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Abstract

We study the exploitation of recyclable exhaustible resources such as
metals that are crucial for the energy transition or phosphorus that is crucial
for agricultural production. We use a standard Hotelling model of resource
exploitation that includes a primary sector and a recycling sector. We study
two polar cases: competitive and monopolistic extraction. We show that,
when the primary sector is competitive, the Hotelling’s rule holds and the
price of the recyclable resource increases over time. We then show a new
reason why the price of an exhaustible resource may decrease: when the pri-
mary sector is monopolistic, the primary producer has incentives to delay
its production activities in order to delay recycling. As a consequence, the
price path of the recyclable resource may be U-shaped. Numerical simula-
tions reveal that the monopolist has an incentive to delay extraction when
the recoverability rate is high (because more recycled goods are produced) or
when the recoverability rate is low (when fewer recycled goods are expected
to be produced in the future). As a consequence, the date of exhaustion of
the virgin resource is further away in time for high and low levels of recov-
erability than for intermediate levels.
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1 Introduction

Recyclable exhaustible resources, such as metals (lithium, cobalt, rare earths,
nickel, copper, manganese, etc.) and other elements like phosphorus, are increas-
ingly important industrial inputs. Indeed, the aforementioned metals are impor-
tant inputs for the production of many modern technologies, such as cell phones,
light bulbs, automobiles, hybrid car batteries and gearboxes, and wind turbines
(Chakhmouradian and Wall, 2012). Phosphorus, derived from phosphate rocks, is
essential for soil fertility and has no substitute in agricultural production processes
(Cordell at al., 2009).

Historically, the supply of these resources has often been highly concentrated.1

Moreover, due to economic development and an increasing world population, de-
mand for these resources has been growing rapidly and is expected to grow even
more in the future (Alonso et al. 2012, Steen 1998).2

One strategy to increase supply and reduce the dependence of other countries
on these resources is recycling. In order to assess the effect of recycling, it is nec-
essary to understand how the primary sector may react. Since the main input to
the production of recycled materials is the stock of scrap, the emergence of recy-
cling activities may affect the dynamics of both the extraction of the exhaustible
resource as well as the price of the final goods.

In this paper, we study the impact of a recycling sector in a stylized economic
model of exhaustible resource extraction. We develop a Hotelling model of resource
extraction in which the consumption good is produced from virgin or recycled
materials. Virgin materials are extracted from a finite stock of a virgin resource and
recycled materials are derived from the stock of scrap. The stock of recyclable scrap
grows with current consumption of the final good at a given recoverability rate.
We assume a competitive recycling sector in which production costs decrease with
the stock of recyclable scrap. As a consequence, production in the primary sector
generates a positive externality that benefits to the recycling sector. The inverse
demand for the consumption good and the cost of recycling are linear. To ensure
consistency with the various possible (future and present) market structures in
the extraction sectors, we consider two polar cases: competitive and monopolistic

1Until 2010, China controlled 95% of the production of rare earths (Chakhmouradian and
Wall, 2012), while a handful of countries, including Morocco, China, and the U.S.A, controlled
most of the world’s Phosphate rock production (IFDC, 2010)). However, prospects for the
supply of rare earths and Phosphate rocks differ. Although China, which currently holds less
than 40% of rare earth reserves, has maintained a very dominant position, supply has become
less concentrated since 2010. The supply of Phosphate rocks has become more concentrated
(85% of these reserves are currently located in Morocco and Western Sahara).

2Alonso et al. (2012) predict that the demand for rare earths will increase by 5 to 9 percent
per annum until 2025. According to EFMA (2010) and Steen (1998), the demand for phosphorus
may increase by as much as 50 to 100% by 2050 with increased global demand for food.
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extraction.
Our first main result is the following. We show that, if the primary sector

is competitive, the optimal level of production for firms in the primary sector is
such that the price of the resource grows at the discount rate (this is the so-called
Hotelling rule) because these firms assume that their production will not increase
the stock of scrap.

Our second and third main results focus on the case of a monopolistic exctrac-
tion sector. Our second main result concerns the case where the recoverability
rate is 100%. In this case, we are able to derive the following analytical results.
The stock of scrap (as well as recycling) increases over time as long as the virgin
resource is not exhausted and extraction decreases over time. The scrap stock
remains constant once the virgin resource is exhausted, as 100% of used goods
become scrap. The monopolistic firm has an incentive to postpone extraction
compared to a situation without recycling. As a consequence, the price of the
resource is U-shaped, that is the price first decreases and then increases.

Our third main result concerns cases where the recoverability rate is less than
100%. In this case, we are able to solve the model numerically. Our simulations
provide some interesting insights. When the recoverability rate is sufficiently high,
our results are qualitatively similar to those obtained in the previous case. The
scrap stock first increases and then decreases (in contrast to the previous case, it
starts to decrease before the exhaustion date of the virgin resource). Extraction
decreases over time and recycling first increases and then decreases and the price
path is U-shaped. When the recoverability rate is sufficiently low, our results
are qualitatively affected. The stock of scrap decreases over time and extraction
first increases and then decreases. Recycling first decreases (then increases and
decreases again), so that the price of the final good can be always increasing.
Interestingly, the date of depletion of the virgin resource is the highest for both
high and low levels of recoverability. Indeed, in both cases, the monopolist has
an incentive to delay extraction in order to face less competition in the future:
when the recoverability rate is high, the monopolist delays extraction in order to
slow the accumulation of scrap. Recyclers have fewer inputs and therefore produce
fewer recycled goods. When the recoverability rate is low (and there is already a
stock of scrap), the monopolist has an incentive to delay extraction and wait for
recyclers to use some of that stock, and then produce fewer recycled goods when
the stock of scrap is smaller.

The main takeaway of the present paper is a new reason why the price of a
resource may decrease: a firm with market power in the extraction sector will
(strategically) choose to delay extraction in order to reduce the opportunities for
recycling. A monopolistic extracting firm will start at a lower level than in the
competitive case, so the price will start at a higher level than in the competitive
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case and it may first decrease before increasing afterwards. The price will first
decrease if the amount of recycled material increases over time at a greater rate
than the decrease in the amount of extraction.

The remainder of the paper is structured as follows. Section 2 presents the
literature review. Section 3 introduces our model in which we consider an ex-
haustible resource and a competitive recycling sector. Section 4 studies the price
dynamics in the case of a competitive extraction sector. Section 5 focuses on the
properties of the optimal path in the case of a monopolistic primary producer.
Section 6 discusses corner solutions and Section 7 concludes.

2 Related Literature

The present paper relates to the literature that has been motivated by the Al-
coa case and deals with the problem of a monopolistic extraction sector facing a
competitive recycling sector (Gaskins 1974, Swan 1980, Martin 1982, Suslow 1986,
Hollander and Lasserre 1988, Grant 1999) . This literature shows that, despite
the presence of a competitive recycling sector, the extraction firm maintains (at
least some of) its monopoly rents. Gaskins (1974) shows that recycling leads the
monopolist to increase the price of the virgin resource in the short run and to
slightly decrease it in the long run. Swan (1980) shows that the monopolist sets
a price which approaches its marginal cost of production when there is price dis-
crimination. Baksi and Long build a model of partial recycling and consider that
consumers who participate to the recycling activity are heterogeneous in terms of
their recycling cost. They show that the price set by the virgin producer will be
close to the competitive price when the rate of recycling is close to one.

Gaudet and Long (2003) consider imperfect competition in the recycling sector
and show that, when primary and secondary production decisions are made si-
multaneously, the presence of the recycling sector may increase the market power
of the primary producer.3 This literature focuses on the comparison between a
competitive and a monopolistic recycling sector, while we focus on the comparison
between a competitive versus monopolistic extraction sector. It is worth stressing
that none of the above papers show that the price of the primary good can be
U-shaped.

An important aspect of our work, which has not often been considered in the
literature, is that we provide insights into the important role of scrap and the
feedbacks between the cost of scrap and the market for final goods. An exception

3Weikard and Seyhan (2009), motivated by the case of phosphorus, consider a model of
competitive resource extraction and the possibility of saturated demand (i.e. taking into account
the possibility that soil can become saturated with phosphorus).
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is Kaffine (2014), which considers a static model with perfect competition and
focuses on very different, policy-driven research questions.

Recently, two papers have investigated the issue of recycling under an energy
transition perspective. Pommeret et al. (2022) analyze how the possibility of recy-
cling can affect the timing of the energy transition. They consider the presence of
a depreciated green capital that can be recycled. They deal with a social planner’s
problem. They show that recycling influences the steady state in that it increases
the stock of green capital and reduces its value. They also show that recycling
induces a larger use of minerals (primary resources). Intuitively, this means that
the social planner boosts the use of primary resources in order to increase the
possibilities of recycling. Fabre et al. (2020) analyze the issue of energy produc-
tion in the case where minerals and fossil resources are rare by considering that
minerals are recyclable. They consider a social planner’s problem. They show
that the presence of recycling speeds up the investment in renewable capacity and
makes the energy mix based on more renewable energy. They also show that a
larger recycling rate induces a greater rate of extraction of minerals in the initial
period. Our results differ from those two papers in that we show that the extrac-
tion rate can be reduced when there is a recycling sector. Another difference is
that both papers consider a social planner’s problem, while we postulate a com-
petitive/monopolistic framework. It is well acknowledged that the social planner
would want an increase in primary resources use to boost future recycling, while
we show that the monopolist would strategically choose a reduction in primary re-
sources use to limit the possibilities of recycling. This can explain the differences
observed in terms of results.

In this paper, we do not explicitly consider the social or environmental motiva-
tions for the development of recycling. The environmental advantages of recycling
have long been recognized in the economic literature (Smith 1972, Weinstein and
Zeckhauser 1974, Hoel 1978).4 There is an important literature that includes waste
accumulation and environmental damage in their models, making recycling a mul-
tiple dividend activity (e.g. Fullerton and Kinnaman, 1995; Palmer et al., 1997;
Acuff and Kaffine 2013; Lafforgue and Lorang, 2022). In the present paper, our
focus is on the effect of the existence of a recycling sector on the virgin resource
extraction sector and not on social welfare.

The present paper is also linked to the literature dealing with durable resources.
Levhari and Pindyck (1981) show that, in the case of a competitive industry that
produces a durable good, the price of the resource first decreases and may increase
thereafter. In contrast, we find that the price of the resource is always increasing
in the context of a competitive extraction sector.

4Andre and Cerda (2006) provide a model that takes into account the interactions of the
material composition of output and waste as potentially recyclable products.
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There are other explanations for U-shaped price profiles of exhaustible re-
sources. Pindyck (1978) shows that this may occur when exploration and reserve
accumulation are taken into account. In a model with exogenous technical change
and endogenous change in grades, Slade (1982) also finds that U-shaped price
profiles may occur. These studies do not consider the possibility of recycling.

3 The Model

The economy produces a quantity Q of a consumption good. The consumption
good can be produced from a non-renewable resource or from recycled materi-
als. For simplicity we assume that the virgin and recycled materials are perfect
substitutes. The primary sector faces a competitive sector of recycling firms.

Non-renewable resource and scrap dynamics

Let X (t) ≥ 0 be the residual stock of virgin resource at time t, X0 be the
initial stock, with X (0) ≡ X0 > 0, and x (t) ≥ 0 be the extraction rate at time t,
so that:

Ẋ (t) = −x (t) . (1)

The unit cost of extraction of the virgin resource is assumed to be zero.
Let S (t) ≥ 0 be the stock of (recyclable) scrap at time t, with an initial stock

S (0) = S0. Let r (t) ≥ 0 be the quantity of recycled materials marketed at time t,
so that the total quantity consumed at time t is Q (t) = x (t)+ r (t). Let α ∈ [0, 1]
be the proportion of the output that becomes recyclable scrap. It represents the
recoverability rate of the final good. Here, 1−α can be interpreted as “dissipated”
materials Gloser et al. (2013) or as a “rate of retirement” (Gaskins 1974, Grant
1999)). The dynamics of the scrap material thus writes:

Ṡ (t) = αQ (t)− r (t) = αx (t)− (1− α)r (t) . (2)

The recycling sector

The recycling sector is assumed to be competitive. The total cost of recycling
includes the cost of collecting, processing and transporting waste (included in the
price of waste if the recycler buys waste from specialized companies) in addition to
the cost of the recycling operation itself. As such, the marginal cost of recycling,
denoted c (S, r), is assumed to be a decreasing function of the stock of scrap5 and

5This assumption is natural if the cost to collect waste decreases with the total quantity of
available waste recycler (it is easier to find scrap) or if recyclers buy waste from specialized
companies and the price of waste decreases with available waste. See for instance Slade (1980)
for the case of copper and Blomberg and Soderholm (2009) for the case of aluminum.
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an increasing function of the quantity of recycled materials,6 that is ∂c(S,r)
∂S

< 0

and ∂c(S,r)
∂r

> 0.
In equilibrium in the recycling sector, absent any corner solution,7 the price of

the consumption good must equal the marginal cost of recycling:

p (Q (t)) = c (S (t) , r (t)) . (3)

The primary sector

The price of primary production is the same as the price of recyled materials.
Thus, the discounted profits in the primary sector, with discount rate δ ≥ 0, are
given by:

+∞∫
0

e−δtpxdt, (4)

In the following, we will consider two polar cases: the case of a competitive
primary sector and the case of a monopolistic primary sector. In the case of
a competitive primary sector, resource owners behave as price takers, and they
consider the price of the resource to be a function of time, p ≡ P (t). In the case
of a monopolistic primary sector, the owner of the resource takes into account
how extracted quantities affect the total quantity of material supplied (virgin as
well as recycled) and the effect of this supply on the price of the resource, that is
p ≡ p (Q (t)).

Linear specification

For most of our analysis, we will use the following linear specifications of the
demand for the consumption good and the recycling cost functions:

p (Q (t)) = 1−Q (t) and c (S (t) , r (t)) = 1− b− β (S (t)− r (t)) , (5)

with β > 0. Parameter b ≤ b ≤ b is a measure of the efficiency of the recycling
technology (the higher b, the lower the marginal cost of recycling). We further
assume that b ≤ 1 − β(S0 + X0) in order to ensure that the marginal cost c is
always non negative. We also must have b ≥ −β(S0+X0), in order to avoid cases
where (3) has never an interior solution.8

6There may be economies of scales, at least for sufficiently low levels of recycling (e.g. see
Bohm et al. 2010). However, assuming that the marginal cost function of recycling is increasing
in recycled materials seems reasonable, and we follow Rosendahl and Rubiano (2019) and Gaudet
and Long (2003) who make the same assumption.

7see Section 6 for a discussion about corner solutions.
8Indeed, if b < −β(S0 +X0), then p(Q) < C(S, r) for all r ≥ 0 and all S ≤ S0 +X0, that is

recycling is never profitable.
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Solving the recycling sector equilibrium condition (3), we characterize the equi-
librium quantity of recycled material at time t as follows:

r (t) =
b+ βS (t)− x (t)

1 + β
. (6)

The condition implies that the quantity of recycled material at time t increases
with the quantity of scrap and decreases with the quantity of extracted resource.
This result is quite intuitive. Since recycling relies on scrap, the higher the stock
of scrap, the larger the recycling firms’ production. Recycling at time t decreases
with the quantity of virgin product sold at time t because recycled and virgin
products are substitutes.

4 Competitive primary sector

In this section, we consider the case of a competitive primary sector. In this case,
producers take the price, P , as well as the total quantity, Q, as given.9 They
consider the following problem:

Max
{x}

+∞∫
0

e−δtP (t)x (t) dt, (7)

s.t.
Ẋ (t) = −x (t) , (8)

X (t) ≥ 0, x (t) ≥ 0. (9)

The Hamiltonian and the Lagrangian for this optimal control problem are as
follows:10

H = Px+ λX (−x) , (10)

L = H + µXX + µxx, (11)

where λX is the co-state variable associated with the stock X, and, µX , µx are the
multipliers associated with the non-negativity constraints X ≥ 0, and x ≥ 0. The
competitive solution is found by solving problem (7) subject to (8) and (9) and
then using (2) and (3) to determine the recycling level and the market clearing
price. The Maximum Principle requires that the following conditions hold:

∂L

∂x
= P − λX + µx = 0, (12)

9The same assumption is made in Levhari and Pindyck (1981). The producers therefore do
not take into account the effect of x on the evolution of the stock of scrap and on recycling.

10We drop the time index when there is no possible confusion.
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λ̇X = δλX − ∂L

∂X
= δλX − µX , (13)

x ≥ 0, µx ≥ 0, µxx = 0, (14)

X ≥ 0, µX ≥ 0, µXX = 0. (15)

When both extraction and residual stock levels, x(t) and X(t), are strictly
positive, we have µx = 0 and µX = 0. Substituting these respective values into
(12) and (13) yields:

P − λX = 0, (16)

λ̇X = δλX (17)

Differentiating (16) with respect to time gives:

λ̇X

λX

=
Ṗ

P
(18)

From (17), we have:

λ̇X

λX

= δ (19)

The combination of (18) and (19) yields:

Ṗ

P
= δ (20)

We can thus conclude the following:

Proposition 1: If the extraction sector is competitive, the optimal extraction path
is such that the Hotelling’s rule holds: the price of the resource grows over time at
a rate equal to the discount rate.

This proposition shows that the price of the resource increases over time when
the extraction sector is competitive. This result reveals a major difference between
recyclable goods and durable goods.

In the case of durable goods, such as cars for example, consumers arbitrate
between keeping their car or reselling it, so if the price of cars increases (when
the resource to produce them is abundant), there are opportunities for arbitrage:
Consumers will buy cars to use them and resell them later at a higher price. Thus,
the price of durable goods will first decrease. The price of a durable exhaustible
resource is then either always decreasing or U-shaped when the resource extraction
sector is competitive (Levhari and Pindyck 1981). In the case of recyclable goods,
such as used batteries, there is no arbitration for consumers, since used batteries
have to be reprocessed to have resale value.
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The path of recycling and of the stock of scrap are determined by the recycling
equilibrium condition (3) together with the dynamics of the stock of scrap (2).
Thus, the rate at which the price increases is given by the Hotelling rule and does
not depend on the recycling technology.

Figure 1 shows the result of a numerical simulation that illustrates the case
of a competitive extraction sector. The shadow price of the exhaustible resource
increases over time, so extraction and stock of this resource decrease over time
until the resource is exhausted. Extraction is initially high, so recycling is low
(due to the substitutability between extraction and recycling), and levels are such
that, for this simulation, the scrap stock initially increases. Since the stock of scrap
increases and extraction decreases, recycling profitability increases, so it increases.
At some point, recycling becomes large enough and extraction small enough that
the scrap stock decreases. Once the exhaustible resource is depleted, since the
simulation uses a recoverability rate of less than 100%, the scrap stock decreases
until it is completely exhausted. As a consequence, recycling also decreases at
some point in time.
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Figure 1: Optimal extraction path with a competitive extraction sector

 

 

Notes: We use the linear specification to plot these graphs. The parameter values
are α = 0.95, X0 = 0.28, θ = 0.3, δ = 0.05, b = 0.9, S0 = 0.5. T ∗ denotes the date
of exhaustion of the virgin resource.
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5 Monopolistic primary sector

In this section, we consider the case of a monopolistic primary sector and we focus
on the linear specification of the model. We derive several properties regarding the
optimal time path of virgin resource extraction, the stock of scrap, the equilibrium
recycling quantity, and the price of the consumption good.

Using the equilibrium recycling condition (6) and substituting into the ex-
pression of the price given in (5), we have p (Q) = θ (a− x− S), where a =
(1− b+ β) /β and θ = β

1+β
. To find the optimal extraction path for the monopo-

list, we solve the following maximization problem:

Max
{x≥0}

+∞∫
0

e−δtθ (a− x(t)− S(t))x(t)dt, (21)

subject to the dynamic of the resource stock:

Ẋ(t) = −x(t), (22)

and to the dynamic of the stock of scrap:

Ṡ(t) = α′x(t)− (1− α)θS(t)− b′, (23)

where α′ = α + 1−α
1+β

, b′ = 1−α
1+β

b, X,S, x ≥ 0, X0 > 0 and S0 ≥ 0 given.

The current value Hamiltonian H and Lagrangian L are defined as follows:

H = θ(a− x− S)x+ λX (−x) + λS (α
′x− (1− α)θS − b′) , (24)

and,
L = H + µXX + µSS + µxx, (25)

where λX and λS are the co-state variables associated with the stocks X and S,
and µX , µS, µx are the multipliers associated with the non-negativity constraints
X ≥ 0, S ≥ 0, and x ≥ 0.

Full resolution of the monopolist’s programme yields the extraction and recy-
cling paths as well as the evolution of the stock of virgin resource and the stock
of scrap and the dynamics of the price of the consumption good. Solving the
problem involves finding constants that are characterized by nonlinear equations,
which limits our ability to study the properties of the solution for any value of the
parameters. However, we are able to derive the main properties of the solution
when the recoverability rate is 100%. We first focus on this case and then provide
numerical results for different levels of the recoverability rate. The two cases have
different qualitative implications.
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5.1 Optimal extraction with perfect recoverability

Perfect recoverability seems to be a reasonable assumption for a number of ma-
terials, such as copper,11 vanadium, iron, nickel, palladium, iridium, platinum or
gold (see Ciacci et al. 2015). In this case, we can show that the optimal path has
the following qualitative properties:

Proposition 2: Under the linear specification and perfect recoverability (α = 1),
the optimal extraction path is such that:
(i) Extraction x∗(t) is decreasing up to the date of depletion of the virgin resource
T ∗;
(ii) The stock of scrap S∗(t) increases up to T ∗ and remains constant after;
(iii) Recycling r∗(t) increases up to T ∗ and remains constant after.

The optimal level of extraction decreases over time. This result is in line with
the standard Hotelling model. Indeed, the extracting firm discounts time, choosing
to extract more of the resource today and less tomorrow. The quantity of marketed
recycled material, in contrast, increases over time up to the exhaustion of the
virgin resource. The intuition of these results is as follows. The recoverability rate
is 100%, thus the stock of scrap increases over time up to the exhaustion of the
virgin resource, which reduces the unit cost of recycling. This, in turn, provides
incentives for recycling firms to increase their production. At the same time, the
quantity of extracted material decreases, also causing the level of recycling to
increase (due to substitutability).

Once the virgin resource is exhausted, since the recoverability rate is perfect
and there is no more extraction of virgin material, the stock of scrap and the level
of recycling remain constant.

We are now in a position to state our main result. This one concerns the
optimal price path:

Proposition 3: Under the linear specification and perfect recoverability (α = 1),
the optimal price path p∗(t) is U-shaped.

This result states that the standard result of an increasing resource price does
not hold if the recoverability rate is 100%. In the first phase, the price decreases
because the amount of scrap increases over time at a greater rate than the decrease
in the amount of extraction (ṗ = −θ(ẋ+ Ṡ)). Intuitively, a low pace of extraction
delays accumulation of scrap and then future recycling, which is beneficial to the
monopoly. In the second phase, we are getting closer to the date of exhaustion

11Copper has a recoverabillity rate around 94-99% for most applications, see Table S5 in Gloser
et al. (2013).
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of the virgin resource. Consequently, the marginal cost of extraction becomes in-
creasingly high and then, at some point in time, the price of the resource increases.

Figure 2: Optimal extraction path with a monopolistic extraction sector under
perfect recoverability

 

Notes: The parameter values used to plot these graphs are α = 1, X0 = 1, θ = 0.3,
δ = 0.05, b = 0.1, S0 = 0.5. T ∗ denotes the date of exhaustion of the virgin resource.
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Figure 2 illustrates the results of Propositions 2 and 3. Notice that after the
date of exhaustion of the virgin resource, since there is no extraction of virgin
resource and the level of recycling is constant, the price is also constant.

Before going further, it is important to understand why the case where the
recoverability rate is perfect is specific and simpler to solve than the other cases.

The optimal extraction path is given by:

∂L

∂x
= θ (a− 2x− S)− λX + α′λS + µx = 0. (26)

The pace of extraction is thus given by (assuming x > 0):

ẋ = − 1

2θ
λ̇X − 1

2
Ṡ + (θα + 1− θ)

1

2θ
λ̇S. (27)

Condition (27) shows that extraction tends to decrease over time when the
shadow price of the virgin resource increases over time, when the stock of scrap
increases or when the shadow price of scrap decreases over time. The shadow price
of the virgin resource always increases over time as the virgin resource becomes
scarcer. The shadow price of scrap and the stock of scrap vary over time in opposite
directions.

Thus, the evolution of the stock of scrap provides useful information as regards
the evolution of extraction. When the stock of scrap increases over time, extraction
necessarily decreases over time. When the stock of scrap decreases over time,
extraction may increase or decrease over time.

We can now see why the case where the recoverability rate is 100% is simpler
than the other cases. When the recoverability rate is perfect, each unit of virgin
resource becomes, after consumption, a unit of scrap (in this case, condition (23)
simplifies to Ṡ = x ≥ 0). Thus, the stock of scrap grows and then extraction of
the virgin resource decreases over time. When the recoverability rate is not perfect
(condition (23) writes Ṡ = αx − (1 − α)r), the stock of scrap may decrease over
time over some intervals of time, and thus it is more difficult to conclude as regards
the evolution of extraction. It is therefore also more difficult to conclude about
the qualitative properties of the optimal path and the evolution of the price of the
final good.

To provide insight into cases where the recoverability rate is not 100%, we
perform numerical simulations for different levels of recoverability in section 5.2
below.

5.2 Optimal extraction for different recoverability rates

For some materials, the recoverability rate is quite low. For recyclable elements
such as cerium (a rare earth metal), the recoverability rate is as low as 10% (see
Ciacci et al. 2015).
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For cases where the recoverability rate is less than 100%, we are able to solve
the problem numerically, using the linear specification and for parameter values
compatible with our assumptions. Table 1 shows the simulation results for the
dates of exhaustion of the virgin resource (T ∗) and the stock of scrap (T ′). We
numerically solve for both dates for different values of the recoverability rate and
hold the values of all other parameters constant. These simulations suggest that
the date of depletion of the stock of scrap increases as the recoverability rate
increases, which is intuitive. A less intuitive result is that the date of depletion of
the virgin resource is a non monotonic function of the recoverability rate. Indeed,
for sufficiently high levels of recoverability (above 50%), our results suggest that
an increase in the recoverability rate leads to an increase in the date of exhaustion
of the virgin resource. For sufficiently low levels of recoverability (below 40%), an
increase in the recoverability rate leads to a decrease in the date of exhaustion.

Table 1: Date of exhaustion and recoverability rate with a monopolistic extraction
sector for different recoverability rates

Parameters Simulations
α X0 S0 δ θ b T ∗ T ′

10% 1 0.5 2% 0.3 0.1 7.03 8.60
20% 1 0.5 2% 0.3 0.1 6.14 10.52
30% 1 0.5 2% 0.3 0.1 5.77 12.45
40% 1 0.5 2% 0.3 0.1 5.71 14.82
50% 1 0.5 2% 0.3 0.1 5.91 17.99
60% 1 0.5 2% 0.3 0.1 6.38 22.54
70% 1 0.5 2% 0.3 0.1 7.30 29.70
80% 1 0.5 2% 0.3 0.1 9.24 42.46
90% 1 0.5 2% 0.3 0.1 15.37 60.27
Notes: This Table presents the simulation results of the
exhaustion dates T ∗ (virgin resource) and T ′ (scrap).

This counterintuitive result can be understood by examining the optimal ex-
traction path for various levels of recoverability. Figure 3 shows the optimal
monopoly extraction path of the virgin resource for α = 90%, α = 40% and
α = 10%. When the recoverability rate is low (and there is already a stock of
waste), the monopolist has an incentive to delay extraction and wait for recyclers
to use some of that stock, and then produce fewer recycled goods when the stock
of waste is smaller. Thus, if the recoverability rate is low, an increase in the recov-
erability rate reduces the monopolist’s incentive to delay recycling. Hence, in this
case, an increase in the recoverability rate leads to a decrease in the exhaustion
date of the virgin resource.

Figure 3 shows interesting features. When the recoverability rate is as high as
40% or 90%, the stock of scrap is first increasing and then decreasing. Notice that,
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differently from the case where α = 1, it starts decreasing before the exhaustion
date (it is T ∗ = 15.37, 5.71 and 7.03, for α = 0.9, 0.4 and 0.1, respectively). The
evolution of recycling is similar to the case where the recoverability rate is close
to 100% (increasing and then decreasing). When the recoverability rate is as low
as 10%, the stock of scrap decreases over time and recycling has a quite complex
dynamics: it is first decreasing, then increasing, then decreasing again.

Figure 3: Recycling and stock of scrap paths with a monopolistic extraction sector
for different recoverability rates

      

Notes: Parameter values: X0 = 1, θ = 0.3, δ = 0.02, b = 0.1, S0 = 0.5. T ∗ denotes the date

of exhaustion of the virgin resource.

When looking at the evolution of extraction and the stock of virgin resource (see
Figure 4), we can make the following observations. When the recoverability rate
is sufficiently high (α = 0.4 or α = 0.9), extraction decreases over time. Moreover,
the higher the recoverability rate, the lower the pace of extraction. This highlights
the fact that a higher recoverability rate provides the monopoly more incentives
to delay extraction. When the recoverability rate is low (α = 0.1), the optimal
extraction path is not always decreasing over time as in the previous cases, it first
increases and then decreases.

We can now comment on the evolution of the price of the final good. When
the recoverability rate is as large as 40% or 90%, the evolution of the price is
similar to the case where the recoverability rate is close to 100%. The price is
first decreasing and then increasing over time. When the recoverability rate is
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Figure 4: Extraction, stock of virgin resource and price path with a monopolistic
extraction sector for different recoverability rates

 

 Notes: Parameter values: X0 = 1, θ = 0.3 and δ = 0.02, b = 0.1, S0 = 0.5. T ∗ denotes the

date of exhaustion of the virgin resource.

only 10%, the price is always increasing over time. This is similar to the situation
where there is no recycling (the Hotelling model), but the underlying reason why
the price is increasing at the beginning is different. This initial increase in the price
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of the resource is not due to a decrease in extraction (which is first increasing),
but to a decrease in recycling.

Finally, notice that the initial extraction level is lower for high and low re-
coverability rates (α = 0.9 or 0.1) than for an intermediate recoverability rate
(α = 0.4).12 The intuition is that when the recoverability rate is high, the
monopoly has a strong incentive to extract little virgin resource initially, as more
material extracted today means more scrap and therefore more recycling in the
future. When the recoverability rate is low, the monopoly has a strong incentive to
wait for recyclers to use the available scrap stock, as this stock will decrease quickly
and recycling will then also decrease. Since recycling and extraction are strategic
substitutes, we observe the opposite as regards recycling: it is initially higher for
high and low recoverability rates than for an intermediate level of recoverability.
Since an increase in extraction leads to a less than proportional decrease in recy-
cling (see equation (6) and 1

1+β
< 1), we also observe that the price is initially

higher for high and low recoverability rates than for an intermediate recoverability
rate.

6 Discussion

6.1 Recycling deterrence

In the previous analysis, we focused on interior solutions as regards the recycling
sector competitive equilibrium. Indeed, we focused on the case where the level of
recycling is determined by condition (3), that is p(Q(t)) = c(S(t), r(t)). For some
parameter values, it could be the case that the optimal extraction path is such
that over some periods of time, there is some extraction and no recycling. Indeed,
if the level of extraction is sufficiently high and the stock of scrap is sufficiently
low, recycling is deterred.13 Indeed, given our linear specification of the price and
cost functions, r(t) = 0 if p(x) ≤ c(S, 0), which is equivalent to b+ βS ≤ x.

Let us discuss more deeply the possibility of recycling deterrence in the case
of perfect recoverability (α = 1). First, notice that deterrence can never occur
if the initial stock of virgin resource X0 is sufficiently small, because in this case
extraction is sufficiently low so that recycling is not deterred.14 In this case, the

12And, since Ẋ = −x, a direct consequence is that the slope of the stock of virgin resource X
is initially larger for high and low recoverability rates.

13See Ba and Mahenc (2019) for a two period model of recycling deterrence.
14It cannot happen as long as r∗(0) = b

β + (a− S0) δ
2β

eγ
−T∗

−eγ
+T∗

γ+eγ+T∗−γ−eγ−T∗ ≥ 0, as r∗(t) given in

condition (61) in Appendix A increases over time. Since T ∗, which is implicitly characterized by
condition (56), increases when X0 increases and goes to 0 when X0 goes to 0, we have that the
condition holds when X0 = 0 and for sufficiently low levels of X0.
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solution is the one we discussed in the previous section.
Second, under our assumptions, it is not possible that the monopoly optimally

chooses to deter recycling up to the exhaustion date, that is to have only extraction
in a first phase, followed by only recycling in a second one, since in this case
S(T ∗) = S0+X0 > 0 and then b+βS(T ∗) > x(T ∗) = 0. Indeed, when going close
to the exhaustion date, the extraction level has to become small and then the price
will become sufficiently high so that recycling becomes profitable (i.e. condition
b+ βS < x cannot hold for sufficiently small x).

Deterrence occurs when the stock of scrap is sufficiently low and the extraction
level is sufficiently high (b+βS ≤ x). In the case of perfect recoverability, the stock
of scrap increases while extraction decreases over time (Proposition 2). Thus, if
deterrence occurs at some point, it will be at the beginning of the horizon. Deter-
rence is a limit case of the phenomenon we highlight in our analysis: a monopolistic
extractor has incentives to delay extraction in order to reduce recycling.

6.2 Extraction breaks

In the previous analysis, we focused on solutions where extraction takes place at
the beginning and only stops when the primary resource is exhausted. Let us
discuss here cases where the extraction level falls to zero before the virgin resource
is depleted. Notice that the monopoly will never leave some resource unexploited
for ever since this would simply reduce the monopoly’s profits (we have assumed
zero extraction costs). As a consequence, optimal extraction necessarily falls to
zero at the exhaustion date. Still, can the monopoly find it optimal to make an
extraction break, that is optimally stop extraction at one point and start extracting
the resource again afterwards?

Under perfect recoverability (α = 1), it can be shown that it is never optimal
for the monopoly to momentarily stop extracting the resource. Indeed, in this
case, the scrap can be recycled infinitely without loss. Thus, during an extraction
break, the scrap stock and recycling remain constant. When the monopoly starts
to extract the resource again, it faces the same level of recycling as when it started
the pause. Thus, the monopoly has no incentive to momentarily stop extraction.

For recoverability rates lower than 100%, the monopoly might have incentives
to momentarily stop extraction. The advantage of doing so is that, during the
extraction break, the recycling sector uses scrap to produce recycled materials and
then the stock of scrap decreases. At the time the monopoly starts extracting the
resource again, the stock of scrap is lower than at the time it started the break
and thus it faces lower recycling. Although we have excluded this type of cor-
ner solution from our analysis, we have allowed the possibility that the monopoly
chooses arbitrarily low but positive extraction levels. Thus, we have considered the
possibility of solutions as close as possible to this type of solution “with breaks”.
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However, none of the solutions we have been able to simulate suggest that a mo-
mentary pause in extraction can be optimal (see Figure 4). We cannot however
conclude definitively that this can never be the case and we leave this investigation
for future research.

7 Conclusion

Recycling appears to be a promising strategy to increase the supply of important
exhaustible resources.

We have built a model of resource extraction in which the primary sector faces
a recycling sector and we have considered two polar cases: competitive and monop-
olistic extraction. We have shown that, when the primary sector is competitive,
the price of the recyclable resource increases over time. We have also shown that,
when the primary sector is monopolistic, the price of the recyclable resource may
be U-shaped when the recoverability rate is sufficiently large. This occurs be-
cause the primary producer has incentives to delay the extraction of the resource
in order to limit recycling possibilities. We have also shown that virgin resource
depletion occurs later when the recoverability rate is high or low than when it is
intermediate.

Our results suggest that market power in the primary sector may lead to phases
in which the price of the virgin resource decreases. To show this result, we con-
sidered a stylised model using simplifying assumptions. In particular, we assumed
that there was only one grade of ore in the primary and recycling sectors, and
we focused on the case of linear demand 15 and marginal cost functions. Further
research is needed to explore the implications of changes in these assumptions.

15We have also assumed that the slope of the demand curve is equal to 1. This is not a critical
assumption, see Appendix B for a discussion about the case where this slope is less than 1.
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Appendix A: main computations and proofs

Computations for Figure 1 (competitive primary sector and linear spec-
ification):

Using (18) and (19) we have P = λX = d1e
δt, where d1 is a constant to be

determined latter. Using the linear specification of the inverse demand function,
we have 1− x− r = d1e

δt and then x = 1− r − d1e
δt.

Let us assume that the solution is such that x (t) > 0 and X (t) > 0 over [0, T ∗)
and x (t) = X (t) = 0 for t ≥ T ∗.
First consider the first phase in which t ∈ [0, T ∗). Using (6), we obtain r =
b+βS−1+d1eδt

β
. Using the equation of the dynamic of the stock of scrap (2), we have

Ṡ +S = α+ 1−b
β

− (α+ 1
β
)d1e

δt. Solving for this differential equation, we find S =

d2e
−t−d1

αβ+1
(1+δ)β

eδt+ αβ+1−b
β

. We thus have x = 1−α− 1+β
β
d1e

δt−d2e
−t+d1

αβ+1
(1+δ)β

eδt.

Integrating x between 0 and t, we have X = X0 − (1 − α)t + 1+β
β

d1
δ
(eδt − 1) −

d2 [e
−t − 1]− d1

αβ+1
(1+δ)δβ

[
eδt − 1

]
.

Hence, using S(0) = S0, x(T ∗) = 0 and X(T ∗) = 0, we have the following three
conditions:

S0 = d2 − d1
αβ + 1

(1 + δ)β
+

αβ + 1− b

β
, (28)

0 = 1− α− 1 + β

β
d1e

δT ∗ − d2e
−T ∗

+ d1
αβ + 1

(1 + δ)β
eδT

∗
, (29)

0 = X0− (1−α)T ∗+
1 + β

β

d1
δ

(
eδT

∗ − 1
)
−d2

[
e−T ∗ − 1

]
−d1

αβ + 1

(1 + δ)δβ

[
eδT

∗ − 1
]
.

(30)
Now consider the second phase in which t ≥ T ∗. Over this phase, we have Ṡ =
−(1− α) b+βS

1+β
. Solving for this differential equation, we obtain:

S(t) =

[
S(T ∗) +

b

β

]
e−(1−α) β

1+β
(t−T ∗) − b

β
. (31)

The recycled quantity over this phase is given by r(t) = b+βS(t)
1+β

.

Necessary conditions for the monopoly problem (used to derive all the
results in Section 5): The necessary conditions include the following.

∂L

∂x
= θ (a− 2x− S)− λX + α′λS + µx = 0, (32)

λ̇X = δλX − ∂L

∂X
= δλX − µX , (33)
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λ̇S = δλS − ∂L

∂S
= δ′λS − µS + θx, (34)

where δ′ = δ + (1− α)θ,
x ≥ 0, µx ≥ 0, µxx = 0, (35)

X ≥ 0, µX ≥ 0, µXX = 0, (36)

S ≥ 0, µS ≥ 0, µSS = 0, (37)

and S0 and X0 are given. Notice that our assumption that b ≤ b ≤ 1−β(S0+X0)
implies that a > S0 +X0, which ensures that the price is always non negative.

Proof of Proposition 2: Let us assume that the solution is such that x (t) > 0
and X (t) > 0 over [0, T ∗) and x (t) = X (t) = 0 for t ≥ T ∗. Notice that since
α = 1, we have α′ = 1, b′ = 0 and δ′ = δ.
First consider the first phase in which t ∈ [0, T ∗). Since x (t) > 0, X (t) > 0 and
S (t) > 0, using (35), (36), and (37), we have µx = µX = µS = 0. Then (33) writes

λ̇X = δλX , (38)

and then
λX = c1e

δt, (39)

where c1 is a constant to be determined later.
Conditions (32), and (34) write

θ (a− 2x− S)− c1e
δt + λS = 0, (40)

and,
λ̇S = δλS + θx, (41)

Differentiating (40) with respect to time, we find

− 2θẋ− θṠ − δc1e
δt + λ̇S = 0. (42)

Using (40) and (42), we find

− 2θẋ− θṠ − δc1e
δt − δ

(
θa− 2θx− θS − c1e

δt
)
+
(
λ̇S − δλS

)
= 0. (43)

Using (41) we obtain

− 2ẋ− Ṡ + δS + (1 + 2δ)x− δa = 0, (44)

Differentiating (23) with respect to time, we obtain

S̈ = ẋ (45)
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Substituting (23) and (45) into (44), and rearranging, we have

S̈ − δṠ − 1

2
δS = −δ

2
a. (46)

Solving for the stock of scrap S, we find

S = a+ c2e
γ+t + c3e

γ−t, (47)

where c2 and c3 are two constants to be determined later, γ+ = δ+
√
δ2+2δ
2

, γ− =
δ−

√
δ2+2δ
2

.
Differentiating (47) with respect to time, we obtain

Ṡ = γ+c2e
γ+t + γ−c3e

γ−t. (48)

Using (48) and (47), we obtain

x = γ+c2e
γ+t + γ−c3e

γ−t. (49)

Using X0 −X (t) =
t∫
0

xdt and integrating (49) between 0 and t, we find

X0 −X (t) = c2

(
eγ

+t − 1
)
+ c3

(
eγ

−t − 1
)
. (50)

Now consider the second phase in which t ≥ T ∗. We have x (t) = 0 = X (t)

and S (t) ≥ 0. We have Ṡ = 0, and then S(t) = S(T ∗), r∗(t) = b+βS∗(T ∗)
1+β

, and

p∗(t) = 1− b+βS∗(T ∗)
1+β

.

It remains to solve for the constants. Using x(T ∗) = X(T ∗) = 0 and S(0) = S0,
we obtain the three following conditions:

0 = γ+c2e
γ+T ∗

+ γ−c3e
γ−T ∗

, (51)

X0 = c2

(
eγ

+T ∗ − 1
)
+ c3

(
eγ

−T ∗ − 1
)
, (52)

S0 = a+ c2e
γ+T ∗

+ c3e
γ−T ∗

(53)

This set of equations can be rearranged such that:

c2 = (a− S0)
γ−eγ

−T ∗

γ+eγ+T ∗ − γ−eγ−T ∗ , (54)

c3 = −(a− S0)
γ+eγ

+T ∗

γ+eγ+T ∗ − γ−eγ−T ∗ , (55)

X0 = (a− S0)

(
1− γ+ − γ−

γ+eγ+T ∗ − γ−eγ−T ∗ e
δT ∗
)
. (56)
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We conclude that the optimal extraction path is, for t ∈ [0, T ∗] :

x∗ (t) =
(a− S0)δ

2

(
eγ

+T ∗
eγ

−t − eγ
−T ∗

eγ
+t

γ+eγ+T ∗ − γ−eγ−T ∗

)
, (57)

the stock of virgin resource is, for t ∈ [0, T ∗],

X∗ (t) = X0 − (a− S0)

[
1− γ+eγ

+T ∗
eγ

−t − γ−eγ
−T ∗

eγ
+t

γ+eγ+T ∗ − γ−eγ−T ∗

]
, (58)

the stock of scrap is, for t ∈ [0, T ∗],

S∗ (t) = a− (a− S0)
γ+eγ

+T ∗
eγ

−t − γ−eγ
−T ∗

eγ
+t

γ+eγ+T ∗ − γ−eγ−T ∗ , (59)

and the market price, for t ∈ [0, T ∗],

p∗ (t) = θ(a− S0)

(
γ+ − γ−

2

)
eγ

+T ∗
eγ

−t + eγ
−T ∗

eγ
+t

γ+eγ+T ∗ − γ−eγ−T ∗ . (60)

Since γ+ > 0 > γ−, the extraction level x∗ (t) characterized in (57) decreases over

time over [0, T ∗], while the stock of scrap increases over time over this interval,
Ṡ∗ (t) = x∗ (t) ≥ 0. Using a = 1−b+β

β
, we find that recycling is given by, for

t ∈ [0, T ∗]:

r∗ (t) = 1− θ(a− S0)


(
γ+ + δ

2β

)
eγ

+T ∗
eγ

−t −
(
γ− + δ

2β

)
eγ

−T ∗
eγ

+t

γ+eγ+T ∗ − γ−eγ−T ∗

 , (61)

and increases over time over [0, T ∗].□

Proof of Proposition 3:
The right hand side in condition (56) increases when T ∗ increases. Indeed, its

derivative with respect to T ∗ is:

θ(a− S0)

2

√
δ2 + 2δ

γ+eγ+T ∗ − γ−eγ−T ∗ > 0. (62)

Moreover, the right hand side in condition (56) goes to 0 when T ∗ goes to 0 and
it goes to a − S0 when T ∗ goes to +∞. Hence, there is a unique solution T ∗.
Moreover, T ∗ goes to 0 when X0 goes to 0 and it goes to +∞ when X0 goes to a.

From (60), we know that the price of the consumption good is
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p∗(t) = θ
(a− S0)

2

√
δ (2 + δ)

eγ
+T ∗

eγ
−t + eγ

−T ∗
eγ

+t

γ+eγ+T ∗ − γ−eγ−T ∗ , (63)

The sign of the derivative with respect to time is given by

∂p∗

∂t
∝ γ−eγ

+T ∗
eγ

−t + γ+eγ
−T ∗

eγ
+t, (64)

which is positive if and only if

t ≥ T ∗ +
1

γ+ − γ− ln

(
1− δ

γ+

)
. (65)

Hence, ∂p∗

∂t
≥ 0 for all t ∈ [0, T ] if and only if

T ∗ ≤ 1

γ+ − γ− ln

(
γ+

γ+ − δ

)
. (66)

Notice that the right hand side in condition (56) taken at T ∗ = 1
γ+−γ− ln

(
γ+

γ+−δ

)
is equal to:

(a− S0)

(
1− γ+ − γ−

γ+ − γ− γ+−δ
γ+

)(
γ+

γ+ − δ

) γ+

γ+−γ−

< 0 (67)

Hence, we must have T ∗ > 1
γ+−γ− ln

(
γ+

γ+−δ

)
.

Hence, p∗ is decreasing up to t = T ∗ − 1
γ+−γ− ln

(
γ+

γ+−δ

)
, and increasing after

this date.□

Computations used for Table 1 and Figures 3 and 4 (Monopolistic pri-
mary sector for α < 1):

Let us assume that the solution is such that x (t) > 0 and X (t) > 0 over
[0, T ∗) and x (t) = X (t) = 0 for t ≥ T ∗. Also assume that S (t) > 0 over [0, T ′)
and S (t) = 0 for t ≥ T ′, where T ′∗.
First consider the first phase in which t ∈ [0, T ∗). Since x (t) > 0, X (t) > 0 and
S (t) > 0, using (35), (36), and (37), we have µx = µX = µS = 0. Then (33) writes

λ̇X = δλX , (68)

and then
λX = c1e

δt, (69)

where c1 is a constant to be determined later.
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Conditions (32), and (34) write

θ (a− 2x− S)− c1e
δt + α′λS = 0, (70)

and,
λ̇S = δ′λS + θx, (71)

Differentiating (70) with respect to time, we find

− 2θẋ− θṠ − δc1e
δt + α′λ̇S = 0. (72)

Using (70) and (72), we find

− 2θẋ− θṠ − δc1e
δt − δ′

(
θa− 2θx− θS − c1e

δt
)
+ α′

(
λ̇S − δ′λS

)
= 0. (73)

Using (71) we obtain

− 2ẋ− Ṡ + δ′S + (α′ + 2δ′)x− δ′a+ (1− α)c1e
δt = 0, (74)

Differentiating (48) with respect to time, we obtain

S̈ = α′ẋ− (1− α)θṠ. (75)

Substituting (48) and (75) into (74) and using δ′ = δ + (1− α)θ, we have:

−2S̈+2δṠ+[α′δ′ + (α′ + 2δ′)(1− α)θ]S+α′(1−α)c1e
δt+(α′+2δ′)b′−α′δ′a = 0

(76)
Notice that α′ = α+ 1−α

1+β
= 1−(1−α)θ. Using this expression and δ′ = δ+(1−α)θ,

we obtain:

S̈ − δṠ − 1

2
[δ + (1− α)θ(2 + δ)]S =

α′(1− α)

2
c1e

δt +

(
α′

2
+ δ′

)
b′ − α′δ′

2
a. (77)

Solving for the stock of scrap S, we find

S = A+ c2e
γ+t + c3e

γ−t −Beδt, (78)

where c2 and c3 are two constants to be determined later, γ+ =
δ+
√

δ2+2δ+2(1−α)θ(2+δ)

2
,

γ− =
δ−
√

δ2+2δ+2(1−α)θ(2+δ)

2
, A = α′δ′a−(α′+2δ′)b′

δ+(1−α)θ(2+δ)
and B = α′(1−α)

δ+(1−α)θ(2+δ)
c1.

Differentiating (78) with respect to time, we obtain

Ṡ = γ+c2e
γ+t + γ−c3e

γ−t −Bδeδt. (79)
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Using (79) and (78), we obtain

x =
(1− α)θA+ b′

α′ +

(
γ+ + (1− α)θ

α′

)
c2e

γ+t+

(
γ− + (1− α)θ

α′

)
c3e

γ−t−
(
δ + (1− α)θ

α′

)
Beδt.

(80)

Using X0 −X (t) =
t∫
0

xdt and integrating (80) between 0 and t, we find

X0−X (t) =
(1− α)θA+ b′

α′ t+

(
γ+ + (1− α)θ

α′

)
c2
γ+

(
eγ

+t − 1
)
+

(
γ− + (1− α)θ

α′

)
c3
γ−

(
eγ

−t − 1
)

−
(
δ + (1− α)θ

α′

)
B

δ

(
eδt − 1

)
. (81)

Now consider the second phase in which t ∈ [T ∗, T ′). We have x (t) = 0 = X (t)
and S (t) > 0. Using (37), we have µS = 0. Condition (34) writes

λ̇S = δ′λS, (82)

and then
λS = c5e

δ′t, (83)

where c5 is a constant to be determined later.
Notice that Ṡ = −(1− α)θS − b′, and then

S = c4e
−(1−α)θt − b′

(1− α)θ
. (84)

where c4 is a constant to be determined.
Now consider the third phase in which t ≥ T ′. We have x = X = S = 0. The
remaining first order conditions are µx = −θa+λX−α′λS ≥ 0, µX = λ̇X−δλX ≥ 0
and µS = λ̇S − δ′λS ≥ 0.

Using (84) at t = T ′, we obtain

S(T ′) = c4e
−(1−α)θT ′ − b′

(1− α)θ
= 0, (85)

which implies that T ′ = 1
(1−α)θ

ln
(

(1−α)θc4
b′

)
.

Using x (T ∗) = 0 and (80), we have

(1−α)θA+b′+
(
γ+ + (1− α)θ

)
c2e

γ+T ∗
+
(
γ− + (1− α)θ

)
c3e

γ−T ∗−(δ + (1− α)θ)BeδT
∗
= 0.

(86)
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Using X (T ∗) = 0 and (81), we have

α′0 = ((1− α)θA+ b′)T ∗+
(
γ+ + (1− α)θ

) c2
γ+

(
eγ

+T ∗ − 1
)
+
(
γ− + (1− α)θ

) c3
γ−

(
eγ

−T ∗ − 1
)

− (δ + (1− α)θ)
B

δ

(
eδT

∗ − 1
)
. (87)

Using (78) at t = 0, we have

S0 = c2 + c3 + A−B. (88)

Using (78) and (84) at t = T ∗, we have:

c4 =

(
A+

b′

(1− α)θ
+ c2e

γ+T ∗
+ c3e

γ−T ∗ −BeδT
∗
)
e(1−α)θT ∗

. (89)

To get an additional condition, we use the following necessary condition:

dL

dt
=

∂L

∂t
= 0 for all t (90)

Using (79), we have, for t ∈ [0, T ∗]:

(−x− λS(1− α)) θṠ − xλ̇X + Ṡλ̇S = 0 (91)

Using (71), we obtain:

− λS(1− α)θṠ − xλ̇X + Ṡδ′λS = 0, (92)

or,
δṠλS = xλ̇X . (93)

Using (70), we have:

δṠ [θ(a− 2x− S)− λX ] + α′xλ̇X = 0. (94)

At t = T ∗, this condition is equivalent to:

Ṡ(T ∗) [λX(T
∗)− θa+ θS(T ∗)] = 0. (95)

Assume that Ṡ(T ∗) = 0. Together with (79), (86) and (89), this implies c4 = 0.
Hence, using (84), we have S(t) < 0 when t ≥ T ∗, which is impossible. Hence, the
last condition is given by:

(A− a)θ + θc2e
γ+T ∗

+ θc3e
γ−T ∗

+ (c1 − θB)eδT
∗
= 0. (96)
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Appendix B: additional material

Discussion on the role of the slope of the demand curve (discussed in the
conclusion): We have assumed in our main specification that the demand curve
has a slope equal to 1. One may wonder how it changes our results to consider
that the demand is such that Q = 1− ϵP with ϵ < 1.

In this case, we can easily show that the problem of the monopolistic extracting
firm is the following:

Max
{x}

+∞∫
0

e−δt1

ϵ
θ̂ (a− x(t)− S(t))x(t)dt, (97)

subject to the dynamic of the virgin resource stock:

Ẋ(t) = −x(t), (98)

and to the dynamic of the stock of scrap:

Ṡ(t) = α̂′x(t)− (1− α)θ̂S(t)− b̂′, (99)

where α̂′ = α + 1−α

1+β̂
, b̂′ = 1−α

1+β̂
b̂, X,S, x ≥ 0, X0 > 0 and S0 ≥ 0 given. We have

β̂ = ϵβ, b̂ = 1− ϵ+ ϵb and θ̂ = β̂

1+β̂
.

We obtain the following necessary conditions:

θ̂

ϵ
(a− 2x− S)− λX + α̂′λS + µx = 0, (100)

λ̇X = δλX − ∂L

∂X
= δλX − µX , (101)

λ̇S = δ̂′λS − µS +
θ̂

ϵ
x, (102)

where δ̂′ = δ̂ + (1− α)θ̂,
x ≥ 0, µx ≥ 0, µxx = 0, (103)

X ≥ 0, µX ≥ 0, µXX = 0, (104)

S ≥ 0, µS ≥ 0, µSS = 0, (105)

and S0 and X0 are given.
Let us focus on the case of perfect recoverability (α = 1). In this case, the

necessary conditions become:

θ̂

ϵ
(a− 2x− S)− λX + αλS + µx = 0, (106)
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λ̇X = δλX − ∂L

∂X
= δλX − µX , (107)

λ̇S = δ̂′λS − µS +
θ̂

ϵ
x, (108)

where δ̂′ = δ̂ + (1− α)θ̂,
x ≥ 0, µx ≥ 0, µxx = 0, (109)

X ≥ 0, µX ≥ 0, µXX = 0, (110)

S ≥ 0, µS ≥ 0, µSS = 0, (111)

and S0 and X0 are given.
Moreover, the dynamics of the stock of scrap is given by Ṡ = x and the dy-

namics of the stock of virgin resource by Ẋ = −x.
Compared to the expressions we found in the case where ϵ = 1 (conditions (57)

to (61)), only the one of r∗ and p∗ are affected. We find, for t ∈ [0, T ∗]:

p∗ (t) =
β

1 + ϵβ
(a− S0)

(
γ+ − γ−

2

)
eγ

+T ∗
eγ

−t + eγ
−T ∗

eγ
+t

γ+eγ+T ∗ − γ−eγ−T ∗ . (112)

and,

r∗ (t) = 1− ϵβ

1 + ϵβ
(a− S0)


(
γ+ + δ

2ϵβ

)
eγ

+T ∗
eγ

−t −
(
γ− + δ

2ϵβ

)
eγ

−T ∗
eγ

+t

γ+eγ+T ∗ − γ−eγ−T ∗

 ,

(113)
The intuitions are as follows. x∗ does not depend on ϵ is due to the fact that

the monopolist’s objective is to maximize the value of sales. Since the stock of
scrap depends only on extraction under perfect recoverability (Ṡ = x), the stock of
scrap does not depend on ϵ either. Thus, compared to the case where ϵ = 1, with
ϵ < 1, the equilibrium price p∗ is multiplied by 1+β

1+ϵβ
> 1. As regards the recycling

level, one can show that it is a decreasing function of ϵ, which is very intuitive.
Indeed, a decrease in the slope of the demand function ϵ leads to an upward jump
in the price of the output. Thus, recycling is more beneficial, so it is higher when
ϵ is smaller.
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