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The heterotrimeric Sec61 protein complex forms the functional core of the so-

called translocon that forms an aqueous channel in the endoplasmic reticulum

(ER). The primary role of the Sec61 complex is to allow protein import in the ER

during translation. Surprisingly, a completely different function in intracellular

Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now

accepted as one of the major Ca2+-leak pathways of the ER. In this review, we

first discuss the structure of the Sec61 complex and focus on the pharmacology

and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we

will pay particular attention to pathologies that are linked to Sec61 mutations,

such as plasma cell deficiency and congenital neutropenia. Finally, we will

explore the relevance of the Sec61 complex as a Ca2+-leak channel in various

pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and

pathological (type 2 diabetes, cancer) settings.

KEYWORDS
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1 Introduction

Intracellular Ca2+ signaling forms the core of a ubiquitous signal transduction

pathway controlling important cell biological processes, including fertilization,

proliferation, development, learning and memory, muscle contraction, secretory

behavior, metabolism, apoptosis, autophagy, etc. (Berridge et al., 2000; Bagur and

Hajnóczky, 2017; Giorgi et al., 2018; Wacquier et al., 2019; Bootman and Bultynck,

2020). The activity of the various members of the so-called Ca2+-signaling toolkit and their

mutual functional and/or structural interactions determine the spatio-temporal

properties of the Ca2+ signals and thus their eventual physiological effect. This toolkit

effectively consists of a plethora of Ca2+ pumps and exchangers, Ca2+ channels and Ca2+-

binding proteins located in the cytosol, the plasma membrane or various organelles

(Berridge et al., 2003).

The endoplasmic reticulum (ER) forms the largest intracellular Ca2+ store and the

Ca2+ ions released from the ER play an important role in the occurrence of the above-

mentioned complex spatio-temporal Ca2+ signals (Berridge, 2002; Lam and Galione,
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2013). Members of two related families of Ca2+-release channels

are expressed in the ER (and the SR, the sarcoplasmic reticulum),

i.e. inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) and

ryanodine receptors (RyR). While the RyR is expressed in a

predominant way in only a limited number of tissues, especially

skeletal and cardiac muscle as well as the brain (Lanner, 2012),

the IP3R is ubiquitously expressed (Foskett et al., 2007; Berridge,

2016; Prole and Taylor, 2019; Hamada and Mikoshiba, 2020).

The latter are therefore considered the main ER Ca2+-release

channels involved in intracellular Ca2+ signaling. To perform this

function, they form large tetrameric structures (4 x ~300 kDa)

that are activated by IP3 and that additionally are exquisitely

regulated by Ca2+ itself, by phosphorylation/dephosphorylation

processes and by multiple protein-protein interactions (Foskett

et al., 2007; Vanderheyden et al., 2009; Prole and Taylor, 2016;

Prole and Taylor, 2019; Hamada and Mikoshiba, 2020).

Less well understood, though physiologically at least even

important, are the so-called Ca2+-leak channels that, depending

on the cell type and the intracellular milieu, modulate the basal

permeability of the ER for Ca2+ (Camello et al., 2002; Sammels

et al., 2010; Takeshima et al., 2015; Lemos et al., 2021). These

Ca2+-leak channels can affect intracellular Ca2+ signaling in

multiple ways (Lemos et al., 2021). First, even a very low level

of leak activity will impact cell behavior in stress situations

wherein the SERCA (sarco- and endoplasmic reticulum Ca2+

ATPase) pumps can no longer compensate for the Ca2+ leakage,

thereby leading to decreased filling of the ER Ca2+ store. Second,

if the latter occurs or if the endogenous leak activity is anyway

exceeding the capacity of the SERCA pumps, the setpoint for the

ER Ca2+ concentration ([Ca2+]ER) will lower and thus directly or

indirectly lead to decreased IP3-dependent Ca
2+ release. Finally,

highly active Ca2+-leak channels may themselves produce small

Ca2+ signals interfering in a positive or negative way with

intracellular Ca2+ signaling.

Surprisingly, the Ca2+-leak channels form a large though very

heterogenous group of proteins that share as their only common

characteristic, their potency to increase the permeability of the

ER membrane for Ca2+ (Lemos et al., 2021). Some of them are

dysfunctional versions of proteins involved in physiological Ca2+

handling such as IP3R or RyR. Dysfunctions can originate from

(excessive) post-translational modifications, protease-mediated

cleavages or mutations. Ca2+ signaling events such as Ca2+ puffs

and sparks can also be considered to result from Ca2+-leak

activity, although the channels involved (IP3R and RyR,

respectively) are not dysfunctional, and their activity strongly

depend on the local environment, especially [Ca2+]cyt and

[Ca2+]ER (Berridge, 2006; Cheng and Lederer, 2008; Konieczny

et al., 2012). Even SERCA pumps can participate in Ca2+ leakage

from the ER either by increased slippage of the pump (Inesi and

de Meis, 1989) or when truncated (Chami et al., 2008). A second

group of Ca2+-leak channels is formed by ion channels that are at

least partially expressed in the ER, as some TRP, Orai and

pannexin channels, members of the Bax-inhibitor 1 family or

some less-studied proteins, such as mitsugumin 23. Finally, a

third group consists of proteins that are well known for a

physiological function that is absolutely unrelated to Ca2+

handling, but that have also been shown to function as Ca2+-

leak channels.

The importance of some of the proteins of the latter group

in Ca2+ handling has recently emerged (Lemos et al., 2021).

Presenilins form a first example. Presenilins 1 and 2 are

expressed in the ER and Golgi apparatus (Annaert et al.,

1999). They represent the catalytic core of the γ-secretase
complex, a protease involved in the cleavage of multiple

proteins including the amyloid precursor protein (De

Strooper et al., 1998). Presenilins have been shown to

function as bona fide ER Ca2+-leak channels (Tu et al.,

2006; Zatti et al., 2006; Bandara et al., 2013; Klec et al.,

2019). However, other studies suggest that they regulate

other Ca2+-handling proteins, e.g., IP3Rs (Shilling et al.,

2012; Shilling et al., 2014). Of course, these two functions

are not mutually exclusive. A second example, for which

evidence of its role as a Ca2+-leak channel has accumulated

over the years, is the Sec61 complex/translocon (hereafter

called the ‘Sec61 complex’). Its primary function is of course

related to protein import in the ER during translation (Lang

et al., 2017; Gemmer and Förster, 2020), but its role in Ca2+

handling is increasingly evident and has recently also been

linked to pathological situations. It will therefore be the

subject of the present review.

2 Structure and role of the
Sec61 complex in protein translation/
translocation and in the ER-
associated degradation process
(ERAD)

2.1 Function of the Sec61 complex

In eukaryotic cells, some proteins must be translocated or

inserted into the ER membrane. The precursors of these proteins

are characterized by a signal peptide, a hydrophobic N-terminal

sequence or a transmembrane helix of 20–30 amino acids (Simon

and Blobel, 1991). The nascent polypeptide chain exits from the

ribosome with its signal peptide. Its recognition by the signal

recognition particle (SRP) causes elongation arrest (Grudnik

et al., 2009). Subsequently, this ribosome-nascent chain

complex is, in a GTP-dependent manner, targeted to the

membrane via interactions between SRP and its receptor.

After the ribosomes dock to the Sec61 complex, the signal

peptide is released from the SRP, and the SRP dissociates

from its receptor (for review, see Egea et al., 2005).

Interestingly, protein translocation through the Sec61 complex

is also intricately associated with the Sec62/Sec63 complex (Jung

and Kim, 2021).
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The transport of proteins in parallel with their translation,

membrane insertion and processing via the Sec61 complex

requires the coordinated action of different cofactors and

enzymes. The functional core of the Sec61 complex in

mammals is formed by three different subunits (α, β and γ),
allowing the proteins to cross or insert into the ER membrane

(for review, see Lang et al., 2017). This basic function is

complemented by accessory components, which are physically

associated with it (Grudnik et al., 2009; Dejgaard et al., 2010;

Shen et al., 2012). These accessory components, including SPC

(signal peptidase complex), OST (oligosaccharyltransferase),

TRAM (translocating chain-associated membrane protein),

Sec62/63 complex and TRAP (translocon-associated protein

complex), assist the passage of proteins through the channel

formed by the Sec61 complex, where they allow maturation of

nascent chains by covalent modifications and their chaperone-

like function (Haßdenteufel et al., 2018; Ichhaporia and

Hendershot, 2021).

During translocation, nascent proteins are correctly folded by

ER luminal chaperones. BiP (a Ca2+- and ATP-dependent

HSP70 chaperone also named GRP78) is one of the major ER

chaperones that assists nascent proteins in the folding process

(Pobre et al., 2019). BiP is also involved in controlling

Sec61 complex permeability during translocation (Lièvremont

et al., 1997; Hamman et al., 1998; Schäuble et al., 2012; Hammadi

et al., 2013). Other auxiliary proteins are also associated with the

Sec61 complex, such as Sec63 (Müller et al., 2010; Lang et al.,

2012; Conti et al., 2015) and ERj1 (Blau et al., 2005; Dudek et al.,

2005). Calnexin, a lectin-type chaperone of the ER, allows the

maturation and oligomerization of secretory glycoproteins, and

may associate with the Sec61 complex core, at least transiently or

in a substrate-specific manner (Chevet et al., 1999; Schnell and

Hebert, 2003; Lakkaraju et al., 2012).

The tertiary structure of newly synthetized proteins is under

the control of molecular chaperone proteins. Inappropriate

folding and accumulation of misfolded proteins first trigger

the unfolded protein response (UPR) leading to a decrease in

protein synthesis and an increase in chaperone expression (Ma

and Hendershot, 2001; Hwang and Qi, 2018; Zhang et al., 2019).

In parallel, during ERAD, unfolded proteins are

retrotranslocated from the ER to the cytoplasm, poly-

ubiquitinated and degraded by the 26S proteasome (Needham

et al., 2019). The main channel for retrograde transport of

proteins during ERAD is formed by the multispanning

ubiquitin ligase Hrd1 (Schoebel et al., 2017; Wu and

Rapoport, 2018), although the Sec61 complex can also be

involved (Römisch, 2017).

2.2 Architecture of the Sec61 complex

The transient nature of the many interactions at the

Sec61 complex level made it difficult to determine its

structure. Even in the case of the Sec61 complex core, the

composition, architecture, and mechanism of operation

remain difficult to determine. However, technical advances,

particularly in the field of cryo-electron microscopy, have

made it recently possible to increase the understanding of the

heterotrimeric Sec61 complex.

Studies on human cells have shown that the main

components of the Sec61 complex are Sec61 (α, β and γ),
TRAP and OST (Pfeffer et al., 2014). A secondary structure

can be defined at the subnanometer scale, including the protein-

conducting channel (Pfeffer et al., 2015). It has not yet been

clearly defined whether OST transiently associates with the

Sec61 complex for a specific phase of translocation or whether

different types of Sec61 complexes coexist in the cell. It has,

however, been shown that initiation of translation strengthens

the association between OST and Sec61 (Conti et al., 2015; Bai

et al., 2018), which tends towards the first hypothesis. However,

no such conclusive pattern could be revealed in vivo (Mahamid

et al., 2016).

2.2.1 The pore
The main feature of the ER Sec61 complex is the existence of

an aqueous pore across the membrane. Thanks to experiments

using puromycin treatment, the Sec61 complex has been seen as a

channel gated by the ribosome. Indeed, these ER transmembrane

pores were detected by conductivity measurements, and the

dependence of these channels on puromycin suggested that

the nascent polypeptide chain must be released from the

ribosome to allow the transmembrane passage of ions (Simon

and Blobel, 1991). Since the channel is closed when the ribosomes

are detached from the membrane, the passage of ions through the

channel is dependent on both the nascent chain and the ribosome

(Simon and Blobel, 1991; Van Coppenolle et al., 2004).

Since the lumen of the ER, and not the cytoplasm, forms a

continuum with the Sec61 complex pore upon protein

translocation, the ribosome itself must form the permeability

barrier by strongly binding the cytoplasmic surface of the

Sec61 complex and sealing the pore from there (Crowley

et al., 1994).

The experiments conducted by Hamman et al. (Hamman

et al., 1998) indicate that the ribosome remains in place on the

Sec61 complex until the translation is complete. At this stage, the

pore of the Sec61 complex linked to the ribosome had a diameter

of 40–60 Å, potentially allowing Ca2+ leakage. In contrast, the

pore of the Sec61 complex has an internal diameter of 9–15 Å

when not bound to the ribosome (Hamman et al., 1997).

2.2.2 The components of the Sec61 complex
2.2.2.1 Sec61

Sec61 has a heterotrimeric structure forming a channel

allowing the passage of proteins (Figure 1). The Sec61α
subunit consists of 10 transmembrane helices, arranged in two

pseudosymmetrical N- and C-terminal halves around a central

Frontiers in Physiology frontiersin.org03

Parys and Van Coppenolle 10.3389/fphys.2022.991149

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.991149


pore, impermeable to passive ion flow. The Sec61β and Sec61γ
subunits are located at the periphery of the Sec61 complex, and

each has a transmembrane helix (Berg et al., 2004; Egea and

Stroud, 2010; Li et al., 2016).

During protein transport and translation, the ribosome binds

to cytosolic loops 6 and 8 of Sec61α (Figure 1). A recent

mechanistic model shows that Sec61 transiently opens to

allow insertion of the transmembrane helix or nascent protein

signal sequence into the ER membrane while remaining

impermeable to low-molecular-weight proteins (Becker et al.,

2009; Gogala et al., 2014; Park et al., 2014; Voorhees et al., 2014;

Voorhees and Hegde, 2016).

The pore of the Sec61 complex formed by Sec61 completely

encompasses the ER lipid bilayer through which the newly

synthesized secretory proteins are translocated (Swanton and

Bulleid, 2003). The heteromeric Sec61 complex forms the nucleus

of this pore, which can be blocked by BiP on the luminal side. The

ribosome binds to the cytosolic side, and the Sec61 complex can

be considered an SRP-ribosome gated channel.

2.2.2.2 TRAP

TRAP is a heterotetrameric membrane protein complex, the

role of which is to assist Sec61 with protein insertion and more

specifically in the topogenesis of polytopic membrane proteins

(Sommer et al., 2013). It is made up of three subunits (α, β, δ)
forming a transmembrane helix and a luminal domain, while

TRAPγ forms a set of four transmembrane helices with a small

cytosolic domain (von Heijne and Gavel, 1988). The luminal part

of TRAP binds Sec61α at the level of the two N- and C-terminal

halves (Figure 1) and could thus influence the conformation of

Sec61α and interact with the newly synthesized proteins that are

translocated. Interestingly, in TRAPβ-depleted HeLa cells,

thapsigargin induced via the Sec61 complex a smaller increase

in [Ca2+]cyt than in control cells (Nguyen et al., 2018). It would

therefore be interesting to compare in further experiments

simultaneously [Ca2+]cyt and [Ca2+]ER to decipher whether the

absence of TRAPβ decreases the Ca2+ leak and/or partly depletes
the Ca2+ stores.

2.2.2.3 OST

The OST complex is made up of at least seven proteins. OST

catalyzes the glycosylation of newly synthesized proteins

(Kelleher and Gilmore, 2006). One of the subunits of OST is

STT3. It occurs in two paralogous forms STT3A and STT3B,

which are involved in glycosylation during and after translation

respectively (Ruiz-Canada et al., 2009). They are associated with

FIGURE 1
Structure of Sec61α, highlighting elements relevant for its function as ER Ca2+-leak channel. Sec61α is characterized by having
10 transmembrane domains (TMD1-10, in orange) arranged in two pseudo-symmetrical N- and C-terminal halves (delineated by the vertical dashed
line) with both the N and C termini located in the cytosol. The two sterically adjacent TMD2 and TMD7 (in dark orange) form the lateral gate. The
interaction of Ca2+/calmodulin (Ca2+/CaM) at the N-terminus and of BiP at loop 7 is shown. In addition, the luminal binding site for the
translocon-associated protein complex (TRAP BS) on loop 5, at the interphase between the N- and C-terminal halves, and of the ribosome (R BS) on
loops 6 and 8 are indicated.
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at least six accessory subunits of OST, the function or structure of

which are not yet completely understood: ribophorin I,

ribophorin II, OST48, DAD1, N33 (or IAP) and OST4. The

N33 subunit of OST has oxidoreductase activity and is believed to

increase glycosylation efficiency by slowing the conformational

changes of glycoproteins (Mohorko et al., 2014). Recent findings

using high-resolution cryoelectron microscopy revealed that

OST binds to Sec61α and partially penetrates the lumen of

the ER (Braunger et al., 2018; Ramírez et al., 2019). However,

its interaction with the Sec61 complex has yet to be further

determined.

2.2.2.4 Other important ER proteins

Calnexin, an intraluminal ER membrane protein acting as a

chaperone during nascent protein conformation (Chen et al.,

1995), may be linked to nascent polypeptide chains (Chen et al.,

1995; Oliver et al., 1996; Tatu and Helenius, 1997). Calnexin

therefore appears to be close to the Sec61 complex, but there is as

yet no evidence of its participation in the complex.

Further ER proteins such as calreticulin, protein disulfide

isomerase, BiP and ERp57 also transiently interact with the

nascent protein chain (Nicchitta and Zheng, 1997; Oliver

et al., 1997; Tatu and Helenius, 1997), but it was arbitrarily

decided to consider only membrane proteins associated with the

Sec61 complex.

2.2.3 The ribosome
Sec61α is located in the center of the Sec61 complex and

binds the ribosome via its loops 6 and 8, close to the exit peptide

of the ribosome (Raden et al., 2000; Song et al., 2000). While

TRAP specifically binds a region of Sec61α, OST interacts with

Sec61 via a larger interface in the ER membrane. On the cytosolic

face of the Sec61 complex, the small cytosolic domains of TRAP

and OST interact with the large ribosomal subunit via specific

cytosolic contact sites (Silberstein and Gilmore, 1996; Wang and

Dobberstein, 1999; Kriegler et al., 2020; Mohanty et al., 2020).

3 Sec61 complex, Ca2+ leakage and
pharmacology

As some antibiotics inhibit translation by acting on the

Sec61 complex, these compounds turned out to be very useful

to modulate Sec61 complex opening, either inducing or

inhibiting Ca2+ leakage. Nevertheless, it is important to note

that acute pharmacological modulation of Sec61 complex

opening with those antibiotics during short-term Ca2+-

imaging experiments is too brief to significantly affect protein

translation/translocation (Van Coppenolle et al., 2004). Indeed,

these molecules act on the Ca2+ permeability of the

Sec61 complex in the order of minutes, while they will take a

longer time to act on protein translation in a detectable way.

Similarly, during long-term treatment of cells with these

compounds it is necessary to pay attention to use a

concentration that is able to modify Sec61 complex

permeability to Ca2+ without significantly affecting protein

translation.

3.1 Three states for one complex

There are three known conformations of Sec61α: idle,

intermediate and open. In its non-translating state, Sec61α
binds to the ribosome with a plugged gate corresponding to

the idle conformation (Voorhees et al., 2014). Ca2+ leakage via the

Sec61 complex probably does not occur in this state (Wirth et al.,

2003). After binding to the ribosome and just before signal

peptide engagement, Sec61α moves toward the intermediate

state (Bhadra et al., 2021). Here, the Sec61α complex

“breathe” along the opened lateral gate (Li et al., 2016), which

may trigger Ca2+ permeability. Once nascent protein

translocation occurs through the channel, Ca2+ cannot cross

the pore. After translocation, when the peptidic chain has

been released, the Sec61 complex remains transiently in an

open post-translocation state that allows Ca2+ leakage via the

aqueous pore. Indeed, the time between the ribosome detaches

from the Sec61 complex, and the reformation of a luminal plug

corresponds to the time period during which Ca2+ leakage can

occur through the wide-open pore with a 50 Å diameter.

Subsequently, the Sec61 complex returns again to the idle

state when the ribosomes come off (Bhadra et al., 2021).

3.2 Pharmacological aspects

Puromycin is a structural analog of phenylalanyl-tRNA,

causing the formation of an abnormal peptidyl-puromycin.

The newly synthetized polypeptide chains are therefore

incomplete, which causes their detachment from the

Sec61 complex and the inhibition of protein synthesis (Traut

and Monro, 1964). At this level, the ribosome is still linked to the

Sec61 complex (Pestova and Hellen, 2001; Van Coppenolle et al.,

2004), and the pore is open, allowing Ca2+ leakage (Van

Coppenolle et al., 2004; Wonderlin, 2009).

Concerning pactamycin, its mode of action is still debated.

During translation, all tRNA substrates attach to three ribosome

binding sites named A (aminoacyl), P (peptidyl) and E (exit).

These three sites are located at the junction between the

ribosomal subunit and the tRNA (Yusupov et al., 2001).

Indeed, the first studies showed that pactamycin associates

with the ribosome, thereby preventing tRNA from entering

the P site. This would be due to a change in the conformation

of the ribosome or by direct competition, thus inhibiting protein

translation (Eida and Mahmud, 2019). Regardless, the peptidic

chain is released in the presence of pactamycin during

translation, allowing Ca2+ leakage (Al-Mawla et al., 2020).
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Anisomycin is a translation inhibitor that acts by binding to a

part of the 60S subunit (Hummel et al., 1987; Rodriguez-Fonseca

et al., 1995) of the ribosome that has been suggested to be the

peptidyl transferase center (Rodriguez-Fonseca et al., 1995;

Iordanov et al., 1997). Anisomycin has been shown to inhibit

puromycin reaction in an in vitro system (Ioannou et al., 1998).

The inhibition of the peptidyl transferase activity by anisomycin

prevents elongation of the peptide chain and any Ca2+ leakage

through the Sec61 complex (Van Coppenolle et al., 2004;

Hammadi et al., 2013).

Emetine interacts with the 40S ribosome subunit at the E site,

inhibiting the progression of the ribosome on mRNA. This

molecule is therefore an irreversible inhibitor of translation

elongation, which stabilizes the ribosome/nascent chain

complex, causing the pore of the Sec61 complex to close (Al-

Mawla et al., 2020). It should be noted that emetine also seems to

mobilize Ca2+ from the Golgi apparatus, although the Ca2+

channel involved was not identified (Gallegos-Gómez et al.,

2018). The latter point should be taken into consideration

when using the compound.

Cycloheximide is commonly used for control purposes. This

antibiotic acts as an inhibitor of elongation, binding the E site of

the ribosome without any modulation of Sec61 complex

permeability to Ca2+ (Van Coppenolle et al., 2004).

It is now also possible to modulate the permeability of the

Sec61 complex with molecules other than antibiotics. Indeed,

recently, the Mycobacterium ulcerans exotoxin mycolactone has

been shown to enhance ER Ca2+ leakage via the Sec61 complex

(Bhadra et al., 2021). The mechanisms of action of mycolactone

on the Sec61 complex are detailed in Section 3.5.

Another molecule of interest is eeyarestatin, a chemical

inhibitor of protein degradation via the ERAD system (Wang

et al., 2008; Wang et al., 2009) and of translocation of nascent

polypeptides into the ER via the Sec61 complex (Cross et al.,

2009). Recently, eeyarestatin analogs have also been found to

mediate ER Ca2+ leakage via the Sec61 complex (Gamayun et al.,

2019). In this interesting study, eeyarestatin was proposed to bind

Sec61α in the open state, where it would prevent the closure of

the lateral gate, keeping Sec61α in a Ca2+-permeable state.

The list of drugs acting on the Ca2+ permeability of the

Sec61 complex is gradually increasing, thereby widening the

scope of studies in this field.

3.3 The Sec61 complex: A new functional,
ER Ca2+-leak channel

As mentioned above (see Section 2.2.1), the pore of the

Sec61 complex is the largest in the ER, with a diameter of

40–60 Å in the ribosome-bound state and a smaller diameter of

9–15 Å in the ribosome-free state (Hamman et al., 1997; Hamman

et al., 1998). Subsequently, the role of the Sec61 complex as an ER

Ca2+-leak channel emerged thanks to thework ofWonderlin’s group

showing that small polarized molecules could cross the ER

membrane through the Sec61 complex (Heritage and Wonderlin,

2001; Roy and Wonderlin, 2003). We therefore hypothesized that

Ca2+ ions would also move across the ER membrane via the

Sec61 complex. To verify this hypothesis, the main experimental

problem was how to best open the Sec61 complex pore to directly

measure ER Ca2+ leakage. Similar to Wonderlin and collaborators,

we started by using puromycin to, for the first time, directly detect

Ca2+ leakage through the Sec61 complex in mouse pancreatic acinar

cells (Lomax et al., 2002).

In subsequent experiments, we continued the investigation of

the cell physiological role of the Sec61 complex as an ER Ca2+ leak

channel. Using human cancerous prostate cells (the LNCaP cell

line), we determined that puromycin induced Ca2+ leakage

through the Sec61 complex independently of IP3Rs or RyRs

(Van Coppenolle et al., 2004). Moreover, for this study, we

systematically used anisomycin to counteract puromycin’s

action to control the specificity of action of these compounds

on the Sec61 complex. In a similar way, other studies used

pactamycin instead of puromycin and emetine instead of

anisomycin (Ong et al., 2007; Al-Mawla et al., 2020). The

fundamental cell physiological role of the Sec61 complex was

elucidated in a second study using LNCaP cells (Flourakis et al.,

2006). The [Ca2+]ER at rest is the result of the equilibrium

between Ca2+ uptake mediated by the SERCA pumps and

passive Ca2+ leakage through Ca2+-leak channels. Inhibition of

SERCA pumps by the specific inhibitor thapsigargin therefore

fully reveals the passive Ca2+ release through ER Ca2+-leak

channels, as it is not compensated by reuptake. The measured

Ca2+ leak is, in those conditions, the result of all the ER Ca2+-leak

channels open at this stage. This leak appeared to be mostly

mediated by the Sec61 complex. Moreover, similar results were

obtained using EGTA-AM (a cytosolic Ca2+ chelator) to enhance

Ca2+ release. Altogether, these data highlight the role of the

Sec61 complex as a major Ca2+-leak channel in the LNCaP

cell model. In addition, it is well known that ER Ca2+

depletion can activate SOCs (store-operated channels).

Interestingly, we have also demonstrated that Ca2+ release that

occurs via the Sec61 complex activates SOCs. This was the first

characterization of store-operated Ca2+ entry triggered by passive

Ca2+-leak channels (Flourakis et al., 2006).

Giunti et al. elegantly studied the efflux of Ca2+ from ER-derived

rat liver microsomal vesicles (Giunti et al., 2007). They detected two

basal passive pathways for Ca2+ efflux. One of them is carried by the

Sec61 complex since the leakage was stimulated by puromycin

perfusion. The second efflux pathway is more mysterious and

requires counterion influx. It does not involve inactive SERCA

pumps, Bcl-2 proteins, or known Ca2+ channels such as IP3Rs or

RyRs. Interestingly, the authors also noticed that the efflux was

largest in the rough microsomal subfractions, which are enriched in

the Sec61 complex. Thanks to this approach, this work provides

strong evidence for the role of the Sec61 complex as a functional ER

Ca2+-leak channel at the organellar level.
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In addition to these studies, we should mention the

interesting work of Layhadi et al. (Layhadi and Fountain,

2017). They highlighted in THP-1 macrophages the role of

the Sec61 complex in the control of the [Ca2+]cyt at rest. In

the absence of extracellular Ca2+, inhibition of the Sec61 complex

with anisomycin reduced the resting [Ca2+]cyt. In addition, the

authors demonstrated that inhibition of the Sec61 complex by

anisomycin enhances the response to ADP (via P2Y receptors) in

human primary macrophages. Altogether, this work clearly

indicates that the Sec61 complex is not only an ER Ca2+-leak

channel but also acts, at least in macrophages, as a regulator of ER

Ca2+ content and of the [Ca2+]cyt at resting state.

Taken together, various studies have demonstrated that the

Sec61 complex is a functional ER Ca2+-leak channel in several cell

types. Nevertheless, the Ca2+-leakage rate depends on the

dynamics of plug binding/dissociating the pore. An important

question, therefore, is which factors will control Ca2+ leakage?

3.4 Regulation of Sec61 complex Ca2+

leakage from the ER by Ca2+-binding
proteins

A permanently open ER Ca2+-leak channel would in the

long run form a hazard for the cell as both ER Ca2+ levels and

cytosolic Ca2+ levels control many aspects of cell function,

including the occurrence of ER stress and/or the induction of

cell death (Orrenius et al., 2003; Pinton et al., 2008; Krebs

et al., 2015; La Rovere et al., 2016; Danese et al., 2021). It can

therefore be expected that intra-ER and/or cytosolic proteins

sensing the local [Ca2+] control the Ca2+ flux through the

Sec61 complex.

3.4.1 The regulating role of BiP
As stated above (see Section 2.1), BiP is an important ER

intraluminal heat shock protein. It has a chaperone function

towards newly synthesized proteins, controls the protein flux

through the Sec61 complex, and activates the UPR in ER stress

conditions (Pobre et al., 2019). Moreover, it participates in the

regulation of intracellular Ca2+ homeostasis by acting as an

intraluminal Ca2+-binding protein (Lièvremont et al., 1997),

by stabilizing the type 1 IP3R (Higo et al., 2010) and by

controlling ER Ca2+ leakage through the Sec61 complex

(Schäuble et al., 2012; Hammadi et al., 2013). During ER

stress, BiP preferentially targets accumulating unfolded or

misfolded proteins, thereby releasing the three canonical ER-

stress sensors, inositol-requiring enzyme 1 (IRE1), protein kinase

RNA-like ER kinase (PERK), and activating transcription factor

6 (ATF6), which consequently become free to activate the UPR

(Ron and Walter, 2007). In addition, during ER stress, BiP will

also dissociate from both the IP3R and the Sec61 complex,

leading to complex changes in ER Ca2+ handling. This

includes first a decreased Ca2+ release from the ER and

subsequently an increased Ca2+ release that can lead to cell

apoptosis (Kiviluoto et al., 2013).

In relation to the Sec61 complex, BiP is an allosteric effector

of the Sec61 channel, supporting the translocation of proteins

through it (Lang et al., 2017). A BiP-binding site on a minihelix

located in loop 7 of Sec61α (Figure 1) appears to be involved in

the gating of the Sec61 complex and in the regulation of ER Ca2+

leakage through the Sec61 complex (Schäuble et al., 2012; Schorr

et al., 2015). The expression in human HeLa cells of the Sec61α-
Y344H mutant deficient in BiP binding (see Section 4.1)

increased ER Ca2+ leakage (Schäuble et al., 2012). In the same

study, an increased Ca2+ leak was also observed in conditions in

which BiP was made unavailable, either via siRNA-mediated

gene silencing or via induction of protein misfolding by short-

term treatment with dithiothreitol or tunicamycin. This effect

could not be mimicked by other chaperones, such as protein

disulfide isomerase, calreticulin or GRP94, indicating the

specificity of BiP compared to other chaperones. However, in

this role, BiP is assisted by two of its intraluminal co-chaperones

of the Hsp40 family, ERj3 and ERj6. siRNA-induced depletion of

HeLa cells of either one of these two proteins led to increased

Sec61-mediated Ca2+ leakage out of the ER (Schorr et al., 2015).

This regulation was specific for ERj3 and ERj6 as depleting the

Hsp40 proteins ERj1, Sec63 (also known as ERj2), ERj5 and

ERj7 had no such effect.

The control of ER Ca2+ leakage by BiP has interesting

functional consequences for the cell. First, as the presence of

unfolded or misfolded proteins results in the release of BiP from

the Sec61 complex, cells with a particularly high protein synthesis

rate (e.g., β cells of the pancreas or hepatocytes) are particularly

prone to experience increased Ca2+ leakage out of the ER,

potentially leading to apoptosis (Hammadi et al., 2013;

Kiviluoto et al., 2013; Schorr et al., 2015; Lang et al., 2017;

Lemos et al., 2021) (Figure 2). In addition, since BiP is

dependent on ATP for its function, it was proposed (Lang

et al., 2019) that low [ATP]ER will lead to decreased BiP

activity and thus increased Ca2+ leakage out of the ER. The

subsequent decrease in [Ca2+]ER and increase in [Ca2+]cyt will

then activate the ADP/ATP exchanger of the ER (Klein et al.,

2018) to replenish ER ATP content.

In conclusion, BiP, the luminal plug of the Sec61 complex,

might attach and detach from the pore with particular dynamics

determining the Ca2+-leakage rate depending on physiological

cell conditions (such as ER stress, BiP expression or rate of

translation).

3.4.2 The regulatory role of calmodulin (CaM)
CaM is a ubiquitously expressed cytosolic Ca2+-binding

protein. It contains four EF-hand motifs with an affinity for

Ca2+ in the physiological range (Kd’s between 0.5 and 5 µM),

making CaM ideally suited as an intracellular Ca2+ sensor (Chin

and Means, 2000). CaM therefore modulates a plethora of

proteins, including various Ca2+ pumps and channels.
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It is thus particularly interesting that Ca2+ leakage through

the Sec61 complex is also modulated by CaM (Erdmann et al.,

2011). Sec61α contains in its N-terminal domain a high-affinity

binding site (a.a. 19–32) that specifically interacts with Ca2+/CaM

but does not interact with apoCaM (Figure 1).

Electrophysiological experiments determined that CaM

induced Ca2+-dependent closure of the Sec61 channel. The

reverse also holds, as treatment with the CaM antagonists

ophiobolin A or trifluoperazine enhanced Ca2+ leakage.

Moreover, molecular modeling suggested that Ca2+/CaM binds

in the gap between the ribosome and the Sec61 complex.

3.5 Modulation of Sec61-mediated Ca2+

leakage by bacterial toxins

Mycolactone is an exotoxin produced by Mycobacterium

ulcerans that causes Buruli ulcer, a chronic skin necrosis

(Demangel et al., 2009; Sarfo et al., 2016; Demangel and High,

2018). Pre-ulcerative and ulcerative lesions are painless, often

delaying curative actions (En et al., 2008). Mycobacterium

ulcerans infections lead to the suppression of the immune

system allowing the multiplication of bacteria in the skin

(Yotsu et al., 2018).

Many molecular targets of mycolactone have been identified,

including the Sec61 complex (Baron et al., 2016; Morel et al.,

2018; Gérard et al., 2020; Demangel, 2021; O’Keefe et al., 2022).

Mycolactone inhibits Sec61-dependent protein translation/

translocation into the ER (Hall et al., 2014). This has been

linked to the mechanism of immunosuppression induced by

mycolactone via inhibition of T cell activation and antigen

presentation (Baron et al., 2016; Grotzke et al., 2017). Since

the Sec61 complex is a target of mycolactone, the question arose

as to the potential effects of this toxin on ER Ca2+ permeability.

This aspect has been studied by Bhadra et al. (Bhadra et al., 2021).

Using the HEK293 and HCT116 cell lines, they demonstrated

that mycolactone enhances ER Ca2+ leakage via the

Sec61 complex. The absence of Ca2+ depletion in cells

expressing Sec61α mutants, resistant to mycolactone binding,

corroborates the direct action of the toxin on the complex.

FIGURE 2
Involvement of the Sec61 complex/translocon in cell survival. In physiological condition, ER Ca2+ homeostasis is due to a balance between Ca2+

leak and Ca2+ re-uptake by SERCA pumps. ER stress triggers Ca2+ depletion of the ER Ca2+ stores via an increase in Ca2+ leakage through the
Sec61 complex. Pharmacological inhibition of the Sec61 complex with anisomycin or emetine during ER stress restores ER Ca2+ homeostasis and
protects cells from apoptosis. Adapted from Cassel et al., Plos One, 2016 (Cassel et al., 2016) licensed under a Creative Commons Attribution
4.0 International License.
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Interestingly, they postulate that among the three known

conformations of Sec61α, idle, intermediate and open (see

Section 3.1), mycolactone stabilizes the intermediate

conformation, locking the Sec61 complex in a Ca2+-permeable

conformation.

3.6 The regulatory role of Sec62

Evidence exists that for post-translational protein

translocation, the Sec61 complex associates with the Sec62/

Sec63 complex. Sec62 is a 399 a. a. protein characterized by

having both its N- and C-terminal regions in the cytosol, flanking

the two transmembrane domains (TMD) connected by a short

intraluminal loop (Daimon et al., 1997; Tyedmers et al., 2000).

Analysis of various prostate cancer cell lines demonstrated

that reduced Sec62 protein levels lead to larger Ca2+ leakage out of

the ER and reduced cell viability while increased

Sec62 expression correlated with protection against

thapsigargin-induced apoptosis (Greiner et al., 2011). These

results strongly suggest that Sec62 is an inhibitor of ER Ca2+

leakage, most likely via a direct or indirect action on the

Sec61 complex. Subsequent work indicated that Ca2+ affected

the binding of the C terminus of Sec62 to the N terminus of

Sec61α (Linxweiler et al., 2013). Moreover, mutation of a putative

Ca2+-binding motif (a.a. 308–319) in the C terminus of Sec62,

increased thapsigargin-induced Ca2+ leakage out of the ER.

Taking into account that Sec62 silencing and treatment with

CaM antagonists lead to the same phenotype, the authors

propose a model in which Sec62 binding to Sec61 is relieved

by Ca2+, allowing Ca2+/CaM to occupy its binding site and thus to

inhibit ER Ca2+ leakage through the Sec61 complex. Obviously,

another possible mechanism would involve the recruitment of

BiP at the luminal side, subsequent to Sec62/Sec63 binding.

Taken together, the regulation of Sec61 complex-mediated

Ca2+ leakage by multiple Ca2+-dependent proteins may indicate

the importance of keeping Ca2+ leakage under tight control, or

may indicate that depending on the situation, e.g., the presence or

absence of ER stress, the cell relies on a different mechanism for

controlling Ca2+ leakage out of the ER.

4 Involvement of Sec61 complex-
mediated ER Ca2+ leakage in
pathological conditions

4.1 SEC61 mutations and related
pathologies

Several pathogenic mutations have been detected, as well in

the genes coding for the proteins forming the Sec61 complex as in

those coding for proteins associated with the complex (Lang

et al., 2017; Sicking et al., 2021). These mutations result in various

clinical phenotypes, including type 2 diabetes mellitus (T2D),

immunodeficiency, tubulo-interstitial kidney disease and

neutropenia (for mutations in SEC61A1). The occurrence of

polycystic liver disease and colorectal cancer has been linked to

SEC61B and that of glioblastoma multiforme, hepatocellular and

renal cell carcinoma to SEC61C expression levels. Interestingly,

mutations in proteins associated with the SEC61 complex

recapitulate some of the above-mentioned diseases (T2D,

polycystic liver disease) but can also lead to other diseases,

such as the so-called congenital disorder of glycosylation

(Lang et al., 2017; Sicking et al., 2021). Obviously, these

mutations can affect each of the various aspects of

Sec61 complex function and do not necessarily imply

dysfunctional cellular Ca2+ handling. Interestingly, however, a

number of those mutations were determined to impact ER Ca2+

leakage in mice (Schäuble et al., 2012) and humans (Schubert

et al., 2018; Van Nieuwenhove et al., 2020) (Table 1).

Common variable immunodeficiency (CVID) is a group

of diseases of various origins that are generally characterized

by impaired B-cell differentiation/function, resulting in low

levels of antibody production and, consequently, recurrent

infections. Two mutations in SEC61A1, a heterozygous

missense mutation (V85D) and a nonsense mutation

(E381*), have been linked to CVID (Schubert et al., 2018).

SEC61A1-V85D, when expressed in HeLa cells, not only

impaired protein translocation to the ER, but also resulted

in a severe depletion of the ER Ca2+ store due to increased

Ca2+ leakage out of the ER. SEC61A1-V85D expression

selectively impaired the survival of plasma cells. This was

due to the induction of unresolvable ER stress, leading to

terminal UPR.

Autosomal dominant severe congenital neutropenia (SCN)

forms another genetically heterogeneous group characterized by

differentiation arrest in the formation of granulocytes. Mutations

in over 20 genes are already involved in this pathology, while for

many patients the responsible mutation has not yet been

characterized. In a recent study, the point mutation Q92R in

SEC61A1 was identified in a patient with severe congenital

neutropenia (Van Nieuwenhove et al., 2020). Expression of

SEC61A1-Q92R in HL-60 cells induced a 30% depletion of

the ER Ca2+ store compared to wild-type SEC61A1. This was

similar to the depletion observed when expressing in the same

cells SEC61A1-V67G or SEC61A1-T185A, two heterozygous

missense mutations already shown to result in autosomal-

dominant tubulo-interstitial kidney disease (ADTKD) (Bolar

et al., 2016). Additionally, SEC61A1-Q92R patient cells

demonstrated an increased UPR and were more prone to

apoptosis.

Interestingly, the ADTKD patients expressing the V67G

mutation also displayed some neutropenia (Bolar et al., 2016).

Similarly, the patient with the Q92R mutation was not only

characterized by SCN, but also displayed B-cell maturation

defects, reminiscent of the patients with SEC61A mutations
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leading to CVID, though harbored normal kidney function (Van

Nieuwenhove et al., 2020).

Finally, investigation in a mouse model for T2D indicated

that the missense mutation Y344H in loop 7 of murine Sec61α
was linked to the occurrence in β cells of continuing ER stress

leading to apoptosis and the subsequent development of T2D

(Lloyd et al., 2010). The same mice also displayed

hypercholesterolemia, hypertriglyceridemia, hepatomegaly,

steatosis and, in older animals, hepatic cirrhosis. These

observations are also relevant for humans, since the motif is

fully conserved between mice and humans. Subsequent

expression of Sec61α-Y344H in human HeLa cells led to

increased ER Ca2+ leakage (Schäuble et al., 2012). Moreover,

this mutation impairs binding of BiP to Sec61α, consistent with
the observation that BiP limits ER Ca2+ leakage (see Section

3.4.1). Furthermore, these results strongly suggest that the gating

of the Sec61 complex by BiP occurs via its binding to loop 7 of

Sec61α. Interestingly, deletion of ERj6, one of the proteins

assisting BiP in its regulation of Sec61 complex-mediated Ca2+

leakage, results in both mice (Ladiges et al., 2005) and humans

(Synofzik et al., 2014) in pancreatic β cell failure and T2D,

suggesting that increased Ca2+ leakage might form part of the

mechanism involved.

It is presently not understood how the various

SEC61A1 mutations form the origin of different clinical

phenotypes, but this may be due to a combination of various

functional effects, including but not limited to dysfunctional Ca2+

handling, and destabilization of the protein leading to lower

expression levels. It is, however, clear that, with the exception of

Y344H, which affects BiP binding, the other mutations linked to

dysfunctional Ca2+ handling (V67G, V85D, Q92R, Y344H) are

thus far all located in or near TMD2 (Table 1). V67G is located in

the loop between TMD1 and TMD2 that forms a plug that seals

and stabilizes the pore during the closed state (Linxweiler et al.,

2013). V85D and Q92R, on the other hand, introduce a charge in

the hydrophobic TMD2, which will likely affect the pore

conformation and modify Ca2+-channel properties. Moreover,

TMD2 and TMD7 form the so-called lateral gate that can allow/

prevent lateral access to the central pore (Sicking et al., 2021).

In view of the structure of SEC61A, it may be expected that

other mutations will be discovered that also affect its Ca2+

handling, which will help our understanding of the Ca2+-leak

pathway.

4.2 Involvement of Sec61-mediated Ca2+

leakage in ER stress and UPR in disease

As detailed earlier, ER stress is due to either accumulation of

unfolded or misfolded proteins in the ER lumen or due to Ca2+-

store depletion. The UPR is an adaptive phenomenon aimed at

reducing the unfolded protein burden (Hammadi et al., 2013;

Hetz et al., 2020). A prolonged UPR is associated with ERAD.

Unfolded proteins are retrotranslocated from the ER lumen to

the cytoplasm, where they are degraded by the 26S proteasome

(Wu and Rapoport, 2018). Prolonged ER stress will lead to

apoptosis. Among all the signaling transduction pathways of

ER stress and UPR, it is interesting here to focus on BiP

overexpression. In the absence of ER stress, BiP maintains

IRE1, PERK and ATF6 (Behnke et al., 2015; Pobre et al.,

TABLE 1 Identified SEC61A1 disease mutations and their effects on the ER Ca2+ leak. Description of SEC61A mutations leading to various diseases
affecting kidney function, immunological behavior and/or metabolism, with special attention to the structural and functional consequences for
the ER Ca2+ leak. TMD2 forms part of the lateral gate, while the pore ring is the name of the central constriction of Sec61α, which in its closed
conformation is occupied by Loop 1, called the plug domain.

Mutation
in
SEC61A

Location mutated
a.a

ER Ca2+

leak
Primary
disease

Additional
observations

References

V67G Plug domain (Loop 1 between TMD1 and
TMD2)

Increased ADTKD Also neutropenia Van Nieuwenhove et al.
(2020)

Bolar et al. (2016)

V85D Pore ring in TMD2 Increased CVID Schubert et al. (2018)

Van Nieuwenhove et al.
(2020)

Q92R TMD2 Increased SCN Other leucocytes also affected but kidney
function normal

Van Nieuwenhove et al.
(2020)

T185A TMD5 (very near to pore ring) n.d ADTKD Bolar et al. (2016)

Y344H Loop 7 (BiP-binding site) Increased Diabetes mellitus Observed in mice Schäuble et al. (2012)

Lloyd et al. (2010)

E381* Premature stop codon leading to
haploinsufficiency

n.d CVID Schubert et al. (2018)

Abbreviations used: TMD, transmembrane domain; n.d., not determined; ADTKD, autosomal-dominant tubulo-interstitial kidney disease; CVID, common variable immunodeficiency;

SCN, severe congenital neutropenia.
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2019) in an inactive state. BiP also plugs the pore of the luminal

side of the Sec61 complex (Hamman et al., 1997; Haigh and

Johnson, 2002; Alder et al., 2005) and stabilizes the type 1 IP3R

(Higo et al., 2010). During ER stress and UPR, a reorientation of

BiP occurs: the chaperone binds to unfolded proteins and thus

unhooks from the Sec61 complex, type 1 IP3R, IRE1, PERK and

ATF6, concomitantly triggering Ca2+ leakage from the ER via the

Sec61 complex (Figure 2). Very recently, using GCamP6, a

genetically encoded Ca2+ indicator tethered to the ER

membrane, evidence was presented that during the early

phase of the UPR, the Sec61 complex evoked Ca2+ signals

(Feliziani et al., 2022). Interestingly, these Ca2+ signals had

physiological significance, as they contributed to PERK

activation.

Ca2+ dysregulations as well as UPR perturbations have been

associated with many diseases such as T2D (Özcan et al., 2006;

Hotamisligil, 2010), cardiac pathologies (Minamino and

Kitakaze, 2010; Hammadi et al., 2013; Luo et al., 2015) and

cancer (Tsai and Weissman, 2010; Hammadi et al., 2013).

Further questions arise now. Are ER stress and Ca2+

homeostasis independent mechanisms? What could be the

link between these two mechanisms, and how could they be

involved in these pathologies?

The involvement of the Sec61 complex in pathological

contexts is beginning to be investigated. In the following

sections, we will focus on cancer, T2D, cardiac ischemia-

reperfusion and stunned myocardium with the Sec61 complex

as a potential therapeutic target.

4.2.1 Sec61 complex and cancer
Resistance to apoptosis is one of the major hallmarks of

cancerous cells. New therapeutic strategies must focus on the

induction of cell death. There is a direct link between ER Ca2+

homeostasis and cell survival. Any disruption of Ca2+ exchange

between the ER and cytoplasm will have important consequences

on the initiation of apoptosis. Cell death due to ER stress and a

prolonged UPR is linked to ER Ca2+-store depletion (Zhang and

Kaufman, 2008; Peters and Raghavan, 2011). In this context, the

main route through which Ca2+ is released from the ER lumen

during ER stress to switch the cell survival/apoptosis balance in

favor of apoptosis is unknown. The Sec61 complex appears to be

a good candidate to explain the mechanism of Ca2+-store

depletion associated with ER stress and UPR.

The role of the Sec61 complex in cell death and ER stress has

been investigated in the human cancerous cell line LNCaP

(Hammadi et al., 2013). In this study, its involvement in ER

stress as an ER Ca2+-leak channel was assessed using multiple ER

stress/UPR inducers: brefeldin A, dithiothreitol and tunicamycin

to trigger UPR as well as thapsigargin and puromycin to deplete

ER Ca2+ stores in the absence of misfolded protein accumulation.

In each condition, anisomycin both reduced ER stress and

prevented depletion of the ER Ca2+ store, demonstrating that

the Sec61 complex acts as a major ER Ca2+-leak channel during

ER stress/UPR. Remarkably, inhibition of Sec61 complex-

mediated Ca2+ leakage by anisomycin also inhibits apoptosis

triggered by Ca2+ store depletion induced by thapsigargin and

puromycin. As anisomycin can also activate a number of protein

kinases, a puromycin/anisomycin pair (or equivalent) should

always be used in these types of studies. Since the effect of one

molecule blocks that of the other, their use allows us to rule out

any non-specific action that would impede the correct

interpretation of the results. The study by Hammadi et al.

(Hammadi et al., 2013) therefore showed for the first time

that the Sec61 complex controls ER Ca2+ content in stressed

conditions. This finding indicates that pharmacological

modulation of the Sec61 complex could promote cell survival.

Returning to the apoptosis resistance of cancer cells, BiP has

been correlated with cancer malignancy (Virrey et al., 2008; Ni

et al., 2011). Indeed, most cancerous cells overexpress BiP

compared to normal cells. A study by Reddy et al. (Reddy

et al., 2003) highlighted the link between BiP overexpression

and drug resistance in cancer cells. Other studies clearly

demonstrate that BiP is involved in the resistance of breast

cancer cells to etoposide (an inhibitor of topoisomerase 2,

used in chemotherapy) (Mandic et al., 2003) and to apoptosis

(Fu et al., 2007). Moreover, BiP is overexpressed in ER stress,

during UPR and in cancer cells (Ni et al., 2011; Farshbaf et al.,

2020). On the one hand, BiP seals the luminal pore of the

Sec61 complex (Hamman et al., 1998) and thus inhibits ER

Ca2+ leakage (Schäuble et al., 2012; Hammadi et al., 2013). On the

other hand, UPR and ER stress trigger BiP overexpression

(Hammadi et al., 2013). Therefore, apoptosis resistance of

cancerous cells could be partly due to a reduced ER Ca2+ leak

at resting state involving the tandem Sec61 complex/BiP.

Pharmacological modulation of the Ca2+ leak though the

Sec61 complex could thus form a potential approach to force

apoptosis-resistant cancer cells to undergo cell death and to

enhance chemotherapy efficiency.

4.2.2 Protection of human pancreatic islets from
lipotoxicity by modulation of the Sec61 complex

T2D is associated with pancreatic β cell dysfunction and

insulin resistance. This pathology is a major concern in health

care worldwide. Its prevalence and incidence are rising, especially

in developed countries such as western Europe (Khan et al.,

2020). One of the major causes of T2D is a high-fat, high-sucrose

diet. Indeed, excessive consumption of free fatty acids (FFAs) is

correlated with a high risk for developing T2D (Risérus et al.,

2009). In this context, palmitate is one of the main FFA in blood

(Dey et al., 2007; Hommelberg et al., 2011; Leamy et al., 2014)

that triggers deleterious effects called “lipotoxicity” (Bensellam

et al., 2012). Palmitate-induced β cell lipotoxicity is associated

with apoptosis involving numerous mechanisms, such as reactive

oxygen species (ROS) production (Cnop, 2008; Fonseca et al.,

2011), inflammation (Eguchi et al., 2012) and autophagy

(Martino et al., 2012). Chronic exposure to FFA enhances ER
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stress/UPR in β cells (Özcan et al., 2006). In T2D, high insulin

protein synthesis also triggers ER stress/UPR (Song et al., 2008;

Åkerfeldt et al., 2008), as evidenced by ER stress marker

overexpression (Back and Kaufman, 2012; Papa, 2012).

Similarly, chemical chaperones used in a mouse model of

T2D reduce ER stress and restore glucose homeostasis (Özcan

et al., 2006). On the other hand, dysregulation of Ca2+

homeostasis is also associated with defective insulin release

(Gwiazda et al., 2009). Interestingly, Cnop et al. (Cnop et al.,

2014) analyzed the transcriptome of human islets after palmitate

treatment. They demonstrated an enhanced level of SEC61α and

BIP transcripts. Taken together, these data support the

involvement of the Sec61 complex and Ca2+ leakage from the

ER in palmitate-induced lipotoxicity in pancreatic β cells.

This hypothesis has been checked in the MIN6B1 cell line,

obtained from a mouse insulinoma (Miyazaki et al., 1990;

Ishihara et al., 1993). In these studies, the authors established

and characterized a pancreatic β cell line that exhibits

morphological and physiological characteristics (glucose

metabolism and glucose-stimulated insulin secretion (GSIS))

similar to normal β cells. Physiologically more relevant,

pharmacological modulation of the Sec61 complex was also

performed in human pancreatic islets obtained from non-

diabetic donors (Cassel et al., 2016). In this study, inhibition

of the Sec61 complex with anisomycin prevented palmitate-

induced ER Ca2+ depletion and reduced ER stress. It is well

known that under physiological conditions, glucose stimulates

insulin secretion by β cells. The GSIS assay is a method to

investigate the physiological functionality of islets. One of the

deleterious effects of palmitate-induced lipotoxicity is the

decrease in insulin secretion in response to glucose. Using the

GSIS method, it has been shown that the inhibition of the

Sec61 complex by anisomycin restores glucose-induced insulin

secretion in human islets treated with palmitate (Cassel et al.,

2016).

In conclusion, Ca2+ leakage through the Sec61 complex

appears to be a key element involved in T2D. One of the

mechanisms by which palmitate causes lipotoxicity in

pancreatic β cells occurs via ER stress associated with an

increase in ER Ca2+-store depletion through the

Sec61 complex. Therefore, pharmacological modulation of

Sec61 opening could be a promising strategy for the treatment

of ER stress-linked pathologies such as T2D (Figure 2).

4.2.3 Cardioprotective role of the modulation of
Sec61-mediated Ca2+ leakage during heart
ischemia-reperfusion and cardiac infarcts

Cardiac infarction is one of the leading causes of mortality.

Obstruction of a coronary artery induces ischemia in an area at

risk, which is responsible for lesions due to apoptosis of

cardiomyocytes. Reflow triggers further reperfusion injuries

(Hausenloy et al., 2016). The role of ER Ca2+ handling in the

regulation of heart rate, myocardial contraction, blood pressure

and blood flow is the subject of considerable investigation. Ca2+

signaling is central for heart function, through its physiological

role in excitation-contraction coupling as well as by its

detrimental impact during heart failure and myocardial

ischemia-reperfusion. During this latter condition, it is well

accepted that the cytosolic accumulation of Ca2+ due to ER

Ca2+ depletion via Ca2+-leak channels results in mitochondrial

Ca2+ overload, which can trigger the opening of the

mitochondrial permeability transition pore (mPTP), leading to

cell death (Ovize et al., 2010; Al-Mawla et al., 2020; Ramachandra

et al., 2020). During ischemia, the decrease in O2 uptake induces

cellular acidosis, stimulating Na+/H+ exchange (for review, see

Allen and Xiao, 2003). As a consequence, Na+ influx will be

counterbalanced by the activity of the Na+/Ca2+ exchanger,

further contributing to the [Ca2+]cyt increase during ischemia.

The initial Ca2+ release via ER Ca2+-leak channels is a crucial step

in the cascade of events responsible for Ca2+ dysregulation and

cell death. The dynamics and the amplitude of Ca2+ exchanged

between subcellular compartments and especially between the

ER and mitochondria are capital determinants of cell fate.

Nevertheless, the overall signaling pathways are still not fully

understood.

The role of the Sec61 complex in myocardial infarction has

been investigated in mice (Al-Mawla et al., 2020). Mice were

subjected to ischemia/reperfusion (I/R) protocols. In a

complementary way, in vitro experiments were conducted on

primary mouse cardiomyocytes in hypoxia/reperfusion (H/R)

protocols, mimicking I/R at the cellular level. In these cells, the

Sec61 complex was first shown to function as a Ca2+-leak

channel. In cardiomyocytes, it is well known that during

excitation-contraction coupling, type 2 RyRs are involved in

Ca2+ release via a Ca2+-induced Ca2+ release mechanism.

Interestingly, Sec61 complex activation mobilizes a RyR-

independent Ca2+ pool that affects neither contraction nor

RyR-dependent Ca2+ stores (Al-Mawla et al., 2020). These

data are compatible with a compartmentalization of the Ca2+

stores: a puromycin-sensitive Ca2+ pool where Sec61 complexes

are located (probably the ER) and a caffeine-sensitive Ca2+ pool

containing RyR channels, located in the SR. Pharmacological

pre-activation of the Sec61 complex with puromycin induces a

preventive ER Ca2+ release from RyR-independent stores that

consequently decreases the rate of Ca2+ increase in the cytosol as

well as mitochondrial Ca2+ overload and mPTP opening during

hypoxia. These data explain how puromycin, applied before H/R

(pre-conditioning), significantly reduces cell death. In vivo

cardioprotective experiments show that pharmacological

modulation of the Sec61 complex (pre-conditioning) protects

the mouse heart from I/R injury and reduces infarct size after I/R

(Al-Mawla et al., 2020).

In conclusion, the Sec61 complex and its Ca2+ leak form a

new paradigm in cardioprotection and in I/R injuries by

functionally uncoupling Ca2+-dependent contraction from

Ca2+-dependent cell fate.
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4.2.4 Pharmacological inhibition of the
Sec61 complex improves contractile recovery in
stunned myocardium

In the heart, ER stress and cytosolic Ca2+ overload also occur

in myocardial stunning (Bolli and Marbán, 1999; Mariángelo

et al., 2020). This contractile dysfunction occurs after brief

episodes of ischemia with negative consequences on

myocardium contraction despite the absence of cell death.

Recently, an interesting article highlighted the beneficial

effects of Sec61 complex inhibition (with emetine) in Ca2+

dysregulation and post-ischemic contractile dysfunction in

stunned myocardium (Mariángelo et al., 2022). First, the

authors show that inhibition of the Sec61 complex prior to

I/R, prevents stunning-induced ER stress in rat hearts and

improves post-ischemic mechanical recovery in stunned

myocardium. In addition, Sec61 complex blockage reduced

the I/R-induced increase in diastolic Ca2+ in mouse hearts.

Altogether, these data point out the capital role of Ca2+

leakage via the Sec61 complex in stunned myocardium. This

work reinforces the potential therapeutic value of

pharmacological modulation of Ca2+ leakage via the

Sec61 complex to cope with the deleterious consequences of

cardiac I/R.

5 Future perspectives and concluding
remarks

From the above it thus appears that the Sec61 complex plays

an important role in intracellular Ca2+ homeostasis beyond its

central role in protein translocation through the ER membrane.

This role in Ca2+ homeostasis is due to its functioning as a major

ER Ca2+-leak channel. An uncontrolled Ca2+ leak from the ER to

cytosol or mitochondria would be highly disruptive for normal

cell behavior, and the Sec61 complex Ca2+-leak function is

consequently controlled by various mechanisms. Channel

closure is physiologically achieved by BiP from the luminal

side (see Section 3.4.1) and by Ca2+/CaM from the cytosolic

side (see Section 3.4.2). These regulatory mechanisms allow the

Sec61 complex to modulate Ca2+ signaling, both in physiological

and in patho (physio)logical settings.

As mentioned above, the ER Ca2+ content results from the

dynamic equilibrium existing between Ca2+ release from the ER

and its reuptake by SERCA pumps. The activity of both the Ca2+-

release channels and SERCAs is finely regulated and depends to a

large degree on [Ca2+]cyt and [Ca2+]ER (Berridge et al., 2003;

Berridge, 2016), so that the ER Ca2+-store content is regulated in

a dynamic way. Inhibition of the SERCA pumps by specific

inhibitors (e.g., thapsigargin) incapacitates Ca2+ reuptake,

uncovering the (normally compensated) activity of the ER

Ca2+-leak channels. How does Ca2+ leakage via the

Sec61 complex now fit in ER Ca2+ homeostasis? To answer

this question, we can consider two scenarios.

In the first scenario, we assume in the cell a single, non-

compartmentalized Ca2+ pool. This is, for example, the case in the

human prostate cancer cell line LNCaP. In this cellular model, it

has been shown that the acute activation of the Sec61 complex by

puromycin induces partial emptying of a non-

compartmentalized Ca2+ store. The rate of Ca2+ release is

slower than that of IP3R- or RyR-mediated Ca2+ release (Van

Coppenolle et al., 2004). After the puromycin response, the

[Ca2+]ER stabilizes to a lower value than at resting state. This

value results from a new balance between Ca2+ leakage (via an

undefined number of Sec61 complexes kept open by puromycin

as well as by other types of ER Ca2+-leak channels that are

presumably present) and SERCA reuptake activity. One element

to consider is that during the acute action of puromycin (or

emetine), only the Sec61 complexes involved in translation are

sensitive to puromycin. Complexes that do not participate in

translation remain impermeable to Ca2+. During chronic

puromycin or emetine perfusion, their concentration should

therefore be chosen so that it does modulate the ER Ca2+

levels without any effect on translation (Hammadi et al.,

2013). Beyond that, the cytotoxic effects of these antibiotics

will take over. Thus, contrary to what we might initially

consider given the pore diameter of the Sec61 complex,

puromycin, at the concentration used, whether acute or

chronic, does not cause a total emptying of the ER Ca2+

stores. This does not exclude the possibility that other

modulatory mechanisms can also act on the Sec61 complex

during long-term perfusion. This point requires further

investigation. Subsequently, the residual ER Ca2+-store content

can be mobilized following IP3R or RyR activation, thereby

generating a new Ca2+ steady-state at an even lower value

(Van Coppenolle et al., 2004). At this point, it is important to

note that the activation of the Ca2+-leak channels, the IP3Rs, the

RyRs or the inhibition of SERCAs do not manage to completely

drain the ER. Complete release of ER Ca2+ will only be possible

with Ca2+ ionophores, e.g., ionomycin.

A second scenario takes into account the

compartmentalization of the Ca2+ store in an ER and an SR

Ca2+ pool, which can function in an either partially or totally

independent way. This case was discussed in primary mouse

cardiomyocytes (Al-Mawla et al., 2020) in Section 4.2.3. The

modes of action of puromycin and emetine will be similar to

those described in the previous paragraph. However, in such a

cellular model, there is a functional dichotomy between ER and

SR. Thus, the action of emetine, acting on the Sec61 complex of

the ER, would have no significant impact on the caffeine-

sensitive pool of the SR, expressing RyRs and thus controlling

excitation-contraction coupling.

ER stress has a complex relationship with intracellular Ca2+

handling (Kiviluoto et al., 2013; Carreras-Sureda et al., 2018;

Groenendyk et al., 2021). On the one hand, one of the

consequences of unalleviated ER stress is that it leads to

increased Ca2+ release from the ER, though on the other
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hand, ER Ca2+-store depletion is also a trigger for ER stress.

Independent of its origin, in ER stress conditions, BiP will detach

from its various physiological binding partners to help alleviate

ER stress by binding to unfolded or misfolded proteins as well as

to allow the UPR to start. Consequently, the regulation of ER

Ca2+ leakage through the Sec61 complex is abrogated as BiP

dissociates, and Ca2+ leakage increases. This increase in Ca2+

leakage is a factor that can lead to cell death. As we have

highlighted above (see Section 4.2), inhibition of Sec61 Ca2+

leakage can antagonize these effects and lead to cell survival

(Figure 2).

As Sec61 complex-mediated Ca2+ leakage appears

dysregulated in various pathological situations, we pose that

Sec61 forms a valid therapeutic target and that its modulation,

activation in cancer (see section 4.2.1) and inhibition in T2D (see

section 4.2.2) can lead to beneficial effects. Although more

complex, Sec61 complex modulation can also have a role in

cardioprotection (see section 4.2.3 and section 4.2.4).

From all these studies, what therapeutic conclusions, based on

pharmacological modulation of Ca2+ leakage via the Sec61 complex,

can be inferred? First, it is necessary to determine, on a case-by-case

basis, the concentration and time of action of molecules of interest

that do not significantly alter protein translation while acting on

Ca2+ permeability. As ER Ca2+ leakage modulates the cellular death/

survival balance, we must therefore consider the intended objective

of the treatments. In cancer, it will be to promote cell death, but in

other cases (e.g., during ischemic stress (heart, brain, kidney) or

gluco-lipotoxicity (T2D)), it will be to promote cell survival. In the

case of cancer, it would therefore likely be necessary to use Ca2+-

leakage inducers, which could be used in combination with existing

therapies to act preferentially on cancer cells rather than on healthy

cells. We assume that a small dose of these molecules could already

tip the scales towards cell death. In the case of T2D or stunned

myocardium, however, it is likely that longer-term treatments would

be more effective. Conversely, in the framework of cardiac I/R in a

mouse model, a puromycin bolus has already shown its efficacy,

both in vivo and in vitro.

Moreover, we anticipate that future research will uncover the

role of Sec61 complex-mediated Ca2+ leakage in additional

pathological situations. Since the basis of neurodegenerative

diseases lies in the accumulation of unfolded proteins and

Ca2+ dysregulation, neuroprotective strategies involving the

regulation of Ca2+-leak channels in general and the

Sec61 complex in particular will probably emerge. Obvious

possible candidates include neurodegenerative diseases such as

Parkinson’s disease, Alzheimer’s disease, Huntington’s disease,

and Creutzfeld-Jacob disease. The role of intracellular Ca2+ in

general and of ER Ca2+ in particular (Ureshino et al., 2019; da

Costa et al., 2020; Lim et al., 2021; Callens et al., 2021; Kovacs

et al., 2021; Guan et al., 2021; Huang et al., 2022; Ge et al., 2022;

Kim et al., 2022) as well as of ER stress and accumulation of

misfolded proteins (da Costa et al., 2020; Guan et al., 2021; Kim

et al., 2022; Ren et al., 2021; Yasmeen et al., 2022; Shacham et al.,

2019; Chakraborty et al., 2005) have indeed already been

demonstrated in several neurodegenerative diseases.

Expanding from T2D, we can also expect a role for

Sec61 complex-mediated Ca2+ leakage in other diseases in

which a relation with ER stress and Ca2+ signaling was

demonstrated, such as non-alcoholic fatty liver disease

(Lebeaupin et al., 2018; Chen et al., 2021).

A separate avenue for future research constitutes lysosomal

diseases. Indeed, the ER and lysosomes are in close connection

and at least small Ca2+ signals originating from IP3R can feed into

lysosomes (Atakpa et al., 2018). It is therefore possible that Ca2+ ions

leaking from the ER by the Sec61 complex can similarly impact

lysosomal Ca2+. This understanding could be relevant for various

lysosomal storage diseases, including Niemann-Pick type C disease

and Gaucher disease, in which ER and/or lysosomal Ca2+ appears

dysregulated (Lloyd-Evans and Platt, 2011; Liu and Lieberman, 2019).

Finally, until now, only a limited number of mutations in

Sec61 genes and in other components of the complex have been

described (see section 4.1). We therefore anticipate that future work

will uncover additional (human) mutations, which will shed new

light on the mechanism of action, regulation and physiological and

pathological roles of the Sec61 complex in Ca2+ homeostasis.

Taken together, these findings strengthen the evidence that

Sec61 complex-mediated Ca2+ leakage plays an important role in

intracellular Ca2+ homeostasis, is involved in major pathologies

when performing in an unregulated way, and thus forms a

promising therapeutic target. Further research on the topic

will therefore be of great importance to fully elucidate its

physiological as well as its patho (physio)logical role.
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