticides under Directive 2009/128/EC, 2021) (European Commission. Statistical Office 58 
of the European Union., 2021; (Lykogianni et al., 2021). In all cases, stakeholders involved in 59 
actions to reduce the use and impacts of pesticides need operational tools to assess crop 60 
protection strategies. The aim of such assessment may be to monitor and to report on the 61 
current status of environmental compartments quality, to produce references for the good 62 
management of crop protection and to work on innovative systems (Bockstaller et al., 2015). 63 

The need for assessment tools dealing with pesticide issues has led to the development of 64 
numerous indicators. The simplest ones rely on  the supplied quantities, the Quantity of Active 65 
Ingredients (QAI) or the Treatment Frequency Index (TFI) calculating the ratio of applied 66 
pesticide to the registered rate (Hossard et al., 2017; Uthes et al., 2019). Although those 67 
indicators have been developed to describe the evolution of pesticide use intensity, they are 68 
often used as main indicators to address the environmental effects due to pesticide spraying 69 
in environmental assessment method (Eckert et al., 2000; Vilain et al., 2008). Pesticide risk 70 
indicators (Levitan, 2000) requiring complementary variables such as active ingredient 71 
properties, crop management data and pedoclimatic variables are more elaborate and were 72 
reviewed by several authors (Feola et al., 2011; Keichinger et al., 2013; Maud et al., 2001; 73 
Reus et al., 2002). Some deserve more attention. While the Danish Pestice Load (Kudsk et al., 74 
2018) is based on a quite simple scoring approach of pesticide properties,, other EPRIP2 75 
(Trevisan et al., 2009),, POCER (Vercruysse and Steurbaut, 2002) or SYNOPS (Strassemeyer 76 
and Gutsche, 2010), the indicators of the HAIR project (Kruijne et al., 2011)) rest on 77 
quantitative equations addressing several factors (pesticide properties, soil climate, etc.). This 78 
array of indicators may be explained by the context of use (purpose, environmental covered 79 
addressed, scales, means, etc.) and the research of compromise between integration of 80 
process and feasibility (Bockstaller et al., 2015) Among those indicators, the I-Phy indicator, in 81 
its two versions, assessing risk for ground water, surface water and air, distinguished by its 82 
original construction of a fuzzy decision tree combining qualitative and quantitative data. It was 83 
developed for an assessment  at the field level, first  for arable cropping systems and later its 84 
was adapted to viticulture (Thiollet-Scholtus and Bockstaller, 2015). Its aim was to help 85 
advisers guide farmers in their choice of active ingredients and application methods at limit 86 
pressure on the environment. In the validation study of Pierlot et al. (2017), I-Phy1 (first version, 87 
van der Werf et Zimmer 1998) came out as one of the “best” indicators for transfer by leaching. 88 
Lindahl et Bockstaller (2012) proposed an upgraded version assessing the pesticide transfer 89 
by leaching to better take into account preferential transfer (I-Phy2), that was overlooked by I-90 
Phy1. However, its predictive quality was not improved. 91 



   
 

   
 

Furthermore, assessments of transfer and toxicity of pesticides in I-Phy1 were combined in a 92 
calculation of pesticide risk. Yet, stakeholders and advisers working directly with farmers 93 
require a separate assessment of transfer to gain insight of water bodies contamination with 94 
respect to the European rules for water bodies quality (DCE). This demand was motivated by 95 
their need to gain knowledge on water quality in terms of pesticide contamination. 96 
Ecotoxicological risk integrating transfer and toxicity remains a matter of interest when 97 
stakeholders consider the impact of pesticide use on biocenosis. In both cases, the 98 
implementation of assessment tools is aimed at helping them prioritize their actions. 99 

Here is presented I-Phy3 which brings together all improvements introduced since the first 100 
version of the indicator to better meet users’ needs and requirements of integrating processes 101 
to ensure its predictive quality. Based on the knowledge gained on pesticide transfers and risks 102 
for the last 20 years, the indicator was restructured to separate transfer assessment from risks 103 
on living organisms assessment, new input variables were introduced and most algorithms 104 
deeply revised. This article presents the new calculation algorithms for arable crops as well as 105 
results of the indicator evaluation for its predictive quality. Besides the design of the indicator 106 
and validation results, possibilities for implementing the indicator are discussed. 107 
 108 

2.   Material and methods 109 

The design of I-Phy3 started with the selection of input variables (section 2.1). Those variables 110 
were aggregated into several subindicators and then in a global indicator I-Phy3. The 111 
methodology is described in section 2.2 and the structure of the indicator in section 2.3. The 112 
predictive quality of the indicator was then assessed by comparison of indicator outputs 113 
calculated on sites with measured values of water or air contamination. Section 2.4 presents 114 
the study sites used to collect measurements of water (EQUIPE project) or air (Repp’Air 115 
project) contaminations while section 2.5 presents the methodology to assess predictive 116 
quality of the indicator. 117 

 118 

2.1.   Selection of input variables 119 

Input variables were selected from a literature review, starting from the work of van der Werf 120 
(1996) and on expertise based on experimental data (e.g. see section 2.3.2 for contamination 121 
of groundwater). 122 

For pesticides properties, we used the revised Pesticide Properties Database PPDB which is 123 
updated since more than 20 years with more reliable value available for each active ingredient 124 
(a.i.) and used in many risk assessment studies (Lewis et al., 2016). PPDB can be browsed 125 
on a website (PPDB : Pesticide Properties Database, 2020)  or purchased in form of an Access 126 
database. Values of pesticide properties were extracted from the latter (version 127 
20/05/11).(Tomlin et al., 1995) For the DT50, the value proposed for laboratory rather than the 128 
“typical value” proposed by the database resulting from an expert work was selected. This 129 
choice resulted also from the calibration work with monitoring data in the Rhine plain (ERMES 130 
2017, Koller et al. 2015) for four active ingredients (see section 2.3.3). For some few active 131 
ingredients, values as listed in Supplementary Materials S1 were modified. For some few other 132 
a.i., values were taken from other sources because of missing value in PPDB. Overall, 498 133 
active ingredients were integrated in the database. 134 
 135 

2.2.  Design of indicators 136 



   
 

   
 

The indicator I-Phy3 as well as all subindicators are calculated for a single active ingredient 137 
and then aggregated for a spraying program. They are expressed on a continuous 138 
performance scale between 0 (highest risk) and 10 (lowest risk), which allows an operational 139 
user of the indicators by non-scientific users. (Bockstaller et al., 2008). (Craheix et al.,  This 140 
scale can be easily inverted between 0 (lowest risk) and 10 (highest risk) for a use of I-Phy3 141 
for specific risk assessment for which high values of indicators are usually associated to high 142 
risk". 143 

Fuzzy decision trees were implemented to design the indicator I-Phy and its different 144 
subindicators like in the first version of the indicator (Roussel et al., 2000; van der Werf and 145 
Zimmer, 1998). Fuzzy decision trees present several advantages (Bockstaller et al., 2017): 146 
they rely on linguistic “if then” rules with a transparency, at least semantic through linguistic 147 
rules that are easy to understand for non-specialists. They cope with qualitative as well as 148 
quantitative heterogeneous information. Furthermore, combining decision trees with fuzzy 149 
logic makes it possible to mitigate threshold effects linked to the linguistic “if then” rules when 150 
they are Boolean, i.e., consisting of two alternatives yes/no. Fuzzy logic introduces fuzzy 151 
subsets to deal with the whole set of intermediate cases. 152 

As shown in the simplified example , (Supplementary Materials S2), I-Phy3 and each 153 
subindicator require i) fuzzy subsets for each input variable with threshold values, ii) 154 
membership functions to calculate membership degree of each variable to the favourable (low 155 
risk) or unfavourable (high risk) subset, iii) decision trees. More details for fuzzy subsets and 156 
membership functions are given in Supplementary Materials S3, while decision trees are 157 
presented in section 2.3.  Most decision trees were designed with the CONTRA method which 158 
supports the design of fuzzy decision tree in a transparent way(Bockstaller et al., 2017) were 159 
calibrated with a model (see section 2.3.3) or based on one variable (see sections 2.3.5 and 160 
2.3.6). In this latter case, the membership degree to the favourable subset (expressed between 161 
0 and 1) is transformed into an indicator score by multiplying the former by 10. 162 

 163 

2.3.  Description of the indicator 164 

2.3.1.    Overview of the indicator structure and calculation 165 

 166 

As shown on Figure 1, I-Phy3 is structured in three levels of aggregation. At the 3rd level, the 167 
global indicator I-Phy3 results from the aggregation of three risk indicators tackling three 168 
environmental compartments like in version 1 (van der Werf and Zimmer, 1998): 1) 169 
groundwater, 2) surface water and 3) air. At the 2nd level, each of this indicator of risk consists 170 
in the aggregation of one or two sub indicators assessing the risk of contamination (RC) via 171 
specific transfer pathways, with a toxicity variable, Admissible Daily Intake (ADI) or Aquatox 172 
(highest toxicity level between fish, daphnia or alqua, for the human health and ecotoxicological 173 
impacts respectively, see van der Werf and Zimmer (1998)). At the 1st level, five basic 174 
subindicators assess the risk of contamination (RC) namely, a) the groundwater contamination 175 
by pesticide leaching (RCgwlea), b) surface water contamination by pesticide runoff or drainage 176 
transfer (RCswru/d). Drainage transfer is characterized by an initial vertical transfer, i.e. leaching, 177 
to an impermeable layer where till drains have been set to evacuate rapidly water excess. This 178 
requires a specific calculation (see 3.1.4). c) surface water contamination by pesticide drift 179 
(RCswdr; ); d) air contamination by pesticide volatilization (RCairvol) and e)) air contamination by 180 
pesticide drift (RCairdr). 181 



   
 

   
 

The five risks of contamination are calculated for 1 kg of active ingredient (a.i.) and modulated 182 
by the actual application rate which results from the calculation of a non-intercepted rate of a.i. 183 
by the treated crop (see section 2.3.8): each of these five subindicators is transformed in a risk 184 
between 0 (no) and 1 (high) and weighted by the percentage of sprayed area within the field. 185 
It is then retransformed in a value of performance according to Equation 1. It was assumed 186 
that there is a proportional relation between sprayed area and level of contamination (Melland 187 
et al., 2016): 188 

   189 

𝑅𝐶𝑓𝑖𝑛𝑎𝑙 = 10 (1 − (1 −
𝑅𝐶100%

10
))

%𝐴𝑟𝑒𝑎

100
    (Equation 1) 190 

Where: 191 

RCffinal: final result for a risk of contamination (see Figure 1) 192 

RC100%: result for a risk of contamination calculated for 100% of sprayed area 193 

%area: percentage of sprayed area within a field. 194 

I-Phy and each subindicator result from the aggregation based on a fuzzy decision tree. 195 

 196 

 197 

2.3.2. Groundwater contamination (RCgwlea) 198 

Two variables of previous versions were kept: the GUS and the leaching potential for which a 199 
new calculation method was proposed (Supplementary Materials S4.1.). A variable identified 200 
as playing an important role was added: the water status of the soil when pesticides are applied 201 
(Pierlot et al., 2017) depending on climate and soil conditions. This variable was assessed 202 
through the application period (Supplementary Materials S4.2). Finally, solubility as a fourth 203 
variable was added. This property was identified as explaining of the discrepancy between the 204 
low transfer risk calculated by previous indicator version and the alarming contamination level 205 
of groundwater in Rhine Plain for the nicosulfuron active ingredient (ERMES, 2017). 206 
Nicosulfuron is characterized by a very high solubility in water (7500 mg.L-1). The role of 207 
solubility in pesticide leaching is confirmed by literature (Elliott et al., 2000). While pesticide 208 
properties are directly retrieved from data bases, the two other variables have to be calculated 209 
(Supplementary Materials 4.1 and 4.2). 210 

No prominent weight was assigned to the GUS, like the version 1, regarding the aggregation 211 
of the four input variables in a fuzzy decision tree (Table 1). This is justified by the fact that in 212 
situations of preferential transfer, even active ingredient with favourable GUS like glyphosate 213 
can be leached (Vereecken, 2005). We selected weights and modified some decision rules 214 
proposed automatically by CONTRA as made possible by this method, to adjust indicators 215 
outputs to results of groundwater monitoring of the Rhine Plain for four active ingredients 216 
among the most used pesticides for the main crop of the region, maize’ (dmat-p, mesotrion, 217 
nicolsulfuron, s-metolachlor), (ERMES, 2017; Koller et al., 2015). Table 1 depicts the structure 218 
of the indicator. 219 

 220 

2.3.3.    Surface water contamination by drainage/runoff 221 

(RCswd/r) 222 



   
 

   
 

The calculation of this subindicator, coming from the work of Wohlfart (2008) is based on the 223 
runoff potential and a availability variable that is more elaborated than the use of the single 224 
DT50 in the first version (van der Werf and Zimmer 1998). The runoff potential depends on 225 
slope, on soil properties, texture, crusting sensitivity, hydromorphy, and also on management, 226 
tillage and implantation of buffers strip (Supplementary Materials S5). The availability variable 227 
is inspired from quantitative indicators like Synops (Strassemeyer and Gutsche, 2010) and 228 
Eprip2 (Trevisan et al., 2009). Equation 2 shows the calculation of the availability variable: 229 

Avai = r . e-Ln(2)/(DT50.t)     (Equation 2) 230 

Where: 231 

Avai : availability of active ingredient 232 

DT50 : soil half-life of active ingredient (days) 233 

t : time in days between date of spraying and date of next runoff event with a default value of 234 
3 for a worst-case situation  235 

r: A reduction coefficient assessing the reduction pesticide amount for runoff when the active 236 
ingredient is incorporated (Mickelson et al., 2001). Considering the results of these authors, 237 
we proposed a default value of 0.5 when incorporation and 1 when no incorporation. 238 

 239 

Table 2 depicts the fuzzy decision tree aggregating those two variables. Outputs of the decision 240 
trees were calibrated with help of the PRZMv3.12 model (Carsel et al., 1986) for two rates 241 
(Wohlfahrt, 2008) and interpolated for 1 kg. Input variables belong either to the favourable set 242 
(F) or to unfavourable set (U). 243 

 244 

 245 

2.3.4. Particular case of drained plot 246 

It has been clearly demonstrated that drained fields show a high risk of rapid transfer of 247 
pesticide to adjacent surface water bodies through subsurface pipes (Brown and van Beinum, 248 
2009). Although the initial transfer process consists in a preferential vertical transfer, final 249 
impacted compartment is surface water and not groundwater. This is supported by the 250 
variables playing a role in the determinism of pesticide loss in drained field (Brown and van 251 
Beinum, 2009), Kd (non-normalized KOC) and DT50 which are both aggregated in the GUS 252 
variable main variable for the groundwater subindicator (see section 2.3.1.). To cope with this 253 
specificity, was assumed that in drained field, pesticides are mainly transferable to surface 254 
water and not groundwater although the transfer process is based initially on vertical leaching 255 
like for RCgwlea (see section 2.3.1.) when there is no higher risk by runoff. 256 

Therefore, the following specific decision rules was introduced: 257 

 258 

If the field is drained then RCswd/r = MIN(RCswd/r , RCgwlea) 259 

If the field is drained and RCswd/r = RCgwlea then RCgwlea =10  260 
(to avoid double counting of risk) 261 

Where: 262 



   
 

   
 

RCswd/r: contamination risk for surface water through drainage or runoff (see section 2.3.3) 263 

RCgwlea: contamination risk for groundwater through leaching (see section 2.3.2) 264 

 265 

2.3.5. Surface water contamination by drift (RCswdr) 266 

While in the previous version of the indicator, coefficients were taken from a table resulting 267 
from a collection of expert judgment and measured values, the equations of Trevisan et al. 268 
(2009) were used here to calculate spray drift. This spray drift potential is divided by 5 when 269 
anti-drift nozzles are used. These spray drift values are transformed in a score between 0 and 270 
10 as described in Supplementary Materials S6. 271 

 272 

2.3.6. Air contamination by volatilization (RCairvol) 273 

Like for the subindicator spray drift to surface water (see previous section), the decision tree 274 
used in previous version of the indicator was replaced by quantitative equations calculating 275 
pesticide volatilization (expressed in µg/m2/hr) in function of pesticide properties (Woodrow et 276 
al., 1997). We added some abatement factors taking into account effect of soil components 277 
(mulch, etc.), pesticide properties (penetration ability), and field edge (presence of hedges or 278 
trees reducing transfer to outside of field) which is expected to contribute to decrease the 279 
transfer risk. The calculation is given by Equation 3 and more details are given in 280 
Supplementary Materials S7. 281 

 282 

𝑉𝑜𝑙𝒕𝒐𝒕 = (1 − 𝑐𝒆𝒅𝒈𝒆). ((1 − 𝑐𝒇𝒐𝒓𝒎). (1 − 𝑖𝑐). 𝑉𝑜𝑙𝒔𝒐𝒍 + (1 − 𝑐𝒑𝒓𝒐𝒅). 𝑖𝑐. 𝑉𝑜𝑙𝒑𝒍𝒂𝒏𝒕) 284 
(Equation 3) 283 

 285 

Where: 286 

Voltot: total volatilization (expressed in µg/m2/hr) 287 

Volsol: volatilization from soil (expressed in µg/m2/hr), calculated according to Woodrow et al. 288 
(1997): LnVolsol= 28.335+1.6158.Ln(Pv/(KOC.Sol) with: Pv: pressure vapor (Pa), KOC: soil 289 
adsorption coefficient (mg.L-1), Sol: water solubility (mg.L-1) 290 

Volplant: volatilization from plant (expressed in µg/m2/hr), calculated according to (Woodrow et 291 
al., 1997): LnVolplant= 11.779+0.85543.Ln(Pv) with: Pv; pressure vapor (Pa) 292 

ic: interception of pesticide by crop (see 3.1.8 and Supplementary Materials S8.1) 293 

cedge: abatement coefficient (between 0 and 1) due to field edge, more precisely to the presence 294 
of a hedge reducing pesticide transfer to outside of field. Four variables are used to assess it: 295 
type of plant (persistent or deciduous), hedge density (number of field sides with a hedge and 296 
porosity of hedge), hedge height, spraying month (to assess the presence of leaves or not) 297 

Cform: abatement coefficient (between 0 and 1) due to the product formulation 298 

cprod: abatement coefficient (between 0 and 1) due to penetration ability of the product in plant 299 
which limits pesticide volatilization and is assessed with pesticide mechanism of action, the 300 
octanol water coefficient (LogKow) and the use of an adjuvant to facilitate penetration. 301 



   
 

   
 

 302 

2.3.7. Air contamination by drift (RCairdr) 303 

This risk of air contamination by spray drift was not  covered by the original version of I-Phy 304 
(van der Werf and Zimmer, 1998) but was added to the version for wine growing activity ( with 305 
a simplified assessment including only the type of sprayer. A more elaborated decision tree 306 
taking into account additional relevant variables like speed sprayer, the sprayer height, the use 307 
of antidrift nozzle and the air pressure (Pressure) were included in this new version of the 308 
indicator according to the study of Bahrouni, Sinfort, et Hamza (2010) (Table 3). The CONTRA 309 
method (was used to aggregate the five input variables in a fuzzy decision tree. This indicator 310 
is weighted by an abatement coefficient, cedge like for RCairvol (see Equation 3 and 311 
Supplementary Materials 7.2). 312 

 313 

 314 

2.3.8. Integration of the a.i. application rate effect  315 

In I-Phy3, the method proposed by Lindahl and Bockstaller (2012) was used to integrate the 316 
effect of the a.i. application rate in the calculation of each contamination subindicator. They 317 
proposed to calculate an effective dose of a.i. available for transfer by weighting the initial dose 318 
by an interception rate as shown in  equation 4: 319 

Doseeff  = (1-ic).Doseini  (Equation 4) 320 

 321 

Doseeff : effective rate of pesticide 322 

ic: interception coefficient (see Supplementary Materials S98.1) 323 

Doseini: initial rate of pesticide 324 

They designed an algorithm which makes possible to reduce (if the dose is higher than 1 kg.ha-325 
1) or increase (if the rate is lower than 1 kg.ha-1) the indicator value obtained for 1 kg/ha-1 a.i., in 326 
function of this effective dose. More details on the determination of the interception rate and 327 
the calculation of the indicator in function of the effective dose are given in Supplementary 328 
Materials S 8. 329 

 330 

2.3.9 . Risk by compartment 331 

Three subindicators of environmental risk, for ground water (I-Phygw), surface water (I-Physw), 332 
and air (I-Phyair) result from the aggregation of the five subindicators of contamination risk (RC) 333 
with toxicity variables (see Figure 1). For groundwater, RCgwlea is aggregated with the daily 334 
admissible intake (ADI) because this source is for human water supply. For surface water, two 335 
subindicators, RCswr/d and RCswdr are aggregated with a toxicity variable based on the highest 336 
toxicity between Aquatox tackling toxicity for aquatic organisms and ADI for human toxicity 337 
(Roussel et al., 2000). Aquatox results from the highest toxicity for fish, daphnia and algae 338 
(van der Werf and Zimmer, 1998). For air, two subindicators, RCairvol and RCairdr are aggregated 339 
with ADI for human toxicity. 340 

 341 



   
 

   
 

Regarding aggregation rules, a weight of 60 % is given to the contamination risk and 40 % to 342 
toxicity for groundwater (Supplementary Materials S9). For surface water and air, 30 % is given 343 
to each contamination risk and again 40 % to the toxicity with a small modification in the second 344 
case (Table 4). We considered that a situation with a high risk of contamination is more 345 
undesirable than a situation of toxic a.i. without any risk of contamination. This may be justified 346 
by water potability threshold of 0.1 µg-1 applied to all a.i. which leads water manager to focus 347 
on water contamination. Furthermore, uncertainty exists on actual toxicity of a.i. which is not 348 
well assessed by regulation tests (Centner, 2021) so that a situation with apparently no toxicity 349 
may present a risk for human health. Similar decision rules to those for I-Physw are set to I-Phyair. 350 

 351 

2.3.10. Final aggregated indicator (I-Phy) 352 

The three subindicators of pesticide risk per compartment, ground (I-Phygw)- and surface water 353 
(I-Physw), air (I-Phyair) are aggregated with the same weight of 33% given to each compartment 354 
. However, to limit compensation, the score was reduced to 6 when there was a risk totally 355 
unfavourable for one compartment (I-Phygw or I-Physw or I-Phyair=0) and to 2 when two 356 
compartments were concerned by a totally unfavourable risk (Table 5). We consider that if 357 
there is a risk maximal for one compartment, the value should be clearly under 7. This value 7 358 
is a reference value expressing an acceptable risk for the environment used for the set of 359 
indicators of the INDIGO method to which belongs I-Phy (Bockstaller et al., 1997). 360 

 361 

2.3.11. Implementation of the indicator 362 

Calculations of the indicator are run on an Excel Sheet with one sheet in which all data on input 363 
variables are entered. Each line corresponds to a calculation for one active ingredient. Stable 364 
data (e.g. field characteristics) have to be copied from line to line. Users have access to all the 365 
detail of calculations with results expressed with a color code (see Figure 3). 366 
 367 

2.4.   Study sites 368 

 369 

Measured data of environmental compartment contamination (groundwater, surface water, air) 370 
from several study sites (Figure 2) were used and compared with outputs of I-Phy3 for 371 
validation. The sites of the EQUIPE project (see 2.3.1) provided data on the transfer by 372 
drainage or runoff to surface water and vertical transfer by leaching. For the transfer to air, the 373 
data of the project Repp’Air was used. For each treatment, the I-Phy 3 indicator was calculated 374 
with the help of an Excel sheet calculator with the aim of comparing the results with 375 
measurement data. 376 

 377 

2.4.1. Sites of the Equipe project 378 

The EQUIPE (2014-2017) project aimed to assess the predictive quality of pesticide indicators 379 
addressing transfers to surface and ground water. To do so, outputs of 26 indicators (among 380 
them Synops, Eprip, I-Phy1, I-Phy2...) and a mechanistic model (MACRO) were compared to 381 
measure pesticide transfers at plot levels at four sites with different climate and soil conditions, 382 
and transfer pathways  (Pierlot et al., 2017). The complete description of the 3 sites  and the 383 
indicators and model tested is detailed in Supplementary Materials S10) The Jaillière 384 



   
 

   
 

experimental station, located in the Pays de la Loire region (France), is under the influence of 385 
an oceanic climate, with a brown hydromorphic clay-textured soil, resulting from alterite shale. 386 
This experimentation site consists of 10 agricultural plots of 0.5 to 1 ha each, where water from 387 
drainage and runoff (saturation overland flow) are collected separately; ii) The experimental 388 
station of the Magneraud, located in the Nouvelle-Aquitaine region (France), is also under the 389 
influence of oceanic climate and is composed mainly of clayed and silty limestone soils 390 
developed on sand-stone strata characterized by alternating layers of hard limestone and marl. 391 
This site is made up of 14 lysimetric plots of 1 m2 surface, with no vertical walls and no soil 392 
shuffle; and iii) the Geispitzen experimental station is located in the hills of the lower Sundgau 393 
district (Alsace region, France) and has an attenuated oceanic climate. The hills are covered 394 
with loess-derived soils of silt loam texture overlying Oligocene molasses and marls. A sloping 395 
field (5%) of about 9 ha was divided into 3 bordered fields with measuring flumes and automatic 396 
water samplers at the down slope borders just upslope of a ditch drainage catchment runoff. 397 

 398 

2.342. Sites of the Repp’Air project 399 

The 7 measurement sites selected for the Repp’Air project came from historical sites monitored 400 
by regional Association of Air Quality Survey in association with Chambers of Agriculture in 401 
order to have different agricultural systems: arable crops, vineyards, arboriculture, mixed 402 
cropping-livestock, and “mixed” sites with different types of crops. Farm practice surveys were 403 
conducted during the 3 monitoring campaigns (2017, 2018, 2019) and for each site, to help in 404 
the interpretation of local air contamination   data. These investigations were conducted over 405 
a radius of 1 km around the air sampler installed at each site. The choice of the 1 km radius 406 
was a compromise between technical feasibility (particularly in the wine-growing zone, where 407 
the number of plots, often smaller than in field crops, is greater in a given area, implying a 408 
greater number of farmers) and a  surface area in agreement with atmospheric dispersion 409 
patterns at the local scale . Such radius value was sufficient to find a correlation between 410 
pesticide in precipitation and land use (Grynkiewicz et al., 2001)). Atmospheric samples were 411 
collected for a whole week during the spraying period (in average 27 weeks), this for 3 years 412 
on the 7 sites concerned by the project, I.e. a total of 567 samples. Pesticide contents of each 413 
sample were analyzed in an external accredited laboratory and allowed to quantify a.i. 414 
concentration in the atmosphere. 415 

 416 

2.5.   Evaluation of the predictive quality of I-Phy3 417 

Following Pierlot et al. (2017), two tests were carried out to compare outputs of I-Phy3 418 
subindicators assessing the pesticide transfer to environmental compartments with 419 

measured data (RCgw ; RCsw, RCair, see section 2.3.). First, a classical correlation test 420 
between indicator outputs and measurements was carried out to calculate a correlation 421 
coefficient r, and not the determination coefficient r2. The significance of the results by 422 
calculating the p-value was also tested.  Then, we ran a probability test consisting in comparing 423 
the rank of indicator outputs and measurements through a contingency table. A similar ranking 424 
means that the result of the indicator’ calculation appears to be correct while when the indicator 425 
rank is lower than the rank of the measured value, it is considered as an underestimation and 426 
when it is higher than the rank of the measured value, it is considered as an overestimation. 427 
The probability considered in the test is the sum of correct and overestimation. Indeed, I-Phy 428 
assesses a potential risk (which can occur or not depending on climate events for example), 429 
so the positive result considered in this test are the sum of well-predicted events of transfer 430 
and overestimation. (see a theoretical example in Table 6). Pierlot et al. (2017) set the rule that 431 
an indicator is considered as acceptable when the probability is higher than 60% and the 432 



   
 

   
 

correct estimation is higher than 40% to avoid considering an indicator whose results would 433 
systematically predict a high risk regardless of the context. This general analysis was 434 
completed by detailing the proportion of values in each class to assess the distribution of 435 
values and to check that results are not only due to one class (e.g. the class no risk, no 436 
pesticide in water). 437 

For these analyses, regarding water contamination, the following measured variables available 438 
in the EQUIPE project were used: 439 

• frequency of exceedance of the threshold of the water quality standard of drinking 440 
water: 0.1 µg.L-1 (fd0.1) 441 

fd0.1= 
𝑛1𝑖𝑗𝑘 

𝑛𝑖𝑗𝑘
k                                 (Equation 5) 442 

with n1ijk: number of measurements with concentration > 0.1µg.L-1 for active ingredient i on plot 443 
j at sampling time k; nijk: total number of measurements for active ingredient i on plot j and 444 
sampling time k. The sampling was stopped when no a.i. was detected 3 consecutive weeks 445 
and lasted one year maximum after the spraying date (Pierlot et al., 2017) 446 

 447 

 448 

• cumulated flux of active ingredient in mg/ha (ftotal) during the measurement period 449 

ftotal = Σ(fijk)                                 (Equation 6) 450 

with fijk : flux of active ingredient i on plot j and sampling time k; f ijk = cijk . wjk with cijk: concentration 451 
of active ingredient i on plot j and sampling time k (µg.L-1)  wjk: water flux (drainage or runoff) 452 
from plot j during sampling time k (L) 453 

 454 

 455 

 456 

• weighted average concentration on the period in µg/L (CMP) 457 

CMP =  
Σ𝑐𝑖𝑗𝑘 ×𝑤𝑗𝑘

Σ𝑤𝑗𝑘
     (Equation 7) 458 

with cijk : concentration of active ingredient i on plot j and sampling time k (µg.L-1) 459 

with cijk : concentration of active ingredient i on plot j and sampling time k (µg.L-1) 460 

with wjk : water flux (drainage or runoff) from plot j during sampling time k (L) 461 

 462 

Regarding the assessment of predictive quality for the atmospheric compartment,  the 463 
correlation between indicator outputs and a value calculated from measurements was  464 
analyzed. Those from the REPP’AIR project were atmospheric concentrations in each site.  465 
For a given site and year, the pesticide concentration in the sample was considered as 466 
resulting from the volatilization and drift after spraying on fields from a buffer of 1km radius 467 
around the sampler. Since temporal scales differed between spraying date (day), pesticide 468 
concentration (week) and the indicator (year), it was not possible to compare the assessment 469 
of volatilization of transfer by I-Phy calculated at field level and raw weekly concentrations. For 470 
each a.i. of one site and one year, the weekly concentrations  were plotted against the area 471 
sprayed with a.i. during the week. The slope of the linear regression ion between concentration 472 
and area was derived as a proxy of the measured volatilization risk. This means that for a given 473 
sprayed area, the higher the slope, the higher the concentration expressing a higher 474 
volatilization.  This slope was compared to the mean of the indicator weighted by sprayed area 475 



   
 

   
 

for each a.i. and for the sampling period. In this case, we worked on a limited number of points, 476 
so that it was not possible to run a probability test. 477 

 478 

3.   Results 479 

(Elliott et al., 2000; ERMES, 2017; Lindahl and Bockstaller, 2012; Melland et al., 2016; Roussel et al., 480 
2000; Vereecken, 2005; van der Werf and Zimmer, 1998)￼(ERMES, 2017; Koller et al., 2015)￼(Brown 481 
and van Beinum, 2009; Buczko and Kuchenbuch, 2007; Carsel et al., 1986; Mickelson et al., 482 
2001; Pierlot et al., 2017; Strassemeyer and Gutsche, 2010; Trevisan et al., 2009; Wohlfart, 483 
2008) 484 
(Bahrouni et al., 2010; Bockstaller et al., 2017; Roussel et al., 2000; Thiollet-Scholtus and 485 
Bockstaller, 2015; van der Werf and Zimmer, 1998; Woodrow et al., 1997) 486 
 487 
(Centner, 2021; van der Werf and Zimmer, 1998) 488 
 489 

3.1.   Examples of calculation 490 

I-Phy3 was calculated for 4 to 7 fields of 33 arable farms from the Champagne Crayeuse (East 491 
of France) presenting diversified rotations with winter wheat, winter and spring barley, sugar 492 
beet, potatoes, winter rapeseed, etc. for the harvest year of 2020. Figure 3 presents three 493 
levels of results. From the top, at a first level, results for different level of intensity are shown 494 
in for winter barley. They vary between 10and 2.5 for an intensive program with the herbicide 495 
chlortoluron. This active ingredient presents a high risk for groundwater as shown at the 496 
second level. Finally, explanation can be found at the third level. Chortoluron has very 497 
unfavorable property regarding the GUS, the soil is sensitive to leaching and spraying period 498 
in autumn are unfavourable because the soil becomes wet. 499 
 500 
Tables at second and third levels on Figure 3 were directly taken from the Excel calculator 501 
presenting the results of the final indicator and its sub indicators (see Figure 1). A continuous 502 
colour code is used to provide information on the level of risk. Results of the sub indicators 503 
(e.g. RCesolea) are completed with the membership degree of each variable to the favourable 504 
set (F), (see Supplementary 2). When this value was equal to 1, the variable is totally 505 
favourable, i.e. it does not present a risk for the environment. This helps identify the ones which 506 
influence the calculated risk and by this way can help users to identify levers to improve the 507 
indicator and to reduce risk on the environment.  508 
The example shows the ability of the indicator to differentiate  crop management with different 509 
level of intensity as well as risk level between active ingredients, and the possibility to explain 510 
the results. 511 
 512 

3.2.   Predictive quality of contamination risk subindicators 513 

 514 

3.2.1. Predictive quality assessment for the water compartment 515 

Table 7 shows that the highest correlation between measured data in the fourth studied sites 516 
(one for each transfer pathway) and the outputs of the risk of contamination indicator for ground 517 
or surface water were obtained for the frequency of exceeding the threshold of the water quality 518 



   
 

   
 

standard of drinking water (fd0.1), with value of correlation coefficient close to 0.50 (see 519 
Supplementary Materials S12) and even more for RCswr/d at Geispitzen. (r=0.66). Such values of 520 
r are close to those found by Pierlot et al; (2017) for indicator with the same degree of 521 
complexity. These results are better for three sites or equal for one site (Jaillière runoff) than 522 
those of the previous versions of I-Phy. The comparison between either the cumulated flux of 523 
active ingredient in mg.ha-1 (ftotal) during the measurement period or the weighted average 524 
concentration on the period in µg.L-1 (CMP), and outputs of the indicator yielded lower value of 525 
coefficient between 0.08 and 0.35. For the site of Magneraud (leaching) and Geispitzen 526 
(hortonian runoff), the new version yielded better value of correlation coefficients than the 527 
previous one, which however remain at a lower level than for fd0.1, and much lower than 0.50. 528 

The probability test reveals that the risk of contamination indicator for ground or surface water 529 
yielded results meeting the criteria set for the test for fd0.1 and CMP for the fourth studied sites 530 
(except for the site of Geispitzen for fd0.1). (Table 8). For ftotal, the only test meeting the 531 
criteria set was for the site of Le Magneraud with a probability of 68% and correct estimation 532 
of 49%. In comparison with the previous version of I-Phy, the new one obtains better results 533 
than I-Phy2 for the three sites of La Jailliere runoff, Le Magneraud and Geispitzen for all the 534 
tests, especially for the correct estimations. Compared to I-Phy1, I-Phy3 obtained better results 535 
for the sites of Le Magneraud and Geispitzen for all the measured data whereas it surpassed 536 
only for CMP for the site of La Jailliere runoff. From the analysis of the cases showing the 537 
highest discrepancy (Table 9), it came out that 3 a.i. play a major role: epoxiconazole, 538 
diflufenican and isoproturon explain 35 cases out of 50 . 539 

 540 

3.2.2. Predictive quality assessment for the air compartment 541 

Figure 4 shows a relatively clear correlation with a r of 0.73 between the slope coefficient of 542 
the cumulative fluxes of a.i. and the means of risk of air contamination by volatilization (RCairvol), 543 
this for only 12 a.i. for which there was enough data on the studied sites. Such a value is 544 
satisfying regarding the elaboration degree of the indicator and when they are compared to the 545 
coefficient for transfer to water. Nevertheless, unlike the risk of ground or surface water 546 
contamination, the outputs of risk of air contamination were not compared directly to 547 
contamination measurements at plot scale but to a calculated value derived from 548 
measurements at a larger scale. 549 

 550 

 551 

4.   Discussion 552 

4.1 Originality of the I-Phy3 indicator 553 
I-Phy3 can be classified in the same class as I-Phy1 and I-Phy2 in the typology proposed by 554 
Pierlot et al. (2017) classifying pesticide indicators assessing transfer risk to water in function 555 
of their design. They are calculated with pesticide properties and use data, crop management 556 
and field data (soil, slope, etc.). It does not only consist in a simple scoring of variables 557 
according to expert opinion or an aggregation separating risk linked to pesticide properties, 558 
and risk linked to soil and climate.  Variables are integrated according to knowledge on 559 
processes, with some calibration procedure for some subindicators. Furthermore, through the 560 
decision rules, calculations seem to be more easy to grasp than indicators based on 561 
quantitative equations like EPRIP2 (Trevisan et al., 2009), POCER (Vercruysse and Steurbaut, 562 
2002) or SYNOPS (Strassemeyer and Gutsche, 2010). Regarding integration of toxicity 563 
variables, those are aggregated in a qualitative way with transparent assumption in I-Phy3, 564 



   
 

   
 

while in EPRIP2, SYNOPS or POCER, a risk ratio (concentration in the environment 565 
compartment/concentration threshold for toxicological effect in this compartment) is used 566 
resulting in a quantitative assessment. Exposure of living beings to pesticide is assessed with 567 
more precision in POCER  or in models used in Life Cycle Analysis (Gentil et al., 2020) taking 568 
into account behavior of target living beings (e.g. for the ingestion exposure pathway) than in 569 
the other indicators. Regarding I-Phy3, a sub indicator assessing exposure and effect may be 570 
developed in the future by a separated decision tree and aggregated at the second level with 571 
risk of contamination (RC) replacing the aggregation of RC with a toxicity variable (Figure 1). 572 
A work is ongoing on pesticide effects on human health taking into account variables and 573 
knowledge inputs from the POCER indicator (Vercruysse and Steurbaut, 2002) and the more 574 
elaborated Browse model (Butler Ellis et al., 2017). 575 
 576 
Aggregation procedure using fuzzy decision tree is also very original in comparison with other 577 
indicators as pointed out by several authors (Feola et al., 2011; Keichinger et al., 2013; Maud 578 
et al., 2001; Reus et al., 2002). This aggregation method presents different advantages like 579 
the readability through linguistic rules, the possibility to cope with qualitative and quantitative 580 
variables, the mitigation of threshold effect, section 2.2. For I-Phy3, the CONTRA method 581 
(Bockstaller et al., 2017) was implemented to design fuzzy decision tree in order to enhance 582 
transparency of the aggregation procedure. This confers a supplementary advantage to the 583 
aggregation method, while aggregation is often criticized for a lack of 584 
transparency.  However, calculation of final result for a given decision tree may remain a “black 585 
box” without additional information of intermediate calculation (Bockstaller et al., 2017). This 586 
problem was partially solved as discussed further in section 4.4. 587 
 588 

4.2. Novelties of I-Phy3 compared to the previous versions 589 

 590 
The structure of I-Phy3 was totally changed compared to the initial version (van der Werf and 591 
Zimmer, 1998) with the addition of a third level making it possible to deliver an assessment of 592 
the contamination risk disconnected from the toxicity of the pesticide. Contamination of 593 
environmental compartments is of major concern for many stakeholders working on water 594 
quality management due to the current drinking water standards based on a concentration 595 
threshold of 0.1 µg.L-1 independently from toxicity. This supplementary level may confer more 596 
complexity to the indicator but this might not be a problem (see section 4.4.). 597 
 598 
We tried to integrate more processes into the design of I-Phy3 to consolidate the scientific 599 
basis. Nevertheless, the metamodelization approach derived from the mechanistic MACRO 600 
model and implemented for the groundwater sub indicator in I-Phy2  was left. I-Phy2 version 601 
did not yield satisfying results regarding its predictive quality for pesticide leaching (see Table 602 
7). This discrepancy may be due to a  parametrization of MACRO which did not deliver better 603 
results for 6 out 7 parameter sets in the study of Pierlot et al. (2017). The new ground water 604 
subindicator based on a simpler structure than this of I-Phy2 yielded better validation results 605 
than I-Phy2 and slightly better results than I-Phy1.  606 
The runoff surface water subindicator had already been improved in the second version 607 
(Wohlfahrt, 2008). Besides the interception coefficient used for all indicators (ic, see Equation 608 
4), it is the only subindicator that entails the temporal dimension in an explicit way in the 609 
availability variable (see Equation 2). Nevertheless, for most usage, this temporal variable 610 
giving the time between spraying and variable is set to 3 days, which is a worst-case value like 611 
in other indicators like Synops (Strassemeyer et al., 2017) and Eprip2 (Trevisan et al., 2009). 612 
After all, it is still possible in the calculator to change the value and to make the indicator more 613 
sensitive to the spraying date and the delay with the transfer event (i.e. significant rain).  The 614 
other subindicators were totally changed with additional information required, especially on 615 
spraying conditions for spray drift to air and physical conditions of field margins.  It was 616 



   
 

   
 

assumed that information on spraying conditions and field margins characteristics are easily 617 
accessible too. 618 

 619 
Effect of tillage and pesticide incorporation were better integrated in the new version of I-Phy  620 
by means of a much broader knowledge basis than for the previous version of I-Phy. Now the 621 
effect was quantified more precisely than with a rough “expert value”, especially for effect of 622 
tillage on runoff (meta-analysis of Elias, Wang, et Jacinthe (2018)). Such meta-analyses would 623 
be useful to parametrize the effect of tillage on vertical transfer and the effect of pesticide 624 
incorporation, for which some experimental results exist but remain fragmentary. 625 
 626 
In I-Phy1, the effect of pesticide dose was assessed separately from the risk on environmental 627 
compartment, the latter including the effect of crop interception.  Like in I-Phy2, pesticide dose 628 
and crop interception were combined since the amount that can be transferred from soil 629 
surface to water is not the sprayed dose but depends on the interception by crop canopy. 630 
Although a part of this amount intercepted by crop canopy can be washed off, we considered 631 
like Rosenbaum et al. (2015) that in good practices conditions, pesticides are not sprayed just 632 
before an important rainfall so that this fraction can be neglected in this approach. This 633 
integration makes it possible to avoid giving systematically a favorable value to pesticide rate 634 
with low application rate like it was the case in I-Phy1. As shown in Lopez et al. (2015) for 635 
metsulfuron-methyl as well as in the ERMES monitoring program for nicosulfuron, sulfonyl-636 
urea herbicide sprayed at low rate (less 50 g/ha) are detected in groundwater and sometimes 637 
at concentration exceeding quality water standards (Koller et al., 2015). With the new 638 
calculation method, even for low a.i. application rates, unfavorable values for risk of 639 
contamination subindicators may be found. 640 
 641 

4.3 Design of the indicator 642 

 643 
The indicator relies on an approach combining a qualitative (decision tree) with a quantitative 644 
approach (fuzzy subsets) which present several advantages as pointed out previously. But the 645 
outputs of the indicators are not expressed in quantitative physical or ecotoxicological values. 646 
In particular, the indicator does not deliver quantitative information on contamination levels in 647 
the environmental compartment, so that stakeholders have no information on the exceeding 648 
of given standards like this for drinking water. This would require quantitative models which 649 
are in most cases complicated to implement due to the type and amount of data required a 650 
calibration procedure to carry out carefully to avoid false prediction as pointed out by Pierlot et 651 
al. 2017 for MACRO. Another drawback of quantitative models is their reduced scope to one 652 
or two environmental compartments. PestLCI 2.0 is an exception by covering the same 653 
compartments as I-Phy3 (Dijkman et al., 2012) and providing percentages of emissions from 654 
the initial rate in each compartment. However, it does not calculate concentration in the 655 
environment and is only for about 100 active ingredients in comparison with about 500 for I-656 
Phy3. 657 
 658 
In the assessment of the pesticide transfer pathways by many indicators, climate variables are 659 
not directly included although variables like especially rainfall amount plays a significant role 660 
in pesticide transfer (Baran et al., 2021). This would require additional data and may complexify 661 
calculations. One way would be to integrate them in the leaching and runoff potential variable 662 
in function of location and even of the year. This is possible manually in the calculator for dry 663 
year; for example, it is easy to change the value into 0 (low potential). But adding an actual 664 
value of the year may hide the effect of change of practice which is not the objective of the 665 
indicator. Furthermore, intra annual effects of climate are taken into account by the period of 666 
application according to the recommendation of Pierlot et al. (2017) for the groundwater 667 
subindicator or by the availability variable (see Equation 5 for the surface subindicator). But in 668 
case of transfer to air, climate is not included at all, neither for spray drift or volatilization. Wind 669 



   
 

   
 

speed, a major driver for transfer to air (Lavin and Hageman, 2013), remains too difficult to get 670 
for each treatment. Introducing such a variable would be an avenue for progress. 671 
 672 
I-Phy3 like PestLCI 2.0 did not address contamination of soil by pesticides although several 673 
recent studies revealed a “hidden reality” of pesticide in soils (Riedo et al., 2021; Silva et al., 674 
2019), especially for glyphosate (Silva et al., 2018), even in organic farming (Riedo et al., 675 
2021). Furthermore, these last authors found a negative relation between the amount of 676 
pesticide residue in soil and microbial biomass and specifically the abundance of arbuscular 677 
mycorrhizal fungi, a widespread group of beneficial plant symbionts likewise other parameters 678 
of soil biological activities (Wołejko et al., 2020). The lack of a soil subindicator was due to 679 
knowledge gaps which these recent studies tend to bridge. Besides the issue of soil pesticide 680 
residues in terms of amount and concentration, another aspect concerns the temporal 681 
dimension which should be included in future. Although a part of an active ingredient is 682 
adsorbed in an irreversible way in the form of non-extractable bound residues (bounsten) 683 
another non-negligible part may be released after several months (Suddaby et al., 2016). 684 
Furthermore, the cumulative effect of repeated treatments should also be addressed. 685 
 686 
Last, the contamination by metabolites released by the degradation of active ingredients 687 
should also be assessed (Baran et al., 2021) as it has been pointed out by pioneer studies 688 
(Dana W. Kolpin et al., 2000; D.W. Kolpin et al., 2000). But the integration of such an 689 
assessment would probably complexify the indicator, exceeding an acceptable level. This 690 
would require quantitative knowledge on the nature of the metabolite formed, the percentage 691 
of a.i. transformed in this product, properties (KOC, DT50, etc.), etc., data that does not 692 
currently exist in databases. except for recently marketed a.i.  (Lopez et al., 2015). In any case, 693 
some available information on metabolites was added indirectly in the database. For example, 694 
in case when an active ingredient is rapidly degraded in its metabolites, (e.g. different form in 695 
glyphosate acid, iodosulfuron-methyl in metsulfuron-metyl), properties of the metabolite are 696 
attributed to a.i. For few pesticides like metazachlore, dimetolachlor (see Supplementary 697 
Materials S1), selected values for DT50 appear to be too favourable while they present 698 
metabolites susceptible to be transferred to water bodies (Reemtsma et al., 2013). In this case 699 
we decided to attribute a more unfavorable value to the DT50 of this active ingredient. 700 
 701 

4.4 Predictive quality 702 
Datasets used to assess the predictive quality of the water contamination risk were 703 
consequent. This was also the case for the air component in this study with several sites over 704 
the country and a 3 years campaign. Nevertheless, as pointed out by Pierlot et al. (2017), the 705 
effort should be pursued. Ideally, this work would require a broader combination of soil type, 706 
slopes and climatic conditions, and much more new active ingredients. 707 
 708 
The simplification performed in the design of I-Phy3 may explain the mixed results in the 709 
validation test. Indeed, the compromise between accessibility of data and explanation of 710 
mechanical processes leads us to ignore some variables like soil moisture, which is important 711 
to explain transfers in pathway like agricultural drainage (Guimont et al., 2005) or wind speed 712 
as explained above. It was considered that the additional cost for collecting usable data does 713 
not compensate by loss of information for I-Phy3. Furthermore, these data are useful on a time 714 
step of a few days when I-Phy3 estimates transfer risk at the scale of the growing season. 715 
 716 
The results obtained for I-Phy3 were overall better than those obtained with the previous 717 
versions. If the values of correlation coefficient are not always good, the results in the 718 
probability test are satisfying, particularly for the frequency of exceeding the threshold of the 719 
drinking water quality (fd0.1), particularly important for the stakeholders. The result of the test 720 
combines acceptable and overestimation of risk. Thus, it shows the ability of the indicator to 721 
assess a potential contamination which could or not be observed, depending on other factors 722 
like climate. Unacceptable underestimations were observed for one site at la Jaillière runoff 723 



   
 

   
 

dataset. It was showed that 3 a.i. (isoproturon, diflufenican and epoxiconazole) play a major 724 
role in this underestimation. On this site, runoff was mostly to overland flow due to saturation 725 
of the soil profile, a process which may be poorly covered by the indicator. 726 
 727 
 728 

4.5 Utilization 729 

 730 
The design of the I-Phy 3 indicator was not intended to be used directly by farmers themselves, 731 
although this may be possible if farmers have time and support to interpret the results. It rather 732 
targets advisers trained by scientists who may deliver interpreted results to feed the 733 
recommendations to farmers in addition to technical advice. The statement of Box (1976): “all 734 
models are wrong but some are useful”, may be applied to I-Phy3. In spite of its mixed results 735 
regarding its predictive quality, it may be used beyond the simple results obtained by the 736 
indicator. Indeed, it makes possible initiation of discussion on pesticide use strategies with 737 
farmers integrating environmental aspects provided by the indicator and other aspects 738 
(economic, management of weed and pest resistance, …) not considered by the indicators. 739 
Furthermore, if it does not give a  precise value , it provides a positioning to some threshold, 740 
like for instance to classify results in three classes (acceptable/mixed/unacceptable). But in 741 
this case, we reintroduce a threshold effect that was avoided by the design method (see 742 
section 2.2.). This is also the case with quantitative mechanistic models as PEARL (Tiktak et 743 
al., 2012) which deliver continuous values but can be presented in class when they are mapped 744 
for stakeholders. 745 
 746 
For the council advice, as stated by Bockstaller et al. (2008), both aggregated indicators and 747 
non-aggregated sub-indicators have to be used in parallel. The aggregated I-Phy indicator may 748 
be associated with other sustainability indicators in a global assessment when there is a need 749 
to reduce the number of indicators. In this case, non-aggregated subindicators should 750 
complete and explain the global value in the analysis. The aggregated I-Phy indicator may also 751 
serve to rank pesticides when all the environmental issues are considered by stakeholders 752 
while a non-aggregated subindicators, especially risk of contamination indicators may be 753 
implemented by stakeholders dealing with one environmental compartment (e.g. 754 
groundwater).  755 
 756 
Currently the indicator is calculated with the help of an Excel sheet calculator, which facilitates 757 
its implementation because the software is a basic software on most of the users' offices. The 758 
tool is transparent for the user, who can see all the decision rules. The problem is that it may 759 
also lead to misuse because the user can potentially and accidentally change the decisions 760 
rules. This can be solved by protection of some cells. However, misuse also occurs in copying 761 
and pasting lines, deleting formulas in the cell. To mitigate the problem, we can imagine a 762 
further online-version of the tool with data fields to be completed and calculations of the 763 
different sub-indicators provided. In any case, the tool should remain transparent and not only 764 
provide calculation results but also the intermediate values to interpret them and identify the 765 
variable(s) which plays the major role in the determination of the risk. 766 
 767 
Last but not least, the I-Phy indicator is designed to predict the risk of pesticide transfer at field 768 
level. Some of the stakeholders need to assess the risk of transfer at a higher level like a 769 
watershed or an administrative region (i.e. the managers of the Water Agencies in France or 770 
the advisers in charge of water catchments). Some previous research work (( Wohlfahrt et al., 771 
2010) shows that the contribution of the different plots to the watershed depends on the size 772 
of the plot in comparison to the size of the watershed and the distance and the connectivity 773 
between the plot and the hydrological network. To simplify the use of the indicator at watershed 774 
scale and because they have no precise information about the real water flows in the 775 
watershed, advisers consider only the size of the plot in comparison to the size of the 776 
watershed.  Another approach is to map the distribution of the indicator values set in small 777 



   
 

   
 

classes like a 3 levels scale as traffic lights without any spatial aggregation, as discussed at 778 
the beginning of this section. 779 
 780 

5.   Conclusion 781 

This new version of the I-Phy indicator and its subindicators provides major changes in 782 
comparison with previous versions, to better integrate processes of transfer of the pesticides 783 
to the environmental compartment. The separation between contamination and toxicity, as well 784 
as the transfer pathways are some examples to meet requirements of potential users like 785 
adviser or stakeholders. For the air compartment, a spray drift subindicator was added but like 786 
previous versions, whereas soil is still not addressed by this indicator, partially due to 787 
knowledge gaps. With the increasing focus on this compartment in publications, this gap is 788 
about to be filled and an addition of a new subindicator will be possible. While the effect of 789 
degradation products of the a.i. is covered by I-Phy3 in an indirect way, their risks  should be 790 
covered in an explicit way to meet social concern for this issue. Last, the effort to assess the 791 
predictive quality of the indicator should be pursued and should be completed by a feasibility 792 
and utility test among end-users. This new version should still be confronted with other 793 
datasets including recent active ingredients with the aim of improving the predictive quality. 794 
 795 
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Table 1: Snapshot of CONTRA “decision tree” tab (Bockstaller et al., 2017), showing the 1035 
decision tree design of the subindicator, pesticide leaching risk of contamination (RCgwlea). The 1036 
groundwater ubiquity index (GUS), the application period (Appli), the leaching potential of soil 1037 
(LixPot) and the solubility of the active ingredient in water (Solu) were aggregated with 1038 
respectively a weight of 40% for GUS and 20% for the three other variables, giving the 1039 
calibrated RCgwlea expressed between 0 (high risk) and 10 (low risk). Some modifications were 1040 
given to the decision rules yielding the final RCgwlea according to the explanations given in the 1041 
last column. Input variables belong either to the favourable set (F) or to unfavourable set (U), 1042 
(see Table S3). 1043 

 1044 

 1045 

 1046 

Table 2: Decision tree of the subindicator, pesticide runoff risk of contamination (RCswr/d) in 1047 
case for runoff. RuPot is the runoff potential and Avai is the availability of the pesticide (see 1048 
Equation 5). Input variables belong either to the favourable set (F) or to unfavourable set (U), 1049 
(see Table S3).  1050 

 1051 

RuPot Avai RCswr/d 

F F 10 

F U 5.5 

U F 6.7 

U U 0 

 1052 

Table 3: Snapshot of CONTRA “decision tree” tab (Bockstaller et al., 2017), showing the 1053 
decision tree design of the subindicator, risk of air contamination by drift (RCairdr). The type of 1054 
sprayer (Sprayer), the speed sprayer (Speed), the sprayer height (Height), the use of antidrift 1055 



   
 

   
 

nuzzle (Nuzzle) and the air pressure (Pressure) were aggregated with the same weight of 20% 1056 
for all variables, giving the calibrated RCairdr,expressed between 0 (high risk) and 10 (low risk). 1057 
Some modifications were given to the decision rules yielding the final RCairdr according to the 1058 
explanations given in the last column. Input variables belong either to the favourable set (F) or 1059 
to unfavourable set (U), (see Table S3).  1060 

 1061 

 1062 

 1063 

Table 4: Snapshot of CONTRA “decision tree” tab (Bockstaller et al., 2017), showing the 1064 
decision tree design of the subindicator, pesticide risk for surface water (I-Physw). The 1065 
contamination risk for surface water through drainage or runoff (RCswd/r:), the contamination 1066 
risk for surface water through drift (RCswdr), and the toxicity variable for aquatic organisms 1067 
(TOX) were aggregated with respectively a weight of 33%, giving the calibrated I-Physw 1068 
expressed between 0 (high risk) and 10 (low risk). Some modifications are given to the 1069 
decision rules yielding the final I-Physw according to the explanations given in the last column. 1070 
Input variables belong either to the favourable set (F) or to unfavourable set (U), (see Table 1071 
S3).  1072 
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 1074 

Table 5: Snapshot of CONTRA “decision tree” tab (Bockstaller et al., 2017), showing the 1075 
decision tree design calculating the final I-Phy indicator. The subindicators assessing the risk 1076 
for three environmental compartments, pesticide risk respectively for groundwater (I-Phygw), for 1077 
surface water (I-Physw) and for air (I-Phyair) were aggregated with the same weight of 33%, giving 1078 
the calibrated I-Phy expressed between 0 (high risk) and 10 (low risk). Some modifications 1079 
were given to the decision rules yielding the final I-Phy according to the explanations given in 1080 
the last column. Input variables belong either to the favourable set (F) or to unfavourable set 1081 
(U), (see Table S3). Membership functions are sinusoidal.  1082 

 1083 

Table 6: theoretical example of probability test comparing classes of an indicator (in colum, 1084 
class 5 shows a higher value effect than 1) with a measurement (increasing values show a 1085 
higher effect). The probability is the sum of correct estimation (cases colored in green) and 1086 
overestimation (cases colored in blue). The cases colored in brown are considered as 1087 
underestimation. 1088 
 Result of measured data (in class) 

Result of 

Indicator (in 

class) 

From 0 
 to 20 

From 20  
to 40 

From 40  
to 60 

From 60  
to 80 

Fomr 80 
to 100 

From 8 to 0 
20 8 8 9 2 

From 6 to 8 

 
16 5 11 11 35 



   
 

   
 

From 4 to 6 3 1 12 22 3 

From 2 to 4 23 0 0 1 5 

From 0 to 2 
4 0 1 0 2 

 1089 

 1090 

 1091 

Table 7: correlation test between the measured data of the 3 sites and 4 transfer pathway 1092 
and the concerned subindicator RC for the 3 versions of I-Phy. The results are in bold when 1093 
subindicators of I-Phy3 performs better than in the previous versions. 1094 

 1095 

 1096 

 1097 

  1098 



   
 

   
 

Table 8: probability test (see Figure 2) for the 3 sites and 4 transfer pathways for each 1099 
concerned subindicator RC (see Figure 3), comparing to the measured transfer of active 1100 
ingredient In blue the probability is over 70%, in yellow, the probability is between 50% and 1101 
70% and in red, between 40% et 50%   1102 
 1103 
 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 1116 

 1117 

 1118 

 1119 

 1120 

 1121 

 1122 



   
 

   
 

 1123 

 1124 

 1125 

 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

  1133 



   
 

   
 

Table 9: detailed probability test (see Figure 2) for the site of La Jaillière runoff for the frequency 1134 
of exceedance of the threshold of 0,1µg.L-1).  1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

  1142 



   
 

   
 

 1143 

  1144 



   
 

   
 

 1145 

Figure 1: Overview of the calculation of I-Phy3 with three levels of aggregation and main input 1146 

variables, in blue pesticide properties, in red soil and topographic variables, in green: 1147 

management variable (KOC: adsorption coefficient, DT50: half-life, Solubility: solubility in 1148 

water, Ps: vapor pressure, LogKow: logarithm of the octanoal-water coefficient, time: time 1149 

between spraying and runoff event). For each aggregation, a fuzzy decision tree (see Figure 1150 

S2) was implemented with information on fuzzy subsets linked to each variable given in Table 1151 

S2.  1152 

1153 



   
 

   
 

 1154 
Figure 2: Repartitions of the sites used to assess predictive quality. With red bullet: sites for 1155 

water quality and with blue bullets: sites for air quality 1156 
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 1163 

1164 

 1165 

Figure 3: the detail for one subindicator RCeso. The membership degrees of the input variables 1166 

show to which extent the variable is unfavourable (close to 0) or favourable (close to 1) and 1167 

plays a role in the determination of the risk.  1168 

 1169 

  1170 



   
 

   
 

 1171 

  1172 



   
 

   
 

 1173 

Figure 4: correlation between the slope coefficient of the cumulative fluxes of a.i. used as a 1174 

proxy of volatilization risk (see SM XX) and the means of RCvol for 12 a.i. 1175 

 1176 

 1177 

 1178 

 1179 

 1180 

 1181 

 1182 


