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Abstract: We compare three hydrological models of different complexities, GR4H (lumped, con-
tinuous), SMASH (distributed, continuous), and MARINE (distributed, event-based), for Mediter-
ranean flash flood modeling. The objective was to understand how differently they simulate the
catchment’s behavior, in terms of outlet discharge and internal dynamics, and how these can help
to improve the relevance of the models. The methodology involved global sensitivity analysis,
calibration/validation, and signature comparison at the event scale with good performances. For all
models, we found transfer parameters to be sensitive in the case of Gardon and production parame-
ters in the case of Ardeche. The non-conservative flow component of GR4H was found to be sensitive
and could benefit the distributed models. At the event scale, the process-based MARINE model
at finer resolution outperformed the two continuous hourly models at flood peak and its timing.
SMASH, followed by GR4H, performed better in the volume of water exported. Using the opera-
tional surface model SIM2 to benchmark the soil moisture simulated by the three models, MARINE
(initialized with SIM1) emerged as the most accurate. GR4H followed closely, while SMASH was
the least accurate. Flexible modeling and regionalization should be developed based on multi-source
signatures and worldwide physiographic databases.

Keywords: flash floods; hydrological modeling; SMASH; MARINE; GR4H; calibration; sensitivity
analysis; signatures; variational data assimilation

1. Introduction

Performing accurate flood forecasts in terms of the location, magnitude, and timing
of runoff and flooding remains a key challenge, especially for intense convective rainfall
events affecting Mediterranean areas. This need is particularly acute given the potential
intensification of the frequency of extreme precipitation in this region (e.g., [1–3]), in which
the Mediterranean climate is characterized by a significant variability, with warm and dry
summers and heavy rainfall events in autumn [4]. Nevertheless, given the complexity of
the hydro-meteorological processes involved and their heterogeneous and limited observability,
flash flood hydrological modeling remains a hard task, and internal fluxes are generally tinged
with large uncertainties. It is therefore important to study how and why hydrological models of
different complexities perform in simulating flash flood hydrological response.

The “resolution–complexity continuum” [5] has been investigated over the past five
decades by many studies with various modeling approaches, ranging from point-scale
processes numerically integrated at larger scales (e.g., catchment) to spatially lumped
representation of the system response [6]. Among the variety of existing hydrological
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models, and the hypotheses they rely on, their components generally describe water
storage and transfer (e.g., [7]) via various combinations and parameterizations of vertical
and lateral storage-flux operators.

We mention that all hydrological models are, to some degree, conceptual, and due to limita-
tions and uncertainties in their structure, parameters’ representativity, data availability, and even,
initial and boundary conditions, calibration/learning is generally required. Besides, whatever
their status and complexity, hydrological models are most often calibrated and validated using
observed discharge time series at the outlet of a catchment [8], i.e., integrative data containing
the mixed signature of all upstream processes. However, multiple model configurations and
associated parameters can lead to a similar value of discharge (equifinality problem [9,10]).
Whereas a model can be capable of reproducing the system response (e.g., discharge)
it has been trained for, it can fail in reproducing meaningful system internal dynamics
and patterns [6], thus providing the right answers for the wrong reasons [11]. Then arises
the problem of better calibrating/validating hydrological models, and in particular dis-
tributed models, which makes it possible to take into account the spatial variabilities
in the properties of the basins and atmospheric signals, to simulate spatialized hydrological
quantities, but confronted with the problem of over-parameterization and equifinality (see
the discussion in Grayson and Blöschl [12] and Jay-Allemand et al. [13] in a flash flood
context with the spatially distributed calibration of the SMASH model). For physical mod-
els, Grayson and Blöschl [12] commented that “mimicking real processes adds complexity,
which in turn expands the amount and type of data needed”.

A key factor for flash flood simulation, in addition to river discharge, is surface
runoff controlled by soil infiltration rates [14–16]. Reaching a coherent representation of
state fluxes’ variabilities both at the outlet and within catchments remains a challenge
in spatially distributed modeling, which could be moved ahead using the information from
hydrological signatures (see the review in [17] and the references in [18]) in combination
with sensitivity analysis [19]. Information selection and a distributed model constraint
can benefit from sensitivity analysis, as done with the MARINE model for flash flood
Mediterranean catchments by [20] or [21], guiding the design of regionalization methods
accounting for bedrock types, among other descriptors [22]. In the case of Mediterranean
flash floods, Eeckman et al. [23] recently assessed multi-hypothesis modeling of subsurface
flows [15] with MARINE using multi-source local and gridded soil saturation signatures.
Flash flood models’ comparisons and analysis are still needed, especially in terms of
performances in reproducing multi-scale signatures associated with state fluxes.

Previous studies, aiming at analyzing the differences between modeling approaches
of various complexities, through several model comparison experiments, tested the per-
formances in terms of stream flow modeling (see [24–27]), but also in terms of the internal
state, such as soil moisture (cf. [18,28,29] and the references therein). However, few cases
have focused on flash floods. Koch et al. [28] compared three distributed hydrological
models of different complexities in the way they simulated seasonal soil moisture patterns
of a small forested catchment. They concluded that including parameters related to soil
properties and topography improved the performance of the models in terms of the soil
moisture. Orth et al. [29] concluded that “added complexity does not necessarily lead
to improved performance of hydrological models, and that performance can vary greatly
depending on the considered hydrological variable (e.g., runoff vs. soil moisture) or hy-
drological conditions (floods vs. droughts).” Ludwig et al. [30] investigated the effect of
model complexity on the impact assessment of climate change and concluded that the de-
gree of complexity does have an impact on the predictive performance and that process
representation is invaluable.

Other studies include that of Lobligeois et al. [31] on several catchments in France
to check the effect of higher-resolution rainfall and conceptual model resolution on stream
flow simulation. They showed that a semi-distributed approach based on the GR4 model [32]
performed better than the lumped one for the Cévennes and Mediterranean regions, where
the rainfall spatial variability is very high. Grayson and Blöschl [12] showed that the spatio-
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temporal variability of soil moisture was reproduced by a distributed model accounting
for the effect of spatial variability in topography on lateral surface and subsurface flow,
among others. Boithias et al. [33] compared the performance of the distributed event-
based MARINE model and the lumped continuous SWAT model in flash flood modeling
for a French Mediterranean catchment and found that, while the MARINE model simu-
lated the peak and timing better, the SWAT model was better at simulating the recession
discharge and the exported water volume. Jay-Allemand [34] proposed a variational (as-
similation) algorithm and showed its potential for the spatially distributed calibration of
SMASH model parameters on a flash-flood-prone catchment.

The aim of this study is to better understand how models of varying complexity,
namely simple conceptual, lumped or distributed, and process-oriented distributed hy-
drological models, enable simulating flash-flood-prone catchment behavior: What are
the differences between the simulated dynamics, of both the outlet discharge and internal
states, and how can this understanding be used to improve the relevance of the models?
In order to investigate the trade-off between the model complexity necessary to represent
the catchment processes and the accuracy required to achieve reliable flood forecasts, three
structurally and very different hydrological models are compared: (1) lumped, concep-
tual, and continuous Génie Rural (GR4H) [32], (2) spatially distributed, conceptual, and
continuous Spatially-distributed Modeling and ASsimilation for Hydrology (SMASH) [13]
based on GR-like operators with a Green and Ampt infiltration model, and (3) spatially
distributed, process-oriented, and event-based Modélisation de l’Anticipation du Ruisselle-
ment et des Inondations pour des évéNements Extremes (MARINE) [20], initialized with
the simulated soil moisture patterns of the surface model SIM [35]. To address the above
research questions, a methodology with three levels of comparison is proposed on two
flash-flood-prone Mediterranean catchments:

• A global sensitivity analysis of simulated discharge at catchments’ outlets to model
the free parameters before their calibration.

• A performance analysis in terms of simulated discharges using a split sample calibration–
validation procedure with detailed signature analysis at the flood event scale.

• A comparison of simulated state variables describing the functioning of model opera-
tors responsible for runoff production from the input rainfall signal: such operators are
somehow similar for all (considered) hydrological models and describe the evolution of
catchment storage capacity, which is a critical quantity involved in flood flows’ genesis.

This paper is organized as follows: Section 2 details the materials and methods.
Results are analyzed and discussed in Section 3, and conclusions and perspectives are
presented in Section 4.

2. Materials and Methods

This section describes the hydrological models, the study area, the data, and the method-
ology designed to help answer the research questions formulated in the Introduction.
We start by presenting the three hydrological models along with their calibration meth-
ods. Then, we describe the two flash-flood-prone catchments in the South of France,
Ardeche at Vogue and Gardon at Anduze, as well as the data we used for the study. Finally,
we present the methodology, which consists of regional sensitivity analysis, calibration–
validation with a split sample procedure, and signature analysis on flood and soil moisture.

2.1. Hydrological Models

We consider three hydrological models of varying complexities; GR4H, SMASH, and
MARINE. The models are shown in Figure 1, and their description is given in Table 1.
Here, we present their general formulations, but the details of the modeling operators
are given in Appendix A. Note from Table 1 that the MARINE model is used with a finer
spatio-temporal resolution compared to SMASH. This has a limited impact on the results
since all models are forced with the same rainfall data (spatially averaged to the catchment
scale in the case of the lumped GR4H model).
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Table 1. Description of the three hydrological models.

- GR4H SMASH MARINE

Model type Continuous, lumped Continuous, distributed Event-based, distributed
Process representation Conceptual Conceptual “Physics-inspired”

Input data P(t) 1, PET(t) 2, basin size P(t), PET(t), drainage plan
P(t), initial soil moisture,

drainage plan, physiographic
maps

No. of calibrated parameters 4 5 × No. of classes for each
parameter 5

Spatial resolution (∆x) Catchment size 1 km2 0.5 km2

Simulation time step (∆t) 1 h 1 h 6 min
1 P(t): precipitation intensities. 2 PET(t): potential evapotranspiration.

Figure 1. Conceptualrepresentation of the three models : (left) GR4 model structure reprinted
from [36], (middle) SMASH model structure with 3 flow operators reprinted from [13], and (right)
MARINE model structure reprinted from [15].

We considered a 2D-spatial domain Ω (catchment) covered by a regular rectangular
grid of resolution ∆x (in the case of the distributed models). The unique constraint applied
to this lattice is that a unique point has the highest drainage area, that is the catchment
outlet, given the flow directions. The time is denoted t > 0. The spatio-temporal rainfall
and evaporation fields are, respectively, P and E, and stepwise approximations over time
steps ∆t are assumed.

2.1.1. GR4H Model

The GR4H model [32] is a lumped continuous model, i.e., taking as the input the spatial
averages over catchment domain Ω of the rainfall P and evaporation E fields at each
modeling time step (hourly), and based on the GR4J model formulation of [37].

The partition of the input neutralized rain Pn (cf. Appendix A.1.1) is performed
between an infiltration part Ps filling the production reservoir of maximum capacity x1 and
an effective rainfall Pr = Pn − Ps flowing into the transfer components. The production
function is the classical GR production function [38], described in Equation (A1). The
splitting of the effective rainfall takes into account quick and slow flow components.
Ten percent of the effective rainfall Pr resulting from the excess of the production and
the percolation is routed linearly using a unit hydrograph UH2 of time base 2x4, and
the remaining 90% is initially routed using UH1 of time base x4, then using a nonlinear
routing store of reference capacity x3. The ordinates of the UH are derived from their
respective S hydrographs, which also are functions of x4. A groundwater flow exchange
term F from the reservoir, which depends on both the actual level in the routing store R,
the reference level of the nonlinear routing store x3, and a water exchange coefficient x2, is
taken into account in both flow components. Finally, the total stream flow Q is obtained
as the sum of the resulting flows from the routing reservoir Qr and the output of UH2 Qd.
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This model has been used in many studies such as flash flood modeling in four tropical
mountainous watersheds in New Caledonia [39], for testing the transferability of the GR4H
model parameters for extreme events on the Mediterranean island of Cyprus [40], or for the
comparison of two satellite-estimated precipitation products in hydrological simulations
in Rimac Basin, Peru [41], among many others.

2.1.2. SMASH Model

Spatially-distributed Modeling and ASsimilation for Hydrology (SMASH) is a compu-
tational software framework dedicated to spatially distributed continuous hydrological
modeling including variational data assimilation [13]. We used the 3-component model
(production, transfer, routing) from [13]. For a given pixel i of coordinates x ∈ Ω, two
reservoirs P and T , of capacities cp and ctr, are considered for simulating, respectively,
the production of runoff and its transfer within a cell. Their stages are, respectively,
denoted hp and htr. The runoff amount is then routed between pixels. The partition
of the input-neutralized rain Pn (Appendix A.1.1) between an infiltration part Ps filling
the production reservoir and an effective rainfall Pr = Pn − Ps filling the transfer reservoir
is performed with a production operator. In this study, a Green and Ampt infiltration
model (Equation (A3)) enabling simulating ponding when the rainfall intensity exceeds
the infiltration rate is implemented and used in the model. The production reservoir is
then emptied from the actual evaporation Ep calculated with a “GR” evaporation operator
(Equation (A2)).

The effective rainfall after production is transferred within a pixel through a conceptual
reservoir of maximum capacity ctr (Equation (A4)), while routing is performed with a linear
unit Gaussian hydrograph, whose delay τi from node i − 1 to node i is controlled by
the routing velocity v and the distance di between the cells. The model formulations are
described in Appendix A.1.

2.1.3. MARINE Model

MARINE is an event-based, physically based, parsimonious, and fully distributed
model designed for flash flood prediction based on the supposedly main hydrological
processes involved in Mediterranean catchments. These processes include infiltration,
subsurface runoff, overland flow, and flow in the drainage network. On the contrary,
evaporation and deep percolation are considered negligible at the event scale, and therefore
not represented. It was borne out of the need to address the peculiarities identified by
Roux et al. [20] MARINE being an event-based model, the local infiltration function used is
a typical event-based model, accounting for the infiltration at the local scale and described
by the Green and Ampt model (Equation (A3)). The surface runoff is divided into overland
flow and drainage flow; in both cases, the kinematic wave model was used assuming
a 1-dimensional kinematic wave, which is approximated with the Manning friction law,
while the subsurface flow is based on Darcy’s law. The model formulations are given
in Appendix A.1.

The input data were sourced from the information of surface topology, soil survey,
vegetation, and land use, and the model was initialized using the soil moisture outputs of
the SIM model.

The model has been used in several studies (e.g., [15,21–23,33,42–44]).
The spatial resolution was set to ∆x = 500 m2, and the fixed simulation time step was set

to ∆t = 6 min (Courant–Friedrichs—Lewy (CFL) check and automatic temporal sub-iterations
if needed for kinematic wave resolution), i.e., finer than the rainfall space–time resolution.

2.2. Calibration Procedure

The objective of the calibration was to search for an optimal (in a sense to be defined)
set of parameters that reduces the discrepancy between simulated and observed discharges
at a catchment outlet. The calibration procedure was integrated inside each model. Note that
these methods differ, but we supposed them to be specifically designed for each model and
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available to the end-user. In fact, developing a calibration procedure is a delicate task, and thus,
the bias introduced by these calibration methods will be considered as a model’s weaknesses.

The objective function used for calibration is based on the classical NSE efficiency (given
in Section 2.4.4), which is adequate for the present flood modeling context. For all models,
considering J = 1− NSE(Qs, Qo), a quadratic discrepancy measure between simulated and
observed discharge, Qs and Qo, the parameter calibration inverse problem reads:

θ∗ = arg min
θ

J(θ)

where the cost function J depends on the sought model parameter vector θ through the hy-
drological model response—i.e., the simulated discharge Qs = M(I, h, θ) with I the at-
mospheric inputs of a hydrological modelM whose internal states are h. For each model,
bound constraints were applied on the sought parameters using the same ranges as in the
sensitivity analysis (cf. Section 2.4).

2.2.1. GR4H

For the GR4H model, four parameters, described in Section 2.1.1, were optimized
(see Table 2). They are the production storage capacity x1, groundwater exchange coefficient
x2, max. capacity of the routing store x3, and time base of the unit hydrograph x4. The
calibration was performed using the Michel calibration algorithm [37,45], which starts with
random starting points in the parameter space, and then, the optimum search is performed
with a simple descent method.

Table 2. Description of the GR4H model parameters and range used for sensitivity analysis.

Parameter Description Unit Range

x1 production storage capacity mm 1–1500
x2 groundwater exchange coefficient mm −10–10
x3 max. capacity of the routing store mm 0–500
x4 time base of the unit hydrograph UH1 hours 0–10

2.2.2. SMASH

In the case of this model, we used the variational algorithm presented in [13] for the cal-
ibration of the parameters. The algorithm enables the calibration of spatially distributed
model parameters (high-dimensional optimization problems), under various constraints.
It starts from a spatially uniform prior guess on the sought parameters. This prior guess is
obtained with a simple global calibration algorithm, as in [13]. The minimization of the cost
function is then performed using the Limited memory Broyden–Fletcher–Goldfarb–Shanno
Bound-constrained (LBFGS-B) descent algorithm [46], making use of the gradient of the cost
function, which is obtained from the adjoint model thanks to the Tapenade automatic dif-
ferentiation engine [47].

However, using only downstream integrative discharge for calibration leads to well-
known equifinality issues in spatially distributed hydrological modeling faced with overpa-
rameterization. We, therefore, reduced the control space by grouping the sought parameters
into classes through the application of spatial masks, which we derived from prior physio-
graphic information (following [34]). For example, in the case of Gardon, have a size of
543 km2, hence 543 pixels of 1 km2, instead of calibrating (4× 543 = 2172 parameters), we
applied a physiographic mask for each parameter. If the mask for the routing parameter v
has only two classes (one for the drainage network and another for the hillslope), only two
v parameters will be optimized (instead of 543 pixel values).

A key task is to find relevant spatial information to define the mask for the parame-
ters of a model that is conceptual (SMASH). In Jay-Allemand [34], different masks were
proposed and tested. However, for the present intercomparison study, we used the same
physiographic maps that we used for the MARINE model. They are summarized in Table 3.
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Table 3. Prior information used to define parameter masks for SMASH parameters. The soil classes
are defined from the soil texture using the Rawls and Brakensiek relations [48], from which ksand S f
are obtained. Only the first four parameters (cp, ctr, v, and ks) are calibrated as a result of the sensitiv-
ity analysis.

Parameter Description Prior Information

cp Production reservoir capacity Map of soil thickness
ctr Capacity of the transfer reservoir Map of slope
v Routing velocity Flow accumulation maps
ks Saturated hydraulic conductivity Map of the soil hydraulic conductivity from the texture map
S f Soil suction Map of the suction from the texture map

At the end, four free parameters cp, ctr, v, and ks times their respective number
of classes defined by their masks (see Table 4) need to be calibrated. Suction S f and
porosity Poros were not calibrated based on the previous sensitivity analysis of the Green
and Ampt model in a similar context [20,22]. While we constrained S f using prior soil
information (Table 3), we kept Poros simply at a value of 1 (see Appendix A.1.2). In the rest
of the article, we call this calibration method from [34] “masked” calibration.

Table 4. Description of SMASH parameters and ranges used for calibration and sensitivity analysis
of the study catchments.

Parameter Description Range
No. of Classes

Ardeche Gardon

cp

Capacity of
the production
reservoir (mm)

1–2000 4 12

ks

Saturated
hydraulic

conductivity
(mm/h)

0.1–20 12 12

ctr

Capacity of
the transfer

reservoir (mm)
1–1000 5 5

v Routing velocity
(m/s) 1/6–5 2 2

2.2.3. MARINE

This model requires only five parameters to be calibrated for the whole catchment; see
Table 5. The first three are the correction coefficients applied to the distributed maps of sat-
urated hydraulic conductivity Ck, the soil thickness Cz, and the soil lateral transmissivity
Ckss. The last two are Manning–Strickler’s friction coefficient for the river bed KD1 and
for the flood plain KD2. These correction coefficients were applied during the calibration
process such that the absolute values of the parameter in question were modified while
the spatial pattern as sourced was preserved.
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Table 5. Description of MARINE parameters and ranges used for the sensitivity analysis.

Parameter Description Gardon

Ck
Correction coefficient of

the hydraulic conductivities 0.1–10

Cz
Correction coefficient of

the soil thicknesses 0.1–10

Ckss
Correction coefficient of

the soil lateral transmissivities 100–10,000

KD1
Strickler’s friction coefficient

of the river bed 1–30

KD2
Strickler’s friction coefficient

of the flood plain 1–20

The optimization algorithm in the case of this model is based on a gradient-based descent
algorithm, Broyden–Fletcher–Goldfarb–Shanno (BFGS), from multiple starting points [20].
The gradient was evaluated by finite differences.

2.3. Study Area and Data

In this section, we begin by presenting the two study catchments, then we present
the various data we used, as well as their sources.

2.3.1. Catchments

The two study catchments (Gardon at Anduze and Ardeche at Vogue) are located
in the Cevennes region (see Figure 2). They are prone to flash floods and are influenced by
a Mediterranean climate. There is strong seasonality of rainfall runoff in both catchments.
Summer is the driest season with the flow at the lowest level. Autumn receives the highest
rainfall and the seasonal flow is the largest, especially in the month of November. Much
higher rainfall and runoff occur in the two other seasons of winter and spring compared
to summer. The two catchments can be considered as undisturbed without significant
anthropogenic impact on their hydrological responses. Their description is given in Table 6.

Table 6. Description of the study catchments.

- Ardeche Gardon

Area (km2) 622 540
Climate Mediterranean Mediterranean

Geology Metamorphic rocks, sedimentary Fractured metamorphic, schist,
sedimentary plains

Soil thickness (cm) 28 28
Mean slope (%) 18 20

Mean saturated hydraulic conductivity
(mm/h) 8.6 5

Gardon, with its outlet at Anduze, drains an area of 540 km2. It is well gauged and has
a Mediterranean climate. Autumn is characterized by the occurrence of flash floods and
the highest rainfall intensities, while summer is mostly hot and dry (see Roux et al. [20]).
The catchment geology is mainly dominated by a fractured metamorphic formation, clas-
sically the schistose; however, there are some karstic zones around the junction of Saint
Jean and Mialet [42]. It has a highly marked topography consisting of high mountain
peaks, narrow valleys, and steep hill slopes. The vegetation is dense and composed mainly
of beech, chestnut trees, holm oaks, and conifers [49]. The elevation varies from 129 m
at Anduze to 1202 m at the highest point. The average slope of the basin is about 20%, but
can be up to 50% at the upstream. The soil (made of silty clay loam and sandy loam) has
a mean thickness of around 28 cm and a mean saturated hydraulic conductivity of 5 mm/h.
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Figure 2. Map of the two study catchments, both located in the South of France. Top left: map of
France showing the location of the two catchments in red. Top right: Ardeche at Vogue; bottom
left: Gardon at Anduze. The areas of both catchments are shown. On both catchments, the position
of the outlets is shown by the red circle. The legend represents the elevation in m, with a spatial
resolution of 500 m2, with respect to mean sea level.

The Ardeche catchment at Vogue drains an area of 622 km2 and is exposed to intense
precipitation events due to the convection of humid sea air masses over the Cevennes
mountain slopes [23]. It presents a mixed geology, with metamorphic rocks and schist
on the upper part of the catchment and sedimentary plains downstream. The land cover
is mainly mixed forest, natural grasslands, and shrubs. The elevation varies from 1530 m
at the upstream to 150 m downstream. The depth of the soil in the catchment ranges from
as low as 5 cm to as deep as 50 cm with an average depth of 28 cm. The soil texture is mainly
sandy loam with silt deposits downstream. The mean saturated hydrological conductivity
is around 8.6 mm/h.

2.3.2. Data

This section describes the various data used in the study. For a fair assessment
of the models, the same input of rainfall and, for the specific case of the continuous models
(SMASH and GR4H), potential evapotranspiration (PET), were used:

1. Discharge: Observed discharges at gauged outlets of Vogue (Ardeche) and Anduze
(Gardon) were used for model calibration and validation. Discharge series were ex-
tracted from the national banque hydro (http://www.hydro.eaufrance.fr/, last access:
10 March 2021).

2. Rainfall: We used rainfall data from the radar observation reanalysis ANTILOPE
J+1, which merges radar and in situ gauge observations. These data are provided by
Météo-France. Rainfall averages were used as the input for the 3 models depending
on the grid resolution, in this case, a grid of 1 km2 for the distributed models (SMASH
and MARINE) and a spatial average at the scale of the catchment size in the case
of the lumped model (GR4H).

3. Potential evapotranspiration (PET): The interannual temperature data were provided
by the SAFRAN reanalysis and then used to calculate the potential evapotranspiration
using the Oudin formula [50]. PET is at the same resolution as the rainfall data. These
data are specific to the continuous models (GR4H and SMASH).

4. Physiographic data: The soil thickness and texture maps were derived from the sur-
veys provided by the INRA and BRGM. Soil classes and, consequently, the suc-
tion, porosity, and saturated conductivity were derived from the soil texture using

http://www.hydro.eaufrance.fr/
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the Rawls and Brakensiek relations [48]. The vegetation and land use from the 2000
Corine Land Cover provided by the Service de l’Observation et des Statistiques (SOeS)
of the French Ministry of Environment (www.ifen.fr) were used to derive the surface
friction. These are exactly the same data used and sourced from Roux et al. [20]. The
resulting maps were used as the inputs for the MARINE model to provide physical
operator parameter values, while they were used as mask inputs for the SMASH
model in the calibration by classes (masked calibration) (refer to Table 3).

5. Soil moisture data: SAFRAN-ISBA-MODCOU (SIM) [35] is an operational model-
ing chain that simulates both the flow of water and energy at the surface, as well
as the flow of rivers and major aquifers. It is forced by the atmospheric reanalysis
from SAFRAN and uses ISBA to simulate the exchange of water and energy between
the soil and atmosphere and MODCOU as the hydrological model.
We used two versions of the SIM model: SIM1 and SIM2. The first version, SIM1, uses
the force-restore version of ISBA, ISBA-3L [51,52], in which the soil is discretized into
three layers corresponding to the surface, root, and deep zone. SIM2, on the other
hand, uses the diffusive version of ISBA, ISBA-DIF [53], with a vertical soil column
discretization into a maximum of 14 layers. In the case of this study, the humidity
of the root zone was considered as the sum of the humidities of the layers between
10 cm and 30 cm deep. The two outputs (SIM1 and SIM2) available for this study are
at a daily time step (06 UTC) and a spatial resolution of a 8 km square grid.
We used SIM1 simply for the initialization of the MARINE model, as was done by
several authors (see [15,21,23,43]), while we used SIM2 as the benchmark to compare
the simulated soil moisture outputs of the three study models: SMASH, GR4H, and
the MARINE model.

2.4. Methodology

This section presents the numerical experiments we performed to answer the research
questions that we raised. The first experiment was to investigate the global sensitivity
of the three models. The second experiment was aimed at the calibration and validation
of the models using a split-sample procedure. The last experiment compares the model
performance and signatures at the event scale. We also briefly present the evaluation
criteria we used to compare the models.

2.4.1. Regionalized Sensitivity Analysis

We used regionalized sensitivity analysis (RSA) to conduct the global sensitivity
analysis of the parameters of the models. For the details of this method, see [54] and
the references therein. The idea is to compare the sensitivity of the parameters responsible
for the vertical and lateral water partitioning within the compartments of each model
studied.

We performed 10,000 Monte Carlo simulation runs, while sampling the parame-
ters assuming a uniform distribution. We used the threshold of 0.7 NSE (Equation (1))
for the classification of the runs into the behavioral (runs with NSE ≥ 0.7) and non-
behavioral (NSE < 0.7) groups. As noted by Beven [10], the KS test can be very sensitive
to small differences and will thus report significant differences between the two classes.
Hence, the magnitude of the KS statistics D, representing the maximum difference between
the cumulative distribution functions (CDFs) of the two classes, was used to rank the parameters
based on their sensitivity.

First, in the case of the GR4H model, which is lumped, we investigated the four
parameters, x1, x2, x3, and x4, within the range given in Table 2.

Secondly, in the case of the SMASH model, which is a fully distributed model at a spa-
tial grid of 1 km2, classical reduction of the high-dimensional control space was adopted.
The parameters of the model were taken as being spatially uniform, and therefore, the RSA
was performed assuming one parameter set at a time for the whole catchment considered.
The four parameters were: cp, ctr, v, and ks.
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Lastly, the sensitivity of the five MARINE model parameters (see Table 5) was in-
vestigated. Being an event-based model, we conducted the RSA individually on each of
the selected events (Table 7). A similar approach was followed by [20,33]. Unlike the case
of [33] and the references reported therein, where the result of the sensitivity analysis was
used to choose calibration/validation events, our methodology here is basically to inves-
tigate the parameter sensitivity. The method for the choice of the calibration/validation
events is described in Section 2.4.2.

Table 7. Selected flood events for the comparison of the model performance at the event scale.

Gardon Season Duration (Days) Qpeak
obs (m3/s) Return Period (Years) Vol (×106m3)

Ev_31_10_2008 Autumn 4 1011 6.7 57.1
Ev_02_11_2011 Autumn 6 1026 7.0 127.4
Ev_17_09_2014 Autumn 5 1012 6.7 44.4
Ev_09_10_2014 Autumn 7 1146 9.5 78.6
Ev_11_09_2015 Autumn 2 980 6.2 29.6
Ev_27_10_2015 Autumn 2 1356 17 33.4
Ev_22_11_2018 Autumn 2 655 2.7 38.4
Ev_08_11_2018 Autumn 2 809 4.0 27.6

Ardeche Season Duration (Days) Qpeak
obs (m3/s) Return Period (Years) Vol (×106m3)

Ev_2008_10_19 Autumn 5 954 4.4 68.8
Ev_2010_05_11 Spring 2 420 2.1 18.3
Ev_2010_09_06 Autumn 2 1272 12.7 29.8
Ev_2011_11_02 Autumn 6 867 3.4 157.1
Ev_2014_09_18 Autumn 3 1524 35 77.7
Ev_2014_11_14 Autumn 2 1194 9.5 61.5
Ev_2019_04_23 Spring 6 514 2.2 56.7

2.4.2. Calibration and Validation

We calibrated each of the three hydrological models, GR4H, SMASH, and MARINE,
with their dedicated methods presented in Section 2.1. The methods enabled adequate
calibrations for each model, as will be presented later in Section 3.2.

In order to perform fair comparisons, considering a comparable amount of hydrologi-
cal information learned by the models in the calibration phase, we performed the calibration
and validation using the split-sample test procedure [55], which involved dividing the data
into two subperiods. We considered a time series of 13 years at an hourly time step, and we
divided it into two subperiods of 7 years each for the calibration and validation. Period 1
is defined from 1 August 2006 to 1 August 2013, while Period 2 is defined from 1 August
2012 to 1 August 2019. Calibration was performed first using Period 1 and then validation
on Period 2; the reverse was then performed, in which Period 2 was taken as the calibration
period, while Period 1 was taken for validation.

For each calibration period, we used 1 year as the warm up period to initialize the con-
tinuous models, which is adequate for hydrological models, as reported by Kim et al. [56].
In the case of MARINE, we classified the events (see Table 7) into the two periods
(similar to the continuous models) and conducted a multi-event calibration and cross-
validation. This multi-event calibration of MARINE was proposed in Garambois et al. [21].
For all the calibrations, we used the NSE as the objective function.

2.4.3. Comparison at the Event Scale

We designed this experiment to compare the three models for flash flood modeling;
hence, we selected specific flood events of a return period higher than 2 years within
the period of 13 years (2006-2019) for both catchments. These events, described in Table 7,
provide distinct characteristics in terms of the flood peak magnitudes, the volume of
water exported, the number of peaks, the gradients of the rising and falling limbs, as well
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as the spatial and temporal patterns of the underlying precipitation events. Return periods
were obtained by fitting the generalized extreme value (GEV) to the annual maxima.

First, we assessed the performance of reproducing the outlet discharge using the NSE
criterion, the percentage peak difference (PPD), the peak delay (PD), as well as the synchronous
percentage of the peak discharge (SPPD). These criteria are introduced in Section 2.4.4.

Secondly, the “soil moisture” simulated by the models was compared with the outputs
of the SIM2 model. We started by taking the spatial average at each time step, since
the models are at different spatial resolutions (SIM2 outputs at 8 km2, SMASH and MARINE
at 1 and 0.5 km2, respectively, and lumped GR4H at the scale of the catchment size). We
then compared these spatial averages at each time step with those of the SIM2 outputs,
which in our case was the reference benchmark.

2.4.4. Performance Evaluation Criteria

In the course of all the calibration and validation of the hydrological models used,
the objective function used for the calibration is the widely used Nash and Sutcliffe effi-
ciency criterion, which puts more weights on the high flows than on the low flows and is
adapted to our objective of assessing the ability of the model to simulate flash floods.

NSE = 1−
∑T

i=1

(
Qs(i) −Qo(i)

)2

∑T
i=1

(
Qo(i) − Q̄o

)2 (1)

where Q̄o is the mean of observed discharges and Qs(i) and Qo(i) are simulated and ob-
served discharges at time step i, respectively.

For the case of inter-model performance evaluation between SMASH, GR4H, and
MARINE at the event scale, we used other criteria. These included:

• The Kling–Gupta efficiency (KGE) [57], which provides an alternative to the NSE and
gives balance to the correlation, flow variability, and water balance.

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (α− 1)2 (2)

r = cov(Qo ,Qs)
σ2

o σ2
s

, the Pearson correlation coefficient, evaluates the error in the shape and
timing between observed (Qo) and simulated (Qs) flows; cov is the co-variance between the
observation and simulation; σ is the standard deviation; β = µs

µo
evaluates the bias between

the observed and simulated flows, where µ is the mean. α = σs
σo

, the ratio between the
simulated and observed standard deviations, evaluates the flow variability error.

• Percentage peak difference: This criterion is given as PPD =
Qp;sim
Qp;obs

and is used mainly
to judge the percentage of the observed peak predicted by the model; the duo must
not coincide with the time of occurrence.

• Peak delay (PD): This is given as tp;sim − tp;obs and simply computes the difference
in the time or delay between the simulated and observed peak in hours.

• A more rigorous criterion in terms of safety is the synchronous percentage of the peak
discharge (SPPD), which accounts for the ratio of the estimated discharge and observed
discharge at the time of the observed peak discharge. It was used first by Artigue et al. [58]
and, then, subsequently by Jay-Allemand et al. [13], and it can be written as Qsim

Qp;obs

Finally, we also used as a metric a comparison of the observed and simulated runoff
coefficient (CR) at each event.
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3. Results and Discussion

The results obtained are presented here, along side relevant discussions. We start
by summarizing the RSA results, followed by the calibration and validation efficiencies.
Then, we present and discuss the event signatures for each model and, finally, the results
of the comparison of the simulated soil moisture.

3.1. Sensitivity Analysis Summary

Tables 8 and 9 give the parameter sensitivity ranking of the three models accord-
ing to the Kolmogorov–Smirnov test statistics D (see Appendix B for detailed results).
In the case of Gardon, the parameters of the model that affect the transfer are sensitive
(ctr for SMASH; x3 for GR4H; Ckss for MARINE). Ardeche, on the other hand, has pa-
rameters that affect the production components of the model as generally sensitive (cp
for SMASH; x1 for GR4H; Ck for MARINE). Note that x2, the non-conservative exchange
parameter of GR4H, was found as the most sensitive for both catchments.

Table 8. Sensitivity ranks of the SMASH model parameters (left) and GR4 (right) computed accord-
ing to the Kolmogorov–Smirnov test statistics, D, accounting for the maximum distance between
the behavioral and non-behavioral distributions (1 is the most sensitive; 4 is the least sensitive).
In the case of SMASH, the results obtained through dimension reduction using spatially uniform and
masked parameters are shown.

Catchment Mode cp ctr v ks x1 x2 x3 x4

Gardon Uniform 3 1 2 4 3 1 2 4
Ardeche Uniform 2 3 1 4 2 1 3 4

Table 9. Sensitivity ranks of the MARINE model parameters computed according to the Kolmogorov–
Smirnov test statistics, D, accounting for the maximum distance between the behavioral and non-
behavioral distributions (1 is the most sensitive; 5 is the least sensitive).

Gardon CZ Ck Ckss KD1 KD2 Ardeche CZ Ck Ckss KD1 KD2

Ev_10_11_2008 2 3 1 5 4 Ev_2008_10_19 3 1 2 5 4
Ev_01_11_2011 1 3 2 4 5 Ev_2010_05_11 2 1 5 3 4
Ev_16_09_2014 2 3 1 5 4 Ev_2010_09_06 2 1 4 5 3
Ev_09_10_2014 4 3 1 2 5 Ev_2011_11_02 1 4 4 3 2
Ev_10_09_2015 2 4 1 3 5 Ev_2014_09_18 2 1 4 3 5
Ev_27_10_2015 2 3 1 5 4 Ev_2014_11_14 4 2 5 3 1
Ev_22_11_2018 2 4 1 3 5 Ev_2019_04_23 3 1 2 4 5
Ev_08_11_2018 2 3 1 5 4

Average 2.1 3.3 1.1 4.0 4.5 Average 2.4 1.6 3.7 3.7 3.4

3.2. Calibration and Validation
3.2.1. GR4H

In the case of the calibration of the GR4H model on the two catchments, the param-
eters and efficiencies obtained both in calibration and validation are shown in Table 10.
All calibration and validation efficiencies were higher than 0.7. In the case of Ardeche, there
was stability/robustness in the calibration and validation efficiencies. The groundwater
exchange coefficient x2 was positive in both calibration periods for Ardeche, while it was
negative in the case of Gardon. According to this model, positive values show water import,
while positive values indicate water export.
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Table 10. GR4H parameter sets and calibration and validation NSE obtained for the catchments using
the split test.

Catchment Period x1 x2 x3 x4 NSE Calibration NSE Validation

Ardeche P1 310.6 2.12 221.6 4.87 0.87 0.85
P2 216.2 1.37 311.6 3.89 0.90 0.87

Gardon P1 478.5 −3.46 139.9 5.0 0.91 0.84
P2 230.4 −6.49 136.1 4.33 0.78 0.73

3.2.2. SMASH

The result of the mask calibration of the SMASH model parameters is given in Table 11
for the two study catchments.

Table 11. SMASH parameter sets and calibration (masked) and validation NSE obtained using the
split-sample test for the catchments using the split test. For each parameter, the mean and standard
deviations of its map are shown.

Catchment Period cp ctr v ks
NSE

Calibration
NSE

Validation

Ardeche P1 164.5 ± 127 359.0 ± 88 4.64 ± 0.03 3.93 ± 0.5 0.87 0.84
P2 203.0 ± 85 365.4 ± 143 4.65 ± 0.03 1.33 ± 0.3 0.91 0.88

Gardon P1 1514.3 ± 112 332.0 ± 119 4.95 ± 0.02 1.11 ± 1.5 0.86 0.79
P2 1193.6 ± 247 262.9 ± 121 4.89 ± 0.03 1.05 ± 1.1 0.78 0.74

The class-by-class (mask) calibration efficiencies for the two periods varied for the two
catchments, but both were more than 0.7. The resulting temporal validation efficiencies
were also high. Ardeche presented better calibration/validation efficiencies than the Gar-
don catchment. The maps resulting from the calibration are given in Figure 3 for both
periods (P1 and P2), and their summaries are given in Table 11. The results for Gardon
(left) show that the calibrated reservoirs’ capacities cp and ctr changed in magnitude with
the calibration period (both were smaller in Period 2), whereas the routing parameter
v remained fairly stable (as found in Jay-Allemand et al. [13]). The converse was true
in the case of Ardeche for cp and ctr. The ks parameter, however, decreased in Period 2
for both catchments. Jay-Allemand et al. [13] observed the same difference while studying
the Gardon catchment under a fully distributed calibration and concluded that the dif-
ferences were a result of different rainfall patterns between the two periods, rather than
from the calibration algorithm.

3.2.3. MARINE

The resulting global efficiencies are presented in Table 12 for both catchments.
Event-specific NSE (not shown here) had an average of 0.87 and 0.78 for the Gardon
events of Period 1 and Period 2, respectively.

The Period 1 and Period 2 events of the Gardon catchment resulted in very similar
values, except the Cz parameter, which was almost twice in Period 1 compared to Period 2.
For Ardeche, higher calibration efficiencies were obtained compared to Gardon, although
the parameters between the two periods were dissimilar.

Validation efficiencies in terms of Nash are presented in Table 13 for both catchments.
The efficiencies are event dependent. For Gardon, an NSE as high as 0.91 was obtained
and as low as 0.09, with the average of 0.58 for the eight events. The two November 2018
events presenting the least efficiencies had the least observed peak magnitudes (655 and
809) compared to the max of 1356 m3/s observed with the October 2015 event. It is thus
possible that the soil thickness coefficient used (8.0) is too large for these events. In the case
of Ardeche, the NSE in the validation is also event dependent; the min/max obtained was
0.47/0.87 with an average of 0.77. Finally, the temporal performance decrease in validation
was smaller in Ardeche (from 0.96 to 0.77 on average) compared to Gardon (0.85 to 0.58).
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Figure 3. Maps of the SMASH-calibrated parameters for Gardon (left) and Ardeche (right).

Table 12. Catchment parameter sets and NSE for multiple event calibration based on the split test
using MARINE.

Period KD1 KD2 CZ Ck CKSS Global Nash No. of Events

Gardon P1 19.42 9.45 8.0 4.99 1497 0.88 2
P2 19.44 9.43 4.83 4.99 1500 0.82 6

Ardeche P1 27.39 7.73 4.91 1.02 2638 0.97 4
P2 18.43 14.57 2.23 4.36 1719 0.95 3

Table 13. NSE event performance criterion in the validation of the outlet discharge for the study
catchments. For each catchment, the events marked with (*) are Period 1 events, while the others are
Period 2 events.

Gardon Ardeche

Event MARINE SMASH GR4H Event MARINE SMASH GR4H

Ev_10_11_2008 * 0.82 0.90 0.66 Ev_2008_10_19 * 0.79 0.92 0.74
Ev_01_11_2011 * 0.66 0.91 0.61 Ev_2010_05_11 * 0.47 0.68 0.16
Ev_16_09_2014 0.50 0.66 0.07 Ev_2010_09_06 * 0.73 0.66 0.28
Ev_09_10_2014 0.69 0.72 0.68 Ev_2011_11_02 * 0.84 0.94 0.72
Ev_10_09_2015 0.91 0.60 0.16 Ev_2014_09_18 0.86 0.38 0.71
Ev_27_10_2015 0.79 0.58 0.67 Ev_2014_11_14 0.87 0.80 0.55
Ev_22_11_2018 0.09 0.81 0.82 Ev_2019_04_23 0.85 0.93 0.89
Ev_08_11_2018 0.19 0.91 0.93

Average 0.58 0.76 0.58 Average 0.77 0.76 0.58

3.3. Comparison at the Event Scale

In this section, the performance of the models at the event scale is compared. This
was performed through the signatures of the simulated discharge and the simulated soil
moisture of the 13 events presented in Table 7. While the simulated hydrographs were
compared with the observed hydrographs through the computed metrics, the soil moisture
was compared to the outputs of the SIM2 model.
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3.3.1. Discharge Simulation

Figure 4 compares the simulated discharges with the three models against the observed
discharges for Gardon (left: A–H) and Ardeche (right: A–G). The performance of all
the models seems to be fair, and the superiority of the models depends on the event. In
order to judge this objectively, different metrics were computed and are shown for both
catchments in Figures 5 and 6. The performance of the models is therefore judged and
discussed according to these metrics in the following paragraphs.

Figure 4. Flood events, measured at the outlets, simulated with MARINE, SMASH, and GR4H
for Gardon (left, graphics A, B, C, D, E, F, G and H) and Ardeche (right, graphics A, B, C, D, E, F and
G). The grey bar on both plots represents the hourly rainfall intensities.

Figure 5. Integrated metrics of the simulated hydrographs in the validation, of the three models
for Gardon (left) and Ardeche (right). Metrics are computed for the events shown in Table 7.
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Figure 6. Comparison for the validation of SMASH, GR4H, and MARINE in terms of some hy-
drological signatures; the percentage peak difference (PPD), the time difference of the peak (PD),
the synchronous percentage of the peak discharge (SSPD), and the runoff coefficient (CR). Gardon
(left) and Ardeche. (right) Black cross: observed runoff coefficient.

First, looking at Figure 5, for most of the events in the Gardon catchment, SMASH had
better NSE values. The average NSE for the eight events was 0.76 for Gardon against 0.58
for both MARINE and GR4H. For the Ardeche catchment, MARINE was slightly better with
a 0.77 average against SMASH with 0.76. GR4H remained the lowest with a 0.58 average.
In terms of the NSE, SMASH performed better compared to the other models, while GR4H
had the poorest performance.

An alternative to the NSE is the KGE metric. Although the NSE is used in calibration,
the KGE criterion is also used to evaluate the performance. This metric gives an aggregated
measure of performance in terms of the correlation, mean (water balance), and flow vari-
ability bias. Considering Gardon, SMASH had an average of 0.65 against 0.48 for GR4H
and 0.44 for MARINE. For Ardeche, on the other hand, SMASH remained better for most
of the events, compared to the other models. The average for SMASH was at 0.73 com-
pared to 0.67 and 0.53 for MARINE and GR4H, respectively. Again, for Ardeche, MARINE
outperformed GR4H on average.

The three components of the KGE also reveal some relevant information on the per-
formance of the models. In terms of the correlation coefficient r, which assesses the error
in terms of the shape and timing of the hydrographs, all the models had high values.
MARINE, however, had on average better performance based on this criterion in both
catchments (0.94 and 0.96). GR4H had the poorest performance in both (0.83 and 0.89). With
this high average, it can be inferred that all the models are capable in terms of reproducing
the shape and timing of the hydrographs. β measures the bias in terms of the mean (water
balance). SMASH has the least bias compared to both catchments (1.08 and 0.99), while
MARINE has the highest bias (0.78 and 1.13). Finally, the measure of bias in the flow
variability α indicates that for most of the events, SMASH has the least bias. On average,
however, the bias is the same for GR4H and MARINE.



Hydrology 2022, 9, 141 18 of 31

Other indicators to objectively compare the models are shown in Figure 6 for Gardon
and Ardeche, respectively. In terms of the percentage difference in peak magnitude (PPD),
the MARINE model approximated the observed peak better than the other models for most
of the events in the two catchments. The difference in the timing of the observed and
simulated peak was also less observed with the MARINE simulations; SMASH on average
had less differences compared to GR4H. The percentage difference between the observed
and simulated peak at the time of the observed peak measured by the SSPD criterion
indicates more accurate simulations with MARINE. SMASH was yet more accurate than
GR4H based on this criterion. This criterion is relevant because it is important to know not
only the difference between the observed and simulated peak, but also what peak is simulated
at the time the observed peak occurs. Lastly, the runoff coefficient (CR) measures the ratio
of the total flow over the total precipitation. SMASH gave the closest CR to the observations
for most of the events in the two catchments compared to the other models; it was also the closest
to the observations in terms of the average of the CR for both catchments. GR4H closely followed,
while MARINE was the least of the two models for both catchments.

Inferring from the results, the event-based MARINE had better performance with re-
gard to the peak simulation and timing, followed by SMASH. However, in terms of the vol-
ume of water exported and the water balance, SMASH performed better, followed by GR4H.

Although both the SMASH and GR4H models use the same conceptual production
reservoir thickness, the production reservoir in SMASH (used in this study) is filled accord-
ing to the Green and Ampt infiltration function (infiltration rate equals the rainfall intensity,
provided ponding does not occur; when it does, the infiltration excess is transferred).
GR4H, on the other hand, is based on the saturation mechanism in which rainfall excess
occurs only after saturation. This, in addition to the distributed nature of SMASH, could
partly explain why SMASH outperformed GR4H in terms of the indices of peak magnitude
and timing. This is despite the fact that GR4H, by construction, has more complexity
in terms of processes represented and formulations used, including a non-conservative
exchange term (parameter x2) (see Appendix A.1). In terms of the information learned
during calibration, MARINE, apart from the physical basis, processes represented, and
complexities in the formulations, was simply calibrated over flood events only. The contin-
uous models were, however, calibrated on all the flows (both low and high) and would,
therefore, perform better in terms of the volume of the flood.

3.3.2. “Soil Moisture” Comparison

Soil moisture can influence runoff production and is known to be a critical quantity
involved in flash flood genesis. Flood models should therefore be capable of performing
accurate discharge predictions under dry or wet conditions (see the related analysis of
the seasonal flood performances of the lumped GR model, shown to face more difficulties
in drier conditions, in [59]). In this section, we analyze the “soil moisture” variability simulated
by the three models.

The spatially averaged time series of the soil moisture predicted by the three models
is shown in Figure 7. In the case of the two distributed models, SMASH and MARINE,
the spatial average over the area of the catchment at the hourly temporal scale is shown.
The spatial averages of the soil moisture outputs of the two SIM products, SIM1 and SIM2,
are also shown. In the case of SIM1, which is used for initialization of the MARINE model,
the single value per event (spatial average) corresponding to the beginning of the event is
shown, while for SIM2, which is used for comparison, the daily series (available for this
study) is shown at 06:00 h of every day for the event duration.

First, the soil moisture output of SIM1 (shown at the beginning of every event) is
always lower in amplitude compared to the output of SIM2. While the former discretizes
the soil into three layers, the middle layer corresponding to the root zone, the later dis-
cretizes into 14 layers, the layers between 10 and 20 cm corresponding to the root zone.

Using the SIM2 series as a benchmark for comparing the three models, MARINE
performed best in terms of both the dynamics and amplitude of the soil moisture in both



Hydrology 2022, 9, 141 19 of 31

catchments. It was closely followed by the GR4H model, while SMASH had the poorest
performance. To assess the goodness of fit between the soil moisture series of the three
models in comparison to that of SIM2 (shown in Figure 7), Figure 8 summarizes the root-
mean-squared error (RMSE) on the eight (seven) events of Gardon (Ardeche), shown
on the left and right of the figure, respectively. For both catchments, MARINE was the most
accurate (lowest RMSE), followed by GR4H (looking at the median). In the case of Ardeche
(right), the 0.75 quantile was lower than the 0.25 quantile of the other two models.

Figure 7. “Soil moisture (internal signature)” time series, on average, per catchment and event, simu-
lated with MARINE, SMASH, GR4H, and the daily outputs of the SIM1 and SIM2 models for Gardon
(left) and Ardeche (right). The grey bar on both plots represents the hourly rainfall intensities.

Figure 8. Boxplots of the root-mean-squared error (RMSE) computed on the soil moisture series
shown in Figure 7 for Gardon (left) and Ardeche (right). The optimum value of the RMSE is 0.
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Looking at the SMASH model, we see that in the case of the Gardon catchment,
the series remained flat and the response between rainfall events was very weak. Better
responses were, however, observed in the case of Ardeche compared to Gardon. This
could be possibly explained by the size of the calibrated production reservoir capacity
cp of the two catchments. Large capacities of cp (1500 and 1200 mm for Periods 1 and
2, respectively) for Gardon against (164 and 200 mm) for Ardeche were obtained. The
depletion of the smaller capacity production reservoirs after or between rainfall events
would be faster compared to the larger ones. Interestingly, the GR4H calibration resulted
in much smaller cp for Gardon (480 and 230 mm for Periods 1 and 2, respectively) compared
to SMASH.

The difference in performance in the soil moisture outputs could be explained by
the complexities and processes represented in each of the models. MARINE, in addi-
tion to the surface flows (overland and in the channels), subsurface lateral transfers are
represented using an approximation of Darcy’s law. Therefore, although evaporation is
deemed negligible at the event scale, thus not represented, the lateral flows contribute
to the emptying of the soil reservoir and, hence, the faster and sharper decline between
and after rainfall events. In addition to this, being a physical model, soil surveys are
used as the basis for the soil depths (corrected by a multiplicative factor cz). This makes
the process and soil moisture variation potentially closer to the real physical phenomena,
unlike in the other two models, in which the depths are fully conceptual—and more or less
free to vary in space. Recall also that the initial soil water of the event model MARINE
is initialized with the outputs of the surface model SIM1, a more complex model with a
force-restore approach for modeling soil–plant–atmosphere interactions [35].

Although both SMASH and GR4H are emptied by the same evaporation function (see
Equation (A2)), the GR4H soil reservoir is also emptied by a percolation leakage. This
percolation leakage, although weak, given the power law involved, is an added complexity
in the model, which might have resulted in the faster response between rainfall events
compared to SMASH. The process of soil emptying of the SMASH (distributed) model is
thus more likely to be weaker than that of GR4H (lumped).

In the case of Gardon, the soil saturation of SMASH is generally lower than GR4H
for most of the events. This is likely due to the size of the respective production reservoirs
(1500 mm for SMASH and 500 mm for GR4H). Apparently, for the same rainfall signal,
the soil moisture will be higher in the smaller-sized reservoir. To emphasize, this can be
seen in the Ardeche catchment, where SMASH soil moisture was higher for all the events.
Interestingly, the production reservoir depth for this catchment was 160mm for SMASH
and 300 mm for GR4H. Hence, SMASH saturation was higher (due to smaller capacity).
The optimized reservoir depth from the model calibration, therefore, affects the accuracy
of the soil moisture estimation.

To investigate the temporal evolution of the soil saturation, Figure 9 presents maps
for two chosen events: September 2015 and September 2014 for Gardon and Ardeche, respec-
tively. The figure shows the maps of the cumulative rainfall in mm, the map of the soil mois-
ture in %, for SIM2 (the reference) and those of the three competing models (SMASH, MA-
RINE, and GR4H). For each model, two maps are shown, before and after the rainfall event.
The maps reinforce the results seen in Figure 7: SMASH overestimates the soil mois-
ture before and after the floods. Surprisingly, in the case of the Gardon catchment,
at the end of the September 2015 event, different patterns of the soil saturation were ob-
served. While the saturation was higher upstream of the catchment according to MARINE
(mostly along the drainage networks), it was higher downstream according to SMASH. This
stems from the respective differences between the model calibration methods’ hypotheses,
leading to different variabilities of storage capacity patterns. The underlying controllability
issue is discussed in what follows.
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(a)

(b)

Figure 9. Cumulative rainfall in mm and “soil moisture (Internal signature)” maps before and after
some selected events, simulated with MARINE, SMASH, and GR4H. The daily outputs of the SIM2
model are also shown. The events are Sep 2015 for Gardon (a) and Sep 2014 for Ardeche (b).

3.4. Constraints on the Models

The controllability of the models is different: although all three models use the outlet
discharge as the variable of interest in the calibration, the MARINE model has constraints
on its parameters using field data (soil survey and vegetation and land use), both in terms
of their spatial distributions and their magnitude, although the magnitude was corrected
using some lumped coefficients during calibration. To highlight these constraints on MA-
RINE, the production reservoir was constrained by the soil thickness map; the Green and
Ampt parameters (porosity, hydraulic conductivity, and suction) were all constrained using
the soil classes derived from the soil texture. The subsurface transfer was also constrained
by the soil classes, and finally, the Manning friction in the kinematic wave routing formu-
lation for overland flow was constrained by the land cover. This gives MARINE more
constraints in its parameters, thereby inferring parameters with an imposed spatial pattern
and variability from physical maps, as opposed to SMASH. The fact that SMASH uses
the same maps during calibration does not offer as much constraint as in the MARINE
model. In fact, the use of the maps is only to reduce the high dimensionality resulting
from the fully distributed calibration. The constraints are thus applied only on the spatial
pattern (via a discretization into a given number of classes), rather than on their magni-
tudes, as done with MARINE. Again, even the choice of the field data (soil surveys of
thickness and texture) to use for the constraint on the spatial pattern of SMASH parameters
is not as clear as that of MARINE, since the parameters of the later have some physical
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meanings, compared to the more conceptual nature of the SMASH parameters. The least
constraint applied in terms of spatial pattern is thus on the GR4H model, which is lumped,
and thus, relying solely on the outlet discharge in the optimization process. In summary,
regarding model parameters’ spatialization, under the tested configurations, SMASH might
be overparameterized, while MARINE might be slightly underparameterized.
Lastly, recall that MARINE is also constrained using information from the SIM1 soil mois-
ture output for its initialization at the beginning of each event. With the initial SIM1
controlling the produced flood volume, the MARINE calibration impacts the transfer func-
tion more. This might explain why MARINE better reproduced flood peak and timing, but
not the runoff coefficient, as shown in Figure 6.

4. Conclusions

This study aimed at understanding how three models of varying complexities sim-
ulated the hydrological behavior of two flash-flood-prone Mediterranean catchments:
Gardon at Anduze and Ardeche at Vogue, both located in the South of France. The method-
ology involved the investigation of the global parameter sensitivity of the models, their
efficiencies in calibration and validation, and the assessment of key hydrological signatures
at the event scale. Finally, the soil moisture, simulated by the three models at the event
scale, which is a critical quantity in flash flood genesis, was compared with the gridded soil
moisture outputs of the hydrometeorological SIM model. The three hydrological models
were the lumped conceptual model GR4H, spatially distributed conceptual model SMASH,
and process-oriented distributed model MARINE.

The invested methodology followed and the results obtained led to the following
conclusions:

• The results revealed contrasted and catchment-specific parameter sensitivity to the
same efficiency measure. Higher sensitivity was found for all models to the transfer
parameters for Gardon and for the production parameters for Ardeche. Interestingly,
the exchange parameter controlling a non-conservative flow component of GR4H was
found to be sensitive.

• All three models showed good calibration and validation efficiencies. Their perfor-
mances were, however, generally better for Ardeche compared to Gardon. In the
calibration, MARINE achieved the highest efficiency, followed by GR4H. Although
all three models showed a decrease in the efficiencies at the temporal validation,
GR4H was more robust. Regarding the parameter stability between the two peri-
ods, all the models showed some differences between the calibrated parameters of
both periods.

• At the event scale, seven events and eight events of contrasted behaviors for Ardeche
and Gardon, respectively, were selected to compare the performance of the three
study models on the simulated discharge and the soil moisture pattern. The indices
of the discharge simulation showed that the event-based MARINE had better perfor-
mance with regard to the peak simulation and timing, followed by SMASH. However,
in terms of the volume of water exported and water balance, SMASH performed better,
followed by GR4H.

• Using the soil moisture output of the SIM2 model as the benchmark for comparing
the simulated moisture by the three models at the event scale, MARINE emerged
as the most accurate in terms of both the dynamics and amplitude of the soil moisture
in both catchments (recall that MARINE soil water content is initialized with SIM1). It
was closely followed by the GR4H model, while SMASH had the poorest performance
compared to the other models. The SIM2 product from the SIM model was revealed
to be valuable information to assess the internal dynamics of the model states.

• Regarding the computational costs, a forward run was relatively inexpensive, even with
the considered distributed models, and is feasible in a few minutes of CPU time, while
the memory requirement can be larger depending on the size of the spatio-temporal domain.
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Overall, we can conclude that the varying degree of complexities in the process rep-
resentation, constraints applied to the models, the spatio-temporal resolution, as well
as the calibration methods in the models appeared relevant in the performance of the mod-
els for flash flood modeling. Therefore, considering multiple models for flash flood predic-
tion might be pertinent, as well as improving the process accountancy and versatility of
each model, as highlighted by the present study, showing how and why models performed
differently. A lumped model might not perform as efficiently as a distributed model in
the case of spatialized rainfall flood events (e.g., [31]), but is generally easier to calibrate
compared to distributed models, requiring more constraints regarding spatial overparame-
terization. Users who wish to apply the studied models, which is feasible from worldwide
databases with little preprocessing, are advised to consider the longest rainfall flood time
series available in order to enhance parameters’ representativity.

Looking at the process representation, SMASH is the least complex. Recall that while
GR4H has a non-conservative water exchange operator revealed as sensitive, MARINE has
a subsurface component to account for lateral transfer. The poor performance of SMASH
in terms of simulated moisture enhances this aspect. Including either of these in SMASH
could stabilize or compensate for the high soil reservoir depth observed for Gardon with
this model. MARINE has the finest spatio-temporal resolution, and this, along with
the more physical routing model, might have contributed to its fastest reactiveness in terms
of the rising limb and peak flow reproduction. This highlights the importance of searching
for versatile model structures, in terms of the range of applicability, for contrasting catch-
ments and hydrological processes’ variability, especially under intense rainfalls, which
would be well calibrable/regionalizable over large samples.

All models considered in this study would benefit from a calibration–regionalization
strategy tailored for applicability to large domains and a large range of flood types and wetness
conditions. Improved constraints on the patterns and magnitudes of SMASH parameters,
including those of the Green and Ampt model, are required to fully utilize its capacity, especially
under intense rainfall events. More generally, reaching higher performances, in terms of flood
simulations with a distributed model of increasing complexity, requires developing optimal
calibration strategies adapted to overparameterization issues and relying on multisource data,
including discharge and physiographic maps, regarding overparameterization issues. Similar
remarks were made by Grayson and Blöschl [12], that these data can help provide information,
thereby reducing equifinality and parameter identifiability, which are inherent in complex
models. This is even more challenging in a regionalization context and with the will to ensure
coherent internal state fluxes. Improved constraints could also stem from flood-specific metrics
accounting for multi-frequency signatures.

In terms of perspectives, future comparisons of hydrological models of different com-
plexities should study large samples with rich datasets, including high-resolution satellite
data of soil moisture, which are particularly interesting for distributed models, as shown
in [23] for French Mediterranean catchments. One could assess/discriminate internal
model behaviors, given multiple plausible parameter sets potentially corresponding to con-
trasted functioning points, hence model components’ activation/interplay for a given
model structure, for instance. Finally, improved calibration–regionalization methods, in
a flexible multi-model framework, seem highly needed and will be developed in SMASH
with hybrid methods.
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Appendix A. Model Formulations

Appendix A.1. SMASH

Appendix A.1.1. GR Water Balance Operators

Initially proposed for a minimal-complexity description of catchment water balance
functioning, based on empirical modeling, the “GR loss model” Edijatno and Michel [38]
considers a production reservoir P of maximum depth cp and water level hp and is recalled
here for clarity. The neutralized rainfall and evaporation are, respectively, denoted Pn

and En. If P ≥ E, then Pn = (P− E), En = 0, and dhp =

(
1−

(
hp
cp

)2
)

dPn. If P < E,

then En = E− P, Pn = 0, and dhp = − hp
cp

(
2− hp

cp

)
dEn . Assuming a stepwise approxi-

mation of the inputs P(t) and E(t), the temporal integration of these ordinary differential
equations, enabling analytical solutions (calculation given in Edijatno [45]), as reported
by Perrin et al. [37], gives the infiltrating rainfall Pp and the actual evapotranspiration
from the reservoir store Ep:

Pp = cp

(
1−

(
hp

cp

)2
)

tanh
(

Pn
cp

)
1 +

(
hp
cp

)
tanh

(
Pn
cp

) (A1)

Ep = hp

(
2−

hp

cp

) tanh
(

En
cp

)
1 +

(
1− hp

cp

)
tanh

(
En
cp

) (A2)

As mentioned in Jay-Allemand et al. [13], hp is the water level of the production
reservoir at the beginning of a time step ∆t and Pp and Ep are the amount of water gained
or lost over ∆t and used to update hp before the next time step.

This is the water balance scheme of GR4, where the state hp and parameter cp are,
respectively, denoted S and x1.

Appendix A.1.2. Green and Ampt Infiltration

Applying Darcy’s law, Green and Ampt (1911) proposed a simplified physical model
for water infiltration from a ponded surface into a deep homogeneous soil with uniform
water content. The Green and Ampt model approximates the curved soil moisture profiles
of the wetting front that result in practice and, from the solution to Richard’s equations,
as a sharp interface with saturation conditions θ = θs above the wetting front and initial
moisture content θ = θi below the wetting front. The initial moisture content is assumed
to be uniform over the entire depth. The infiltration i(t) writes as:

i(t) =

{
r(t) t ≤ tp

Ks(1 + ψ ∆θ
I(t) ) t > tp

(A3)

where r(t) is the rainfall rate (m/s), tp is the time to ponding (s), Ks is the saturated
hydraulic conductivity (m/s), ∆θ is the change in the volumetric water content (m/m), ψ is
the soil suction, and I(t) is the cumulative infiltration depth (m).

This model is used in the MARINE event-based model [20].

http://www.hydro.eaufrance.fr/
http://www.hydro.eaufrance.fr/
https://publitheque.meteo.fr
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It is also implemented in SMASH, following the algorithm presented in [60] involving
a classical Newton–Raphson algorithm to solve ∆θ from the nonlinear Green and Ampt
model integrated in time [61] and with the parameters explained in Table 4. Hence,
the production reservoir P of maximum capacity cp (and porosity was simply set to η = 1)
is filled by the infiltrating rainfall obtained form Equation (A3) and is emptied by the actual
evaporation Ep obtained from Equation (A2).

Appendix A.1.3. Transfer

The Transfer function is represented by a reservoir of capacity ctr and actual level htr and
models the fast flow; it is supplied by the excess flow after the production step (GR evaporation
(A2); infiltration (A3)). The time evolution of the actual reservoirs levels thanks to the mass
conservation gives the flow rate qr from the fast reservoir at each time step such that:

qr(t) = htr(t)− (h−4
tr0 + c−4

tr )−
1
4 (A4)

where htr0 is the reservoir level at the beginning of the time step.

Appendix A.1.4. Routing

Given known flow directions, classically obtained from the DEM, the cell-to-cell routing is
performed with a linear unit Gaussian hydrograph, whose delay τi from node i− 1 to node i is
controlled by the routing velocity vi and the distance di (see the details in Jay-Allemand et al. [13]).

Appendix A.2. GR4H

Appendix A.2.1. Production

The water balance is modeled with a production reservoir as described in Appendix A.1.1
with Equations (A1) and (A2), denoting the state S and parameter x1, instead of, respectively,
hp and cp.

Appendix A.2.2. Water Exchange

A groundwater flow exchange term F from the routing reservoir that depends on
the actual level in the store R, the reference level x3, and a water exchange coefficient x2
takes into account both flow components:

F = x2

(
R
x3

) 7
2

(A5)

Appendix A.2.3. Linear Routing

Ten percent of the effective rainfall Pr resulting from the excess of the production
and the percolation is routed linearly using a unit hydrograph UH2 of time base 2x4, and
the remaining 90% is initially routed using UH1 of time base x4. The ordinates of the UH
are derived from their respective S hydrographs, which also are functions of x4.

Appendix A.2.4. Nonlinear Routing

R = max(0; R + Q9 + F) (A6)

Qr = R

1−
[

1 +
(

R
x3

)4
]− 1

4
 (A7)

Qd = max(0; Q1 + F) (A8)

Total stream flow is given by

Q = Qr + Qd (A9)
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Appendix A.3. MARINE

Appendix A.3.1. Infitration

A Green and Ampt model is used, and the infiltration i(t) is described by Equation (A3).

Appendix A.3.2. Subsurface Flow

The subsurface flow is based on Darcy’s law given by:

q(t) = Toexp
(

θs − θ

m

)
tanβ (A10)

where T0 is the local transmissivity of fully saturated soil (m2s−1), θs and θ are the saturated
and local water contents

(
m3m−3), m is the transmissivity decay parameter, and β is the

local slope angle (rad).

Appendix A.3.3. Surface Flow

The surface runoff is divided into overland flow and drainage flow; in both cases,
the kinematic wave model is used assuming a one-dimensional kinematic wave, which is
approximated by the Manning friction law. The equation is thus:

∂h
∂t

+
S0.5

o
n0
× 5

3
h

2
3

∂h
∂x

= r− i (A11)

where h is the water depth (m), t is time (s), x is the space variable (m), r is the rainfall rate
(ms−1), i is the infiltration rate (ms−1 ), S0 stands for the bed slope (mm−1), and no is the
Manning friction parameter (m3/m−3).

Appendix B. Sensitivity Analysis

The results obtained from the regionalized sensitivity analysis of the three models are
detailed in this section.

Appendix B.1. SMASH (Spatially Uniform Parameters)

Figure A1 gives the results of the sensitivity analysis under spatially uniform pa-
rameter sets. In the case of the Gardon catchment, the scatter plot (first row) shows clear
identifiability for the transfer parameter ctr. The two production parameters cp and ks show
the least identifiability, while the routing parameter v shows exclusive poor performance
for small values. Under our tested methodology, peaky scatter plots for a parameter indi-
cates a good identifiability. The scatter plots in the case of the Ardeche catchment show
a drop in performance for values of cp higher than 1200; below this value, both good and
poor performances can be obtained. In the case of the ks parameter, the scatter plot shows
clear non-identifiability due to clear randomness throughout the parameter range. The
transfer parameter ctr appears to be peaky for this catchment also. Finally, similar to Gardon,
the routing parameter v shows a significant drop in performance for small values.

The cumulative distribution of the behavioral and non-behavioral classes (second
row) is based on the NSE threshold of 0.7. In the case of the Gardon catchment, cp exhibits
a flat slope for small (<125) and high (>1750) values, with a near uniform distribution
in between, while the distribution of the non-behavioral classes is uniform, showing that a
poor NSE can be obtained throughout the parameter range. In the case of the ctr parameter,
which is also the most sensitive, the slope is non-zero only within a very small range
(between 200 and 400); outside this range, all realizations are poor. A relatively flat slope
is observed within this range for the non-behavioral realizations, confirming the absence
of poor realizations within the range. The KS statistics D is largest for ctr, confirming that
it is the most sensitive. For the case of Ardeche, although the scatter plot shows that ctr is
most identifiable due to its peakedness, the test statistics shows v to be the most sensitive,
closely followed by cp. However, ks still remains the least sensitive.
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(a)

(b)

Figure A1. (a): RSA scatter plots of the four SMASH spatially uniform parameters for the two study
catchments (left columns: Gardon, right columns: Ardeche). Plot (b): cumulative distribution of
the behavioral and non-behavioral classes. For each catchment, the first row shows the scatter plot
of the NSE efficiency and the second row the NSE cumulative distribution of the behavioral and
non-behavioral classes, indicating the Kolmogorov–Smirnov statistics D.

The transfer parameter observed to be the most sensitive has to do with the fact
that the performance measure used is the NSE, which gives more weight to high values.
In the SMASH model, ctr controls the amount of the effective rainfall that is transferred
for routing and, thus, affects the magnitude and timing of the peak flows.

Appendix B.2. GR4H

In the case of the GR4H model, the RSA results for both catchments are presented
in Figure A2. For both catchments, the time base of the unit hydrograph x4 is the least sensi-
tive, while the ground water coefficient x2 is the most sensitive. For the Gardon catchment
specifically, the size of the production reservoir x1 is less sensitive compared to the ex-
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change coefficient x2 and the routing store capacity x3, whereas in the case of the Ardeche
catchment, the sensitivity of x1 is very close to that of x2, the capacity of the routing store
x3 being the third-most sensitive.

(a)

(b)

Figure A2. (a): RSA scatter plots of the four GR4H parameters for the two study catchments (left
column: Gardon, right column: Ardeche). Plot (b): Cumulative distribution of the behavioral and
non-behavioral classes. For each catchment, the first row shows the scatter plot of the NSE; in the
second row, the NSE cumulative distribution of the behavioral and non-behavioral classes indicating
the Kolmogorov–Smirnov statistics D.

Appendix B.3. MARINE

The result of the sensitivity analysis of the MARINE model for both catchments is
presented in Figure A3, and the summary of the parameter sensitivity ranks computed
according to the KS test statistics D is shown in Table 9. The ranking of the parameters
is event dependent for each of the two catchments. In the case of Gardon, the coefficient
applied to the lateral subsurface flow, Ckss, emerged as the most sensitive for all the events,
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except the Nov 2011 flood. It is then followed by the coefficient applied to the soil thickness,
Cz. In other words, the three most sensitive parameters are related to the soil storage
capacity. The two Manning–Strickler friction coefficients for the river bed KD1 and the flood
plain KD2 emerged as the least sensitive in the ranking. In the case of the Ardeche catch-
ment, different sensitivity ranks of the parameters were obtained. For this catchment, the
correction coefficient Ck of the hydraulic conductivity (infiltration) emerged as the most
sensitive, which is then followed by Cz. Unlike the case of Gardon, Ckss, along with KD1 are
the least sensitive.

The flood events in Gardon are all autumn events; however, the October 2014 flood
appeared entirely different in terms of the distribution of the behavioral realizations,
because very few observations above the NSE threshold of 0.7 were obtained for this
specific event. Ardeche, on the other hand, has two events occurring in spring, while
the rest are autumnal. There is, however, no significant observable difference between
the distributions of these events.

Figure A3. MARINE sensitivity analysis result showing the cumulative distributions of the behavioral
and non-behavioral classes of the five parameters for Gardon (left) and Ardeche (right).
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