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Global assessment of  
soil carbon in grasslands
From current stock estimates to 
sequestration potential

FAO ANIMAL PRODUCTION AND HEALTH / PAPER 187

This report presents the estimation of the baseline soil organic carbon stocks 
in global grasslands in the year 2010. It also summarises the assessment of 
the carbon input levels needed to maintain current SOC stocks, and the 
evaluation of the soil organic carbon sequestration potential of grasslands if 
management practices known to improve soil organic carbon sequestration 
are implemented worldwide

The results show the importance of the interaction between climate and 
grassland management, with the latter playing a crucial role in the quality 
and quantity of organic material entering the soil. The report provides 
spatially explicit evidence on the state of grassland soils and can be used as a 
baseline for future work to explore the impacts of livestock management on 
soil organic carbon at regional, country and farm levels.

Grasslands are one of the major ecosystems of the world, covering close to 
one-third of the Earth’s terrestrial surface. Extensively managed grasslands 
are recognized globally for their high biodiversity, and together with other 
rangelands, they often contribute to agricultural production through 
livestock browsing on natural forage, leaves, soft shoots and shrubs. It is, 
therefore, evident that assessing the current state of grassland systems, 
and their potential to sequester carbon in the soil, is of key importance for 
understanding the trade-offs between grassland services on food security, 
biodiversity conservation and climate mitigation and offsets, and how current 
grassland management could be improved to meet global climate targets.
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Context

The adoption of the Paris Agreement in 2015 paved the way for countries to commit to the 
international response to climate change through the transition to a low-emission economy 
and the development of a climate-resilient future. In livestock systems, and indeed in the 
whole agricultural sector, there is a need to balance the benefits of animal-source foods and 
livestock keeping for nutrition, health and well-being, with the urgent need to reduce green-
house gas (GHG) emissions to tackle the climate crisis, which also threatens food security.

Grasslands contain approximately 20 percent of the world’s soil organic carbon (SOC) 
stocks, which implies that they play a significant role in the global carbon and water cycles 
(Puche et al., 2019). Soils can act as both sources and sinks of carbon and many grasslands 
have suffered losses of SOC because of anthropogenic activities such as intensive livestock 
grazing, agricultural uses and other land-use activities. This trend, however, could be reversed 
by stimulating plant growth, capturing carbon in the soil, and protecting carbon in highly 
organic soils. 

Given the important economic, nutritional and environmental roles that grassland sys-
tems play globally, the Livestock Environmental Assessment and Performance Partnership 
(FAO LEAP Partnership) funded this study to illustrate the state of soil carbon stocks in 
grassland systems and their potential to sequester carbon in the soil.

The aim of this report is to estimate the baseline SOC stocks of grasslands in the year 
2010, assess the carbon input levels needed to maintain current SOC stocks, and determine 
if such carbon input is available under current conditions. For these purposes, we defined 
improved grasslands as managed systems, and unimproved grasslands as systems close to 
semi-natural environments. Furthermore, this report aims to estimate the SOC sequestra-
tion potential of grasslands if management practices known to improve SOC sequestration 
are implemented worldwide.
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Findings

SOIL CARBON STOCKS IN GRASSLANDS
The present study provides a spatially explicit report on the state of grassland soils and can 
be used as a baseline for future work to explore the impacts of livestock management on 
soil carbon at country and farm levels. Globally, there was an estimated annual uptake of 
63.5 megatonne (Mt) of carbon (C) in the year 2010 in grassland soils to a depth of 30 cm, 
with unimproved systems storing slightly higher amounts than improved systems (33.8 vs 
29.8 Mt C). On average, in the year 2010 the SOC stock under unimproved grasslands was 
53 tonnes C/ha and 50 tonnes C/ha in improved grasslands. The greatest SOC stocks were 
found in temperate regions characterized by low decomposition rates and high grassland 
productivity. In comparison, the lowest SOC stocks were observed in arid to semiarid grass-
land soils characterized by low biomass production and organic matter decomposition, thus 
reducing carbon inputs into the soil. Climatic conditions explained much of the variability of 
SOC stock in grassland soils to 30 cm depth, followed by the carbon input to the soil from 
plant and animal sources, and clay content.

All together these results highlight the importance of the interaction between climate and 
grassland management, with the latter playing a crucial role in the quality and quantity of 
organic material entering the soil. Indeed, stabilization of SOC also depends on several soil 
properties such as soil pH, which contributes to regulating soil nutrient availability and soil par-
ticles, which protect soil organic matter by stabilizing them against microbial mineralization. 

The lack of incentives for farmers to improve management practices, and the difficulty 
of accurately monitoring SOC stocks and changes are the main reasons for not including 
SOC in several countries’ nationally determined contributions (NDCs) and national com-
munication reports. The results of this report could support the inclusion of SOC targets 
in NDCs, which will improve NDCs’ comprehensiveness and transparency for tracking and 
comparing policy progress across NDCs. 

The uncertainty regarding the input variables, and their distribution and allocation to 
different land uses, together with intrinsic model uncertainties, should be carefully taken 
into consideration when using the results arising from this work on the current state of the 
carbon in the soil, and its potential to be sequestered in grassland soil. The estimation of 
the global soil carbon stock is still quite uncertain, and improved geostatistical methods are 
urgently needed to reduce the propagation of such uncertainties in soil models. To improve 
the accuracy of input data, such as soil, animal and vegetation properties, and C exchange 
information, it is crucial to generate local datasets, especially from underrepresented 
regions (e.g. Africa), and explore differences among existing datasets. 

ASSESSMENT OF CURRENT CARBON STOCK LEVELS
The majority of grassland soils seem to receive enough organic material to maintain cur-
rent carbon stock levels. Improved grasslands needed, on average, higher carbon inputs 
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than unimproved systems to sustain current SOC stocks (2.1 vs 1.3 tonnes C/ha/year).  
Moreover, the positive soil carbon balance found in both improved and unimproved sys-
tems globally indicates a potential increase in SOC stocks. Despite such a positive trend 
globally, the large spatial variability of these estimates highlights that the soil state at coun-
try level could differ greatly from the global estimates. The majority of grasslands have a 
positive carbon balance meaning that the land is stable or even under improved biophysical 
conditions. However, negative carbon balance was found in East Asia, Central and South 
America, and Africa south of the Equator, meaning that current SOC stocks are likely to be 
decreasing due to anthropogenic stresses combined with climatic conditions. No specific 
global measurements are currently available, and it is worth mentioning that the diversity of 
situations – in terms of climate, soils and management practices – might have been crucial 
for soil carbon dynamics in these areas, as represented by the variability of the carbon input 
values in grassland systems.

The findings of this analysis show that there is room for additional carbon storage in 
some grassland soils. The main recommendations for grassland systems are to prioritize car-
bon returns in deteriorated soils that have a negative carbon balance, and to protect SOC 
in areas – particularly under unimproved grasslands – with high carbon stocks. Grasslands 
could contribute to the recarbonization of degraded land and the results of the present 
study can highlight hotspots where interventions on grasslands are needed to preserve or 
increase SOC in the long term. 

SOIL CARBON SEQUESTRATION POTENTIAL
This study found that if the SOC content in the 0–30 cm depth layer of available grass-
lands increased by 0.3 percent after 20 years of the application of management practices 
that enhance SOC sequestration, 0.3 tonnes C/ha/year could be sequestered. Sub-Saharan 
Africa and South Asia show the highest potential for carbon storage on a per hectare basis 
(0.41 and 0.33 tonnes C/ha/year, respectively), followed by Oceania, North America and 
East Asia. Low levels of SOC on grasslands, much of it with serious degradation issues, 
provide the opportunity to enhance SOC sequestration. 

The 4p1000 initiative has identified an aspirational sequestration target of 3.5 Pg  
C/year to provide substantive global mitigation. Our estimates suggest that 17 percent 
of this target could be reached in the top 30 cm of grasslands and continue over at least  
20 years after adoption of SOC enhancing management, such as the incorporation of 
animal manures, agroforestry and rotational grazing. This requires that grasslands increase 
SOC storage between 0.18–0.41 tonnes C/ha every year. Our estimates do not account for 
differences in climate and important soil process issues, notably nutrient and water limita-
tions, biomass production and turnover rates. However, sequestering carbon via increases 
in the soil component on grasslands is an achievable and potentially effective route to 
quickly increasing carbon sequestration in the near term. Emphasis on future work should 
be placed on spatially explicit studies to explore the impacts of livestock management 
practices at country level and to monitor management-induced carbon sequestration in 
livestock-based ecosystems at farm level.

Despite the large technical potential to sequester carbon in soils, there are often sig-
nificant limitations to achieving that potential in any particular place and within specific 



xi

farming systems. In addition, there may be trade-offs with productivity, food security or 
hydrologic balances, as well as concerns regarding other GHGs, such as N2O. Therefore, for 
a full system budget, it is imperative to include estimates of changes in methane emissions 
in order to understand the environmental impacts of management practices on the full 
grassland system. Future work should be focused on including soil carbon estimates in life 
cycle analyses. The main challenges would be to develop a methodology to allocate SOC 
stocks to different livestock units and to account for temporal and spatial dynamics of car-
bon in the soil. Nevertheless, this would enable accurate life cycle assessment of livestock 
systems as well as the development of targeted livestock sector-driven national policies for 
climate change mitigation and adaptation, and food security.
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1. Introduction

The adoption of the Paris Agreement in 2015 paved the way for countries to commit to the 
international response to climate change through the transition to a low-emission economy 
and the development of a climate-resilient future. Since the global annual carbon dioxide 
(CO2) emissions from fossil fuels and all other sources are ~10 Gt of carbon (Boden, Marland 
and Andres, 2017), soil organic carbon (SOC) has been proposed as a plausible partial climate 
mitigation strategy which can offset part of the greenhouse gas emissions (GHG) derived 
from anthropogenic activity, with an estimated global sequestration potential of 30–60 Gt of 
carbon (Lal, 2004; Sommer and Bossio, 2014), and might buy time while low-carbon tech-
nologies are being developed and adopted. In livestock systems, there is a need to balance 
the benefits of animal-source foods and livestock keeping for nutrition, health and well-be-
ing, with the urgent need to reduce GHG emissions to tackle the climate crisis, which also 
threatens food security. 

In 2017, the 23rd Conference of Parties adopted the Koronivia Joint Work on Agri-
culture (KJWA) to discuss the role of agriculture in climate action while considering the 
vulnerability of the sector to climate change and addressing food security. The KJWA plays 
a crucial role in enabling the livestock sector to contribute to climate action by mobilizing 
knowledge, technology, finance and capacity. It acknowledges the strategic importance 
of livestock including key areas such as improved soil carbon sequestration in grazed 
grasslands, improved nutrient use and manure management and improved livestock man-
agement systems (Uwizeye et al., 2021). It is therefore evident that assessing the current 
state of grassland systems, and their potential to sequester carbon in the soil, is of key 
importance for understanding the trade-offs between grassland services on food security, 
biodiversity conservation and climate mitigation, and how current grassland management 
could be improved to meet climate targets.

Grasslands are ecological communities dominated by grasses with little to no tree or shrub 
cover. Some grasslands are natural, while other grasslands have been created from other 
forms of vegetation, notably forest. Humans use grasslands for grazing, but not all grasslands 
are grazed by domesticated animals. Some may be protected (i.e. grazing is prohibited) and 
others are located in regions that simply cannot support them (Garnett et al., 2017). 

Grasslands are among the largest ecosystems in the world, occupying 3.5 billion ha 
(FAOSTAT, 2016), of which almost 2 billion ha are used for grazing livestock (FAOSTAT, 
2016; Mottet et al., 2017).

Natural grasslands (often called rangelands) are dominated by perennial grasses whose 
species composition has not been altered to improve livestock productivity. 

Improved grasslands (often called pastures) are more intensively maintained, and highly 
productive. These grasslands have been modified by sowing more nutrient-rich grasses or 
legumes, and by using fertilizers, other amendments and sometimes irrigation to support 
more intensive livestock grazing. Improved pastures are species poor. Sometimes the grass 
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is mowed to produce silage for winter feed. The animals themselves may receive feed 
supplements, in which case the dung they deposit loads the soil with externally produced 
nutrients (Garnett et al., 2017). 

Semi-natural grasslands can be broadly defined as ‘habitats created by low-intensity, 
traditional farming, or, in some cases, the natural vegetation on poor soils or in exposed 
locations’ (Garnett et al., 2017). The semi-natural grassland is a very fluid habitat, which is 
amenable for conversion to (and from) arable land and to improved grassland through cul-
tivation, re-sowing and fertilizer application (Garnett et al., 2017). While they tend to pro-
voke a great deal of definitional debate, ‘semi-natural’ grasslands have been defined here 
to distinguish them from more intensively managed pastures and from ‘natural’ grasslands. 

Soils store significant amounts of carbon as soil organic matter, globally about 2.3 times 
more than the carbon in atmospheric CO2 and 3.5 times more than the carbon in all living 
terrestrial plants (Yang et al., 2019). Global grasslands are important components of the 
terrestrial carbon cycle, storing 119–121 Gt C (Erb et al., 2018) in vegetation biomass, about 
343 Gt C in the top one meter of soil (Conant et al., 2017) and a potential soil sequestration 
rate of 0.5 tonnes C/ha per year (Henderson et al., 2015; Conant et al., 2017). 
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The SOC stock in grasslands is determined by the balance between carbon inputs and 
outputs. Carbon inputs are derived naturally from the annual photosynthetic carbon uptake 
of all leaves in a grassland in the form of root exudates and litter (i.e. gross primary production 
(GPP)). The net primary production (NPP) of grasslands is the net carbon stored as new plant 
material before harvest and other losses. Additional carbon inputs are derived from animal 
manure. Carbon losses occur through natural processes of respiration, decomposition, ero-
sion, leaching, fire and removal of biomass by grazing animals, and by human interventions 
through biomass harvesting. Management interventions, such as mowing versus pasture and 
grazing intensity (i.e. the fraction of NPP consumed by grazing animals), may particularly 
influence the SOC stocks. When grasslands are grazed, biomass ingested by animals con-
tains digestible and non-digestible organic compounds. The non-digestible carbon fraction 
(25–40 percent) of the intake is returned to the soil through excreta (i.e. dung and urine). The 
digestible part is respired as CO2 shortly after intake (Chang et al., 2015). Only a small fraction 
serves to increase animal mass (e.g. muscles) or to form animal products (e.g. milk) which are 
exported from the grassland ecosystem (Soussana, Tallec and Blanfort, 2010). Another small 
part of the digested carbon is emitted in the form of methane by ruminant enteric fermen-
tation and manure management systems (Sejian et al., 2012).

The soils of managed grasslands contain ~20 percent of the world’s SOC stocks, which 
implies that they play a significant role in the global carbon and water cycles (Puche et al., 
2019). Soils can act as both sources and sinks of carbon and many grasslands have suf-
fered losses of SOC because of anthropogenic activities such as intensive livestock grazing, 
agricultural uses and other land-use activities. This trend, however, could be reversed by 
practices aimed at stimulating root and plant growth (e.g. grazing and nutrient cycling) and 
by helping carbon move from above ground to below ground, where it can be captured. 
These practices can also stabilize productivity and generate significant social, economic and 
environmental benefits.

Current literature suggests no clear relationships between grazing management and 
carbon sequestration (Conant et al., 2017). However, positive carbon sequestration was 
reported for light-to-moderate grazing intensities (Abdalla et al., 2018), while overgrazing 
was found to have a negative effect on SOC stocks (Dlamini, Chivenge and Chaplot, 2016). 
The interactions of carbon and nitrogen in soils are of great importance for regulating the 
main ecological processes such as nutrient cycling and energy flow (Sardans, Rivas-Ubach 
and Peñuelas, 2012). Sufficient nitrogen needs to be available for plants to grow, and there-
fore for soils to sequester carbon. This can be provided in the form of bacterial nitrogen 
fixation or the application of mineral fertilizers or organic amendments containing nitrogen 
(Liu et al., 2020). These nitrogen inputs to the soil can promote carbon sequestration but 
would also cause methane and nitrous oxide to be emitted. Hence, the net GHG balance 
will depend upon whether the sequestration gains outweigh these other emissions.

Generally, best management techniques yielding increases in SOC stocks rely on the 
management of grazing intensities, as well as increasing forage production through 
improved species. The sequestration of soil carbon arising from grassland management 
could, therefore, be significant (Lorenz and Lal, 2018) and this, in turn, could have a pos-
itive effect on soil health and other ecosystem services. One critical co-benefit of building 
carbon in soil is improved nutrient availability and cycling, which can improve soil fertility 

1. Introduction
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while reducing the need for chemical fertilizers. Numerous soil functions and ecosystem 
services depend on SOC and its dynamics. Improvements in soil health, along with an 
increase in the availability of water and nutrients, increase soil’s resilience against extreme 
climate events (e.g. drought, heat wave) and impart disease-suppressing attributes, which 
in turn can also improve animal health. Enhancing and sustaining soil health is also perti-
nent to achieving the goals of the United Nations Decade on Ecosystem Restoration and 
advancing the Sustainable Development Goals (SDGs) outlined in the United Nations 2030 
Agenda for Sustainable Development (e.g. alleviating poverty, reducing hunger, improving 
health, climate action, life on land, and promoting economic development).

This study is part of the deliverables of the Livestock Environmental Assessment and 
Performance Partnership (FAO LEAP Partnership). The FAO LEAP Partnership is a mul-
ti-stakeholder initiative that is committed to improving the environmental performance of 
livestock supply chains, whilst ensuring their economic and social viability. It is composed of 
three stakeholder groups: governments, private sectors, and civil society and non-govern-
mental organizations (NGOs). FAO LEAP Partnership develops comprehensive guidance and 
methodology for understanding the environmental performance of livestock supply chains, 
and to shape evidence-based policy measures and business strategies. Technical advisory 
groups (TAGs) – groups of experts from academia, private sectors and NGOs – are formed 
to develop the guidance and methodology for measuring environmental performance.  
The soil carbon TAG conducted the background research and developed the core techni-
cal content of the guidelines for measuring and modelling soil carbon stocks and stock 
changes in livestock production systems (FAO, 2019). The aim of these guidelines is a 
harmonized, international approach for estimating SOC stock and stock changes in live-
stock production systems. A set of methods and approaches is recommended for use by 
individual farmers or land managers, those undertaking life cycle assessment of livestock 
products, policy makers, and regulators at local, regional or national scales.

Given the important economic, nutritional and environmental roles that grassland 
systems play globally, the FAO LEAP Partnership funded this study to illustrate the state of 
soil carbon stocks in grassland systems and their potential to sequester carbon in the soil.

The specific objectives of this work were:
• To assess the baseline SOC stocks of grasslands in the year 2010;
• To assess the organic carbon input levels needed to maintain current SOC stocks, and 

determine if such carbon input is available under current conditions; and
• To obtain a first estimate of SOC sequestration potential of grasslands, if manage-

ment practices known to improve SOC sequestration are implemented worldwide.
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2. Methods

2.1 FAO LEAP GUIDELINES
LEAP guidelines for SOC assessment describe the approaches to model SOC stocks and 
changes in livestock production systems. Three modelling approaches have been recom-
mended in the LEAP guidelines, namely: empirical models (Level 1), soil models (Level 2) 
and ecosystem models (Level 3).

Empirical models estimate SOC stocks and changes using an empirical approach, which 
usually represents the observed relationships between SOC stocks or SOC changes and 
defined variables (environmental and/or management), such as soil texture, climate, land 
use or management practices (Grigal and Berguson, 1998; Davidson and Janssens, 2006). 
The LEAP guidelines for SOC assessment recommend using these models to provide a first 
estimate of the expected SOC change direction or amplitude.

Soil models estimate SOC stocks and changes by simulating SOC dynamics through 
time, considering the effects of climatic and soil factors together with land use and man-
agement variables. Models at this level are process-oriented; they are generally used to pre-
dict SOC dynamics based on different conceptual carbon pools or compartments that vary 
in size via inputs, decomposition rates and stabilization mechanisms. Soil models focus on 
the processes mediating the movement and transformations of soil carbon only. Each soil 
organic matter pool within a model is characterized by its position in the model structure 
and its decay rate. Decay rates are usually expressed by first-order rate kinetics (Paustian 
et al., 1997) for the concentration of the pool over time. To include estimates of changes 
in SOC stocks in life-cycle assessments (LCA), the LEAP guidelines for SOC assessment rec-
ommend using at least a Level 2 model to estimate SOC after a land management change. 

Ecosystem models are process-oriented and consider the effects of climate, soil, land 
use and management variables on SOC dynamics. However, these models simulate soil 
processes other than carbon turnover that may have a direct or indirect impact on SOC 
dynamics. Thus, Ecosystem models are built by different sub-models simulating above- 
and below-ground plant biomass, soil water dynamics, nutrient dynamics, and their 
interactions. 

The purpose of the present study was to focus on soil carbon only, therefore Ecosystem 
models were not included, while both Empirical and Soil models were integrated into the 
methodology.

2.2 FRAMEWORK AND METHODOLOGY DEVELOPMENT
The LEAP recommendations set the benchmark for the development of a framework for 
assessing SOC stocks and potential SOC sequestration in grassland systems at global level. 

The Tier 2 approach (Level 2 – soil model) recommended in the LEAP guidelines for SOC 
assessment was used to estimate the baseline SOC stocks in grassland systems, providing 
global reference conditions of grassland soils for the year 2010. 
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Among the Soil models suggested in the LEAP guidelines, the Rothamsted Carbon model 
(i.e. RothC; Coleman and Jenkinson, 1996) was selected, as it is one of the most commonly 
used soil process-based models. RothC simulates the turnover of organic carbon in non-wa-
terlogged topsoil using a monthly time step to estimate total SOC. The model has been wide-
ly tested and used at the plot, field, regional and global scales, using data from long-term 
field experiments from different locations (Diels et al., 2004; Pramod et al., 2021). 

RothC uses a pool-type approach, describing SOC as pools of inert organic matter (IOM), 
humus (HUM), microbial biomass (BIO), resistant plant material (RPM) and decomposable 
plant material (DPM). During the decomposition process, material is exchanged between the 
SOC pools according to first-order rate equations. These equations are characterized by a spe-
cific rate constant for each pool. These rates are adjusted according to rate modifiers which 
are dependent on the temperature, moisture, and crop cover of the soil. The decomposition 
process results in gaseous losses of carbon dioxide (CO2). The type of vegetation influences 
the distribution of carbon inputs into the RPM and DPM pools, hence the DPM:RPM ratio 
typically depends on the vegetation type. In RothC, four vegetation types are considered: 
croplands, improved grasslands, unimproved grasslands, and forests with a DPM:RPM ratio 
of 1.44, 1.44, 0.67 and 0.25 respectively. For a given total carbon input and mineralization 
rate, land use with lower values of the DPM:RPM ratio will exhibit higher total SOC stocks. 
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The Tier 1 approach (Level 1 – empirical model) recommended in the LEAP guidelines 
for SOC assessment was selected to explore the global potential of grassland systems to 
sequester carbon. This analysis illustrates where and how much carbon might be sequestered 
if – through improved practices and management – SOC on grasslands can be increased by 
a generally accepted (as attainable) moderate amount, based on the medium sequestration 
scenario of Sommer and Bossio (2014) and Zomer et al. (2017). This empirical approach 
has been chosen over a process-based methodology to reduce uncertainties on manage-
ment data. As countries, and even farms, adopt different practices based on ecological and 
socio-economic constraints, it can be difficult to determine a spatially explicit distribution of 
management practices tailored to increase soil carbon. Instead, an empirical approach was 
adopted to estimate the percent increase of SOC attainable under improved management, 
such as the incorporation of animal manures, agroforestry, rotational grazing, or other prac-
tices that are known to increase soil carbon at the decadal scale. This approach provides a 
general framework for countries with limitations on their ability to implement more complex, 
intensive data requiring, process-oriented modelling approaches.

The two approaches presented here require specific input data and distinct modelling 
assumptions. Full details on data requirements and model initialization of both approaches 
are given in the following sections. Due to the nature of the methodology used, the esti-
mated baseline SOC stocks for the year 2010 and the soil carbon sequestration potential 
of grassland systems will be analyzed and discussed independently.

2.3 ASSESSING THE BASELINE SOIL CARBON STOCKS OF GRASSLAND 
SYSTEMS
The estimation of changes in SOC by the Tier 2 Soil model, due to either land-use or man-
agement changes, requires model initialization. Initialization refers to setting the initial SOC 
condition (total SOC and SOC of the different pools) at the start of the period over which 
stocks will be estimated, so that further simulated results are realistic estimates.

The Harmonized World Soil Database (HWSD) version 1.2 was used to provide initial 
soil conditions in the model (FAO, IIASA, ISRIC, ISS-CAS & JRC, 2012). The HWSD is a  
30 arc-second raster database with over 15 000 different soil mapping units that combines 
existing regional and national updates of soil information worldwide with the information 
contained within the 1:5 000 000 scale FAO-UNESCO Soil Map of the World. The HWSD 
provides soil data to a depth of 1 meter at a resolution of 30 arc s (approximately 1 km), 
for the dominant soil types in each grid cell. The soil properties used from this database 
to drive the RothC model for the top 30 cm soil depth were: organic carbon content, bulk 
density, coarse fragments and clay fraction. The RothC model is run for the dominant soil 
type (percentage of grid cell area > 50 percent) in each grid cell at a soil depth of 30 cm.

RothC requires monthly precipitation and air temperature data which are used to 
determine temperature-based rate modifiers for various soil processes. The annual monthly 
statistics on averaged mean temperature and sum of precipitation were derived from the 
AgMERRA climate dataset (i.e. 0.5 deg spatial resolution) (Ruane, Goldberg and Chryssan-
thacopoulos, 2015) for years from 1980 to 2010.

Land cover was estimated using the Climate Change Initiative (CCI) Land Cover (LC) 
data v2.0.7 (ESA, 2017) for the year 2010. The CCI-LC predictions (300 meters spatial 
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resolution) were grouped into two main categories reflecting the grassland categories 
given in the RothC model, namely improved and unimproved grasslands. We reclassi-
fied CCI-LC classes into improved and unimproved grasslands on the RothC assumption 
that improved systems are managed systems, while unimproved grasslands are close to 
semi-natural environments (Table 1). A full description of the CCI-LC classes and their 
direct link with the Land Cover Classification System developed by the United Nations can 
be found in the CCI-LC product user guide (ESA, 2017).

Simulations were only performed on these two categories and their distribution is shown 
in Map 1. For improved grassland, we used a DPM:RPM ratio of 1.44 (i.e. 59 percent of the 
plant material is DPM and 41 percent is RPM). For unimproved grassland, a ratio of 0.67 was 
used.

The annual plant residue input was estimated following the Intergovernmental Panel on 
Climate Change (IPCC) methodology (IPCC, 2006). The carbon input from plant residues 
(CRes) was calculated using the sum of above-ground and below-ground residues, which 
were then converted into their carbon content.

= +        Eq.1

Where CAGR is the carbon in the above-ground residues and CBGR is the carbon in the 
below-ground residues.

Following Chapter 11 of the IPCC methodology (IPCC, 2019), the above-ground res-
idues can be estimated as a function of the total yield and then converted into carbon 
content as follows:

= ( × 0.3) × 0.475     Eq. 2

Where AGDM is the above-ground dry matter.

TABLE 1
CCI-LC classes reclassified into improved and unimproved grasslands

CCI-LC class New class used in this study

Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%) Improved

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) Improved

Grassland Improved

Mosaic tree and shrub (>50%) / herbaceous cover (<50%) Unimproved

Mosaic herbaceous cover (>50%) / tree and shrub (<50%) Unimproved

Shrubland Unimproved

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Unimproved
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The same approach can be used to estimate the carbon content from the below-ground 
biomass residues:

= ( × 0.9)      Eq. 3

Where BGDM is the below-ground dry matter.

Data on above-ground dry matter per hectare for the year 2010 were estimated by 
the GLEAM 2.0 model (FAO, 2020a). Data on fresh matter yields per hectare, and their 
respective land area, were taken from a modified version of Global Agro-Ecological Zones 
(GAEZ 3.0) (IIASA and FAO, 2012) and Haberl et al. (2007) to estimate the above-ground 
net primary productivity for grassland. To this scope, the fresh matter was converted into 
dry matter content, with dry matter being 90 percent of fresh (Opio et al., 2013).

Carbon input from animal excreta (CExc) was estimated from the nitrogen deposited 
in 2010, which was calculated by the GLEAM 2.0 model. The function of the GLEAM 
‘Manure’ module is to calculate the losses of nitrogen through manure management sys-
tems and the rate at which excreted nitrogen is applied and deposited (FAO, 2020a). The 
deposited nitrogen is then converted into carbon by applying a mean C:N ratio of 17.5 
(FAO, 2015a), and then used as input in the RothC model.

All above input variables were harmonized to a 1 km spatial resolution and the RothC 
model was first initialized using a long ‘spin-up’ simulation (i.e. 10 000 years) (Coleman 
and Jenkinson, 1996), to estimate the soil pool ratios by iteratively adjusting the carbon 
inputs such that the SOC from the HWSD dataset was reproduced. Then a short ‘warm-up’ 
simulation of 30 years was used to estimate the soil conditions for the year 2010 (FAO, 
2019; FAO, 2020a). The year 2010 was chosen for consistency with the data derived from 
the GLEAM 2.0 model and to align the potential SOC estimated by the RothC model with 
the GHG emissions estimated by the GLEAM 2.0 model. 

The Global Administrative Unit Layers (GAUL) database (FAO, 2015b) was used to ana-
lyze results by region. This choice was made to align the results of this study with the LCA 
analysis on livestock systems performed with the GLEAM model.

The Pearson correlation test was used to investigate the dependence between multiple 
variables used to drive the RothC model and the simulated SOC (Smith and Smith, 2007). 
In particular, correlation tests were performed among simulated SOC (baseline SOC), initial 
SOC (HWSD soil carbon data), potential evapotranspiration, air temperature, precipitation, 
and organic carbon inputs to the soil.

The sensitivity of RothC to different input parameters was investigated to quantify the effects 
of such parameters on the simulated SOC (Smith and Smith, 2007). Only one parameter was 
changed at a time, while the others were kept constant. Simulations were run to assess how SOC 
was affected by changes in average temperature (increased/decreased by a range from -2 degree 
Celsius (°C) to +2 °C with an increment of 1 °C), initial SOC content (decreased/increased by a 
range from -50 percent to +50 percent with an increment of 20 percent or 30 percent), and total 
carbon inputs (decreased/increased by a range from -50 percent to +50 percent with an incre-
ment of 20 percent or 30 percent). For each scenario, the relative change in SOC was calculated 
as a percentage. All analysis was performed using R software version 4.0.3 (R Core Team, 2013).
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2.4 ASSESSING CARBON INPUT LEVELS NEEDED TO MAINTAIN CURRENT 
SOIL ORGANIC CARBON STOCKS
The RothC model is designed to run in two modes: “forward” in which known carbon 
inputs are used to calculate the changes in soil organic matter, and “inverse” when carbon 
inputs are calculated at an equilibrium state for 10 000 years from known changes in soil 
organic matter. In this study, the model was run at equilibrium in inverse mode to predict 
the plant input required to maintain current SOC levels. Prior to initializing the model in 
inverse mode, the equation developed by Falloon et al. (1998) was used to estimate the size 
of the IOM pool from the known SOC stock. The remaining SOC stock (i.e. the total stock 
minus IOM) is then used as the input variable, and carbon inputs into the soil are iteratively 
adjusted until this input value is reached.

= 0.049 × 1.139       Eq. 4

When run in inverse mode, RothC needs only two input data related to management. The 
first one is the number of months when soils are left bare. This input variable was set to zero 
months for all grasslands, as grassland ecosystems are never left bare. The second input var-
iable is the proportion of carbon inputs to the soil that consists of organic amendments. The 
organic carbon inputs to the soil are mainly the result of plant residues and additions of animal 
manure and other organic products. In RothC, the fate of carbon provided by plant residues 
and organic amendments is specific, reflecting their difference in terms of decomposability. 
Therefore, to use RothC for estimating the amount of carbon input needed to maintain current 
levels of SOC stocks, the proportion between CRes and CExc was estimated.

The estimated carbon input (C0) was then compared against total carbon input (CRes + CExc) 
to assess if the carbon input needed to maintain current SOC levels is available under current 
conditions (Martin et al., 2021). The carbon balance (Cbal) of a given soil is therefore defined 
as the difference between available carbon inputs (CRes + CExc) and the carbon input (C0), as 
estimated with the RothC model.

Cbal = (CRes + CExc) - C0       Eq. 5

If Cbal differs from zero, the steady-state hypothesis is currently not valid. Cbal < 0 indicates 
that the current total carbon input is not sufficient to sustain existing SOC stocks, hence 
resulting in a SOC declining trend. If Cbal > 0, SOC stocks might be on an increasing trend.

The Global Administrative Unit Layers (GAUL) database (FAO, 2015b) was used to ana-
lyse results by region.

2.5 ASSESSING SOIL ORGANIC CARBON SEQUESTRATION POTENTIAL IN 
GRASSLAND SYSTEMS
The global potential of grassland systems to sequester carbon in the soil was estimated by using 
an empirical approach based on a methodology developed by Zomer et al. (2017). This approach 
estimates the percent increase of SOC attainable after 20 years of improved management prac-
tices. A geospatial analysis is then used to estimate the potential attainable SOC sequestration 
in grassland systems and to identify opportunities for SOC sequestration worldwide.
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The initial SOC (tonnes C/ha), bulk density (kg/m3) and sand content (weight percent) at 
0 – 30 cm soil depth were extracted from the Soils Grid (i.e. 250 m spatial resolution - ISRIC 
World Soil Information) (Hengl et al., 2014).

The Global Land Cover SHARE Beta-Release v1.0 (i.e. GLC_SHARE) (FAO, 2014) was used 
to identify grassland extent and distribution. This geospatial database provides an estimate of 
the percent of land-cover area within a 1 km grid cell. The GLC_SHARE dataset was resam-
pled to allow for the analysis and geoprocessing at the finer 250 m (0.002083333 degrees) 
resolution of the soil data. The designation grassland is based upon the UN Land Cover Clas-
sification System, and includes any geographic area dominated by natural herbaceous plants 
(grasslands, prairies, steppes and savannahs) with a cover of 10 percent or more, irrespective 
of different human and/or animal activities, such as grazing, selective fire management, etc. 
Woody plants (trees and/or shrubs) can be present assuming their cover is less than 10 percent. 

The geospatial analysis used to estimate the potential attainable increase of SOC on grass-
land after twenty years is described in detail in Sommer and Bossio (2014) and Zomer et al. 
(2017). The increase in percent-SOC in response to improved management was described in 
Sommer and Bossio (2014) with a four-parameter sigmoid function of the form:

= 0 +
1+ − − 0        Eq. 6

where SOC0 is the initial SOC content (percent), a and b are empirical constants, t is the 
time expressed in years, and t0 is the year where the slope of the curve is largest (i.e. the 
highest annual sequestration rate). The parameters for the scenario based upon Sommer 
and Bossio (2014) were:

= 0.697;  = 11.5;  0 = 4 

The percent increase of SOC after 20 years was calculated from this curve (Figure 1) and 
resulted in a value of 0.27.

Bulk density was used to first convert SOC (tonnes C/ha) (as presented in the Soils 
Grid 250 m data) into SOC (percent). The estimated percentage increase of SOC (i.e. 0.27 
percent increase) was then added to SOC (percent), and the result was converted back to 
SOC (tonnes C/ha).

High SOC soils (i.e. soils with a weighted average bulk density (0–30 cm) equal to or 
less than 1.0 kg/m3 and/or with more than 400 tonnes C/ha) were excluded from further 
analysis. Sandy soils (i.e. sand content at 15 cm equal to or greater than 85 percent) were 
also excluded from further analysis. These soils were excluded because their potential for 
sequestering carbon would be negligible.
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FIGURE 1
Percent increase of soil organic carbon (SOC) in response to improved management

Source: Sommer, R. & Bossio, D. 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. 
Journal of Environmental Management, 144: 83–87. https://doi.org/10.1016/j.jenvman.2014.05.017
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All result grids were converted into World Sinusoidal projection to allow for area calcu-
lations. The GLC_SHARE – Dominant (Class 3 = Grassland) dataset (FAO, 2014), in percent 
area of a 1 km grid cell, was resampled to 250 m and multiplied times the various results 
(tonnes C/ha) to calculate actual total tonnes of carbon in each grid cell (i.e. given the 
actual area of grassland in that grid cell). The Global Administrative Unit Layers (GAUL) 
database (FAO, 2015b) was used to analyse results by region.

https://doi.org/10.1016/j.jenvman.2014.05.017
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3. Results

3.1 GLOBAL BASELINE SOIL ORGANIC CARBON STOCKS
Globally, grassland soils stored an estimated 63.5 Mt of carbon in the year 2010 at 30 cm 
soil depth, with unimproved systems storing slightly higher amounts than improved systems 
(33.8 vs 29.8 Mt C). In unimproved grassland systems, the Russian Federation and the Amer-
icas stored the highest amount of SOC among all regions, while South Asia and Eastern 
Europe stored less than 1 Mt C each. In improved grasslands, Central and South America 
was the region with the highest SOC socks (5.6 Mt C), followed by the Russian Federation 
(5.1 Mt C) and East Asia (4.9 Mt C). Eastern Europe was the only region with SOC stocks 
values below 1 Mt C, while the other regions ranged from 1.3 Mt C in South Asia to 3.5 Mt 
C in North America (Figure 2).

On average, in the year 2010 the SOC under unimproved grasslands was 53 tonnes C/ha 
and 50 tonnes C/ha in improved grasslands. Global distribution of SOC is strongly influenced 

FIGURE 2
Regional total (cumulative) soil organic carbon (SOC) estimated for the year 2010  

by the RothC model for improved and unimproved grassland worldwide

Source: UN. 2020. Map of the World, modified with data from Coleman, K. & Jenkinson, D.S. 1996. RothC-26.3 - A Model for the 
turnover of carbon in soil. In: Powlson, D.S., Smith, P., Smith, J.U., eds. Evaluation of Soil Organic Matter Models. NATO ASI Series, 
38: 237-246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61094-3_17
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by temperature and precipitation. SOC is generally lower in the tropics where it is hotter 
and/or drier, and higher in the cooler and wetter latitudes. The spatial distribution of SOC in 
improved (Map 2) and unimproved grasslands (Map 3), and its contribution to total carbon 
stock differs substantially from the northern to the southern hemispheres. Most of the world’s 
SOC is stored at northern latitudes, particularly in the permafrost and moist boreal regions. 
In contrast, large areas of grassland in East Asia, across sub-Saharan Africa and some areas 
in North America are found on low carbon density soils.

The regions of the Russian Federation, Europe and North America store the greatest 
amount of soil carbon on a per hectare basis in improved systems, with 76 tonnes C/ha,  
61 tonnes C/ha and 60 tonnes C/ha, respectively (Map 2). In unimproved systems, these 
same regions store higher amounts of carbon in the soil, with values ranging from  
92 tonnes C/ha in the Russian Federation to 56 tonnes C/ha in North America (Map 3).  
The Russian Federation region accounts for more than 50 percent of all SOC stocks 
globally. Together with North America, these two regions appear to have not suffered 
human-induced soil degradation. 
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193. Results

In improved systems, moderate amounts of SOC stocks were found in Central and South 
America, East Asia, and West Asia and Northern Africa, ranging from 52 to 56 tonnes C/ha. 
South Asia, Oceania, and sub-Saharan Africa regions have very low amounts of SOC, account-
ing for just 3.9 percent of the global total (Map 2).

In unimproved systems (Map 3) moderate amounts of SOC stocks were only found in 
Central and South America (49 tonnes C/ha), while in all other regions SOC stock level is 
lower than average global figures, ranging from 32 tonnes C/ha (sub-Saharan Africa) to  
35 tonnes C/ha (South Asia).

Plant residues and animal manure also affect the SOC stocks. Globally, the average total 
yearly carbon input to the soil, for the reference baseline year 2010, was estimated to be 
3.23 tonnes C/ha/year in improved systems. In the regions of sub-Saharan Africa and Cen-
tral and South America, the total yearly carbon input to the soil was estimated to be higher 
than average figures, with values under improved grasslands reaching 6.7 tonnes C/ha/
year and 5.8 tonnes C/ha/year, respectively (Figure 3). On the other hand, lower amounts 
of total carbon inputs to the soil were found in the Russian Federation (2.0 tonnes C/ha/
year) and West Asia and Northern Africa regions (2.1 tonnes C/ha/year). The average total 
yearly carbon input to the soil, for the reference baseline year 2010, was estimated to be 
2.35 tonnes C/ha/year in unimproved systems, with estimates close to the regional average 
of total organic carbon input of all world regions (Figure 3).

FIGURE 3
Regional average of total organic (plant and excreta) carbon input to the soil  

in unimproved and improved grasslands

Source: UN. 2020. Map of the World, modified with data from Coleman, K. & Jenkinson, D.S. 1996. RothC-26.3 - A Model for the 
turnover of carbon in soil. In: Powlson, D.S., Smith, P., Smith, J.U., eds. Evaluation of Soil Organic Matter Models. NATO ASI Series, 
38: 237-246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61094-3_17
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3.2 ASSESSMENT OF CURRENT CARBON STOCK LEVELS
Improved grasslands needed, on average, higher carbon inputs than unimproved systems 
to sustain current SOC stocks (2.1 vs 1.3 tonnes C/ha/year). 

Some of the highest carbon input needs in improved systems were found in sub-Saharan 
Africa (6 tonnes C/ha/year), and Central and South America (5 tonnes C/ha/year). On the con-
trary, the Russian Federation, and West Asia and Northern Africa require low carbon inputs to 
the soil, with values below 1 tonne C/ha/year. The same regional distribution has been found 
in unimproved systems, with the Russian Federation requiring only 0.3 tonnes C/ha/year to 
maintain current levels of carbon in the soil, while parts of Central and South America need 
more than double the average required amount of carbon inputs (Figure 4).

Some of the highest carbon input needs were found in areas where high SOC stocks 
are associated with high mineralization coefficients related to the mild moist conditions, 
or with high SOC stocks and sandy soils. At the opposite end of the spectrum, other areas 
exhibited low carbon input requirements because of low SOC stocks and moderate to low 
mineralization levels. Therefore, the resulting global distribution of carbon inputs to main-
tain current levels of SOC stocks (Map 4) is strongly affected by the interaction of climate 
and current soil conditions.

FIGURE 4
Regional averages of carbon inputs needed to maintain current levels of carbon in the soil  

in unimproved and improved grasslands

Source: UN. 2020. Map of the World, modified with data from Coleman, K. & Jenkinson, D.S. 1996. RothC-26.3 - A Model for the 
turnover of carbon in soil. In: Powlson, D.S., Smith, P., Smith, J.U., eds. Evaluation of Soil Organic Matter Models. NATO ASI Series, 
38: 237-246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61094-3_17
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In our framework, the estimated carbon inputs are those needed to maintain cur-
rent SOC stocks at steady state. We compared the total carbon input (CRes + CExc) to 
the estimated carbon inputs and the difference was termed the carbon balance (Cbal). 
The current carbon balance may be used to assess if current SOC stocks are increasing 
or decreasing. The majority of grassland soils seem to receive enough organic material 
to maintain current carbon stock levels. On average, Cbal in current grassland systems 
is 1.1 tonnes C/ha/year, for both improved and unimproved systems, hence indicating 
increasing SOC stocks.

At regional level, unimproved grasslands in Eastern Europe and the Russian Federation 
show the highest positive balances with values reaching 1.7 and 1.5 tonnes C/ha/year, 
respectively, while the lowest positive carbon balance (0.6 tonnes C/ha/year) was found in 
East Asia (Figure 5). Improved systems in the Russian Federation seem to follow the same 
pattern of the unimproved grasslands, with the highest Cbal of all regions (1.5 t C/ha/yr). 
On the other hand, we found that improved systems in East Asia are close to equilibrium 
conditions (0.1 tonnes C/ha/year), followed by sub-Saharan Africa (0.6 tonnes C/ha/year) 
and Central and South America (0.8 tonnes C/ha/year) (Figure 5). 

FIGURE 5
Regional carbon balance (tonnes C/ha/year) for unimproved  

and improved grassland systems

Source: UN. 2020. Map of the World, modified with data from Coleman, K. & Jenkinson, D.S. 1996. RothC-26.3 - A Model for the 
turnover of carbon in soil. In: Powlson, D.S., Smith, P., Smith, J.U., eds. Evaluation of Soil Organic Matter Models. NATO ASI Series, 
38: 237-246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61094-3_17

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

R
u

ss
ia

n
 F

ed
er

at
io

n

W
es

t 
A

si
a 

&
 N

o
rt

h
er

n
 A

fr
ic

a

N
o

rt
h

 A
m

er
ic

a

Ea
st

er
n

 E
u

ro
p

e

W
es

te
rn

 E
u

ro
p

e

O
ce

an
ia

So
u

th
 A

si
a

C
en

tr
al

 &
 S

o
u

th
 A

m
er

ic
a

Su
b

-S
ah

ar
an

 A
fr

ic
a

Ea
st

 A
si

a

Ea
st

er
n

 E
u

ro
p

e

R
u

ss
ia

n
 F

ed
er

at
io

n

W
es

te
rn

 E
u

ro
p

e

N
o

rt
h

 A
m

er
ic

a

C
en

tr
al

 &
 S

o
u

th
 A

m
er

ic
a

So
u

th
 A

si
a

O
ce

an
ia

W
es

t 
A

si
a 

&
 N

o
rt

h
er

n
 A

fr
ic

a

Su
b

-S
ah

ar
an

 A
fr

ic
a

Ea
st

 A
si

a

Improved Unimproved

C
a

rb
o

n
 b

a
la

n
ce

 (
to

n
n

e
s 

C
/h

a
/y

e
a

r)

https://doi.org/10.1007/978-3-642-61094-3_17


233. Results

However, it is important to note that for both grassland systems, several countries have 
a negative Cbal. Analysis indicated that available carbon inputs to the soil were lower than 
estimated carbon inputs needed to preserve current SOC stocks, and consequently were 
not sufficient to maintain stocks at steady state. In improved systems, the highest negative 
Cbal was found in Indonesia (-6.7 tonnes C/ha/year), the Philippines (-5.1 tonnes C/ha/year), 
Colombia (-4.5 tonnes C/ha/year), Malaysia (-3.9 tonnes C/ha/year) and Uruguay (-3.3 tonnes 
C/ha/year), meaning that current SOC stocks are likely to be decreasing due to anthropogenic 
stresses combined with climatic conditions (Map 5). Negative Cbal values were also found in 
unimproved systems in Colombia (-6.2 tonnes C/ha/year), Indonesia (-5.3 tonnes C/ha/year) 
and Mexico (-0.9 tonnes C/ha/year), among others (Map 6).
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3.3 SOIL ORGANIC CARBON SEQUESTRATION POTENTIAL 
Estimates of global soil carbon stocks, trends and sequestration potential are now central 
to important topics, such as food security and climate change. In this context, regenerative 
forms of grazing can provide carbon removal from the atmosphere and storage in the soil. 
Well-adapted grazing systems – with improved pasture and optimized grazing regimes – 
have the potential to increase SOC on degraded grassland, or on grassland soils that have 
not reached their full carbon sequestration potential. 

The Russian Federation showed the highest potential for carbon storage with an average 
SOC stock of 191 tonnes C/ha after 20 years of implementation of best management prac-
tices (Figure 6). However, soils of the Russian Federation are already fairly carbon-dense on 
average (186 tonnes C/ha) and these soils have likely reached their full sequestration poten-
tial, so even the best management practices will not provide a further accumulation of SOC. 

The annual increment (on a per hectare basis) ranged from 0.18 to 0.41 tonnes C/ha across 
the various regions (Figure 6). Sub-Saharan Africa and South Asia show the highest potential 
for carbon storage on a per hectare basis (0.41 and 0.33 tonnes C/ha/year, respectively), fol-
lowed by Oceania, North America, and East Asia. Western Europe and Eastern Europe have 
the lowest annual increments (0.20 tonnes C/ha and 0.18 tonnes C/ha respectively), which 
result in a negligible sequestration potential (Figure 6). In general, areas of the southern hemi-
sphere with low carbon stocks show a large potential for soil carbon storage (Map 7).

FIGURE 6
Soil organic carbon (SOC) sequestration potential after 20 years  

of application of best management practices for all available grassland soils  
(i.e. those not excluded from the analysis as high SOC or sandy soils)

Note: Results are given by regional averages per hectare (bars) and their annual increment (dots)).

Source: UN. 2020. Map of the World, modified with data from Sommer, R. & Bossio, D. 2014. Dynamics and climate change 
mitigation potential of soil organic carbon sequestration. Journal of Environmental Management, 144: 83–87.  
https://doi.org/10.1016/j.jenvman.2014.05.017; Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B.M., Ribeiro, E., 
Samuel-Rosa, A., Kempen, B., Leenaars, J.G.B., Walsh, M.G. & Ruiperez Gonzalez, M. 2014. SoilGrids1km — Global Soil Information 
Based on Automated Mapping. PLOS ONE, 9(8): e105992. https://doi.org/10.1371/journal.pone.0105992
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4. Discussion

4.1 BASELINE SOIL ORGANIC CARBON
In the year 2010 there was an estimated global annual uptake of 63.5 Mt of carbon in 
grassland soils to a depth of 30 cm, with unimproved systems storing slightly higher amounts 
than improved systems (33.8 vs 29.8 Mt C). Such a difference, even if small, is an expected 
result as unimproved systems are less managed compared to improved systems, with the 
latter more likely to lose carbon under human-induced activities. On average, the present 
study shows that in the year 2010 the SOC in global grasslands was about 51 tonnes C/ha 
to a soil depth of 30 cm (i.e. 53 tonnes C/ha in unimproved and 50 tonnes C/ha in improved 
systems). Grassland SOC stocks may be as low as 25 tonnes C/ha for herbaceous grasslands 
in deserts, and as high as 160 tonnes C/ha for evergreen shrub grasslands in boreal regions 
(Petri et al., 2010; Lorenz and Lal, 2018). These results are comparable with our study, where 
we found SOC stocks of 25 tonnes C/ha, or lower, in regions with arid climate (Beck et al., 
2018) and higher SOC stocks, above 80 tonnes C/ha, in cold climates (Beck et al., 2018).  
An early study from Sombroek and colleagues reported estimated SOC stocks of 124 tonnes 
C/ha to a 1 m soil depth (Sombroek, Nachtergaele and Hebel, 1993) in grasslands, while 
the Special Report on Land Use, Land-Use Change, and Forestry reported a soil carbon 
stock in temperate grasslands of about 236 tonnes C/ha to a 1 m soil depth (IPCC, 2019).  
A more recent meta-analysis by Dlamini, Chivenge and Chaplot (2016) estimated SOC 
stocks to 30 cm depth between 1 and 400 tonnes C/ha, with an average of 50 tonnes C/ha. 
 Our study can be directly compared only with the latter study, which reported estimates to 
a soil depth of 30 cm. Despite the large SOC stock range, the average SOC stock values are 
comparable (i.e. 51 tonnes C/ha in our study vs 50 tonnes C/ha in Dlamini, Chivenge and 
Chaplot [2016]). Indeed, SOC stocks vary greatly among climatic regions and soil types, as 
reported in the few global studies focused on quantifying soil carbon in grasslands.

The results arising from the present study provide additional information on the SOC 
spatial distribution for both grassland systems. The greatest SOC stocks were found in 
temperate regions due to lower average temperatures compared to humid, subhumid, 
tropical, and semiarid regions resulting in lower decomposition rates, hence in the accu-
mulation of SOC. Greater SOC stocks under wet climates could also be attributed to the 
high productivity of grasslands in wet environments. In comparison, the lowest SOC stocks 
were observed in arid to semiarid grassland soils due to the low rainfall amounts resulting 
in low biomass production and organic matter decomposition, hence a reduction of carbon 
inputs into the soil. Indeed, stabilization of SOC also depends on several soil properties 
such as soil pH, which contributes to regulating soil nutrient bioavailability, organic matter 
turnover and an array of soil processes (Kemmitt et al., 2006), and soil clay and silt particles, 
which protect soil organic matter by stabilizing it against microbial mineralization (Six et 
al., 2002). Climatic conditions explained much of the variability of SOC stock in grassland 
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soils to 30 cm depth, followed by the carbon input to the soil. In grassland systems, carbon 
inputs to the soil are associated with grass biomass production, grazing intensities and 
ruminant stocking density. In our framework, this parameter was derived from the GLEAM 
model, a tool that enabled comprehensive, disaggregated and consistent analysis of the 
environmental performance of global livestock production systems. The GLEAM model uses 
a herd model coupled with an IPCC (2006) Tier 2 approach to computing emissions, there-
by enabling key characteristics of the livestock populations (e.g. herd structures, animal 
performance, rations and manure management) to be captured in the calculations. Further, 
GLEAM adopts a life-cycle approach and calculates the emissions arising along the supply 
chain from cradle to retail point. Finally, the reliance on geographical information systems 
(GIS) provides spatially explicit analysis and flexibility in combining datasets and aggregating 
results (MacLeod et al., 2018). By ‘soft-coupling’ (i.e. a link between two individual mod-
els where a result of one model is integrated as an input parameter to the other model) 
GLEAM and RothC, it was possible to include detailed information about the contribution 
of livestock systems (e.g. N deposited, animal intake and distribution) to SOC stocks and to 
estimate the first spatially explicit baseline scenario for the year 2010. The results presented 
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here are meant to provide an estimate of the SOC levels in grassland systems in 2010; such 
estimates are a starting point for further analysis, and in particular for designing and test-
ing management practices that could be beneficial to mitigating climate change without 
compromising food security. 

It is well known that among land-based GHG removal technologies, soil carbon 
sequestration practices play a role in delivering agroecosystem resilience, climate change 
adaptability, food security and improving nutrition. However, the effect of such practices 
should be analysed at local scale because local socio-economic constraints, legislation and 
environmental factors should be considered when designing interventions intended to 
mitigate climate change. Therefore, these results are intended to act as a baseline when 
identifying locations where interventions should be a priority (due to high soil degrada-
tion) and provide a baseline when quantifying the effect of such practices on soil carbon 
sequestration. Two case studies are presented in Box 1 and Box 2 to highlight the applica-
bility of this framework at local level: to quantify changes in SOC stocks 30 years after the 
establishment of fodder gardens in East Africa (Box 1), and to assess the effect of pasture 
intensification in Paraguay (Box 2). 

4. Discussion

BOX 1

Assessing the effect of changing management practices on SOC 
case study Eastern Africa

The establishment of fodder gardens is a practice that results in high productivity 

under repetitive cutting, palatable fodder, and high protein content (20−25 percent). 

This practice provides firewood, is easy to establish, and also has the potential to 

improve soil quality through N fixation by legumes.

One tree species used in agroforestry systems that had remarkable success in 

conserving soil, nutrient cycling, and nutrient retention is calliandra (Calliandra 

calothyrsus). Calliandra, indigenous to Central America, is a small tree that reaches 

about 10 m in height, has a deep root system, and is an aggressive pioneer species, 

often found in disturbed areas such as roadsides, riverbanks and shifting cultivation 

plots (Palmer, Macqueen and Gutteridge, 1994). Calliandra grows naturally in moist, 

tropical regions up to an altitude of 1 500 m (Paterson, 1994), with annual rainfall 

between 700 and 3 000 mm, and annual temperatures ranging between 22 and 28 °C.

Because of the limited size of the farms, research focused on integrating the trees 

into existing cropping systems rather than on planting them in monoculture fodder 

banks. Farmers preferred planting trees in hedges around the farm compound, and 

in hedges along contour bunds.

In African countries, more than 40 000 smallholders (Kenya and Uganda) have 

established fodder gardens with calliandra as a practice to raise milk production, 

improve cow health and shorten the calving interval. 

(Cont.)
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Fodder trees require little or no cash investment or land taken away from producing 

food or other crops. The only inputs required are seeds and minimal amounts of labour. 

Moreover, this practice could provide other services, such as the provision of natural 

fencing, and erosion control (Kabirizi, Mpairwe and Mutetikka, 2004).

Despite the potential of this practice to provide several ecological and socio-

economic benefits, little is known about its potential to sequester carbon in the soil. 

For this purpose, the RothC and GLEAM models were soft coupled to study the effect 

on SOC of the establishment of fodder gardens in mixed systems. GLEAM (v2.0) was 

run to estimate the N deposited under a business as usual (baseline) scenario, and a 

second run was performed to estimate the N deposited after the establishment of 

fodder gardens (intervention) in Eastern African countries (Ethiopia, Kenya, Uganda 

and the United Republic of Tanzania). Following the literature, 1 kg DM of calliandra 

was added to the diets of adult females producing milk in dairy cattle systems. The 

N deposited estimates for both the baseline and intervention scenarios were used as 

input to the RothC model to estimate the change in soil carbon 30 years after the 

establishment of fodder gardens (i.e. the RothC model was run for 30 years under 

baseline and intervention conditions). Under the two scenarios, all model inputs (i.e. 

weather, soil pH, soil bulk density and soil texture) were kept constant, except for the 

input from animal excreta. For both scenarios, N deposited was converted to carbon 

by applying a C:N ratio of 17.5 (FAO, 2015a) and used as input to the model runs.

Changes in SOC after 30 years of the application of fodder gardens were 

calculated as follows:

∆C = SOCINT - SOCBAU

Where ∆C is SOC change, SOCINT is the SOC under the intervention scenario and SOCBAU 

is the SOC under the baseline scenario.

The estimated SOC stocks under BAU conditions in Eastern African grasslands range 

from 5.3 to 93.3 tonnes C/ha, with mean values of 40.9 tonnes C/ha. The mean SOC 

stock is in line with data presented by Tessema et al. (2020) in their review of SOC stocks 

and changes in grasslands in Eastern African countries. This metanalysis of local direct 

measurements of SOC reported a mean initial SOC stock of 43.8 tonnes C/ha, and a 

sequestration potential under grassland, following different management interventions, 

of 1.8 tonnes C/ha per year.

The RothC model estimated a potential increase in soil carbon – after the 

establishment of fodder gardens in mixed systems – of 0.9 tonnes C/ha, which leads to 

about 0.03 tonnes C/ha per year. This result is lower than the SOC potential reported 

by Tessema et al. (2020). It is, however, important to highlight that the two studies 

are not directly comparable due to the background information and assumptions 

used to determine the SOC potential. 

(Cont.)
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More specifically, in the publications by Tessema et al. (2020), eight different 

management practices were examined: enclosure, improved management (using 

rotations and adding different inputs such as manure, fertilizer, etc.), free grazing, light/

heavy grazing, fencing, restoration measures, and conversion from natural forest to 

grazing. The intervention simulated by the RothC model is based on the establishment 

of fodder gardens with calliandra as a practice to increase milk production. The main 

changing factor applied to the modelling of soil carbon is the change in animal 

excreta, derived from a partial change in animal feed, with an application rate of 50 

percent. The difference in carbon input between baseline and intervention is quite 

low (data not shown), however, even a small change in carbon input to the soil from 

animal excreta has the potential to increase carbon sequestration over 30 years. Other 

interventions and improved management practices, such as changing grazing intensity, 

could provide an even greater increase in SOC. It should be noted that calliandra could 

become invasive and cause ecological damage outside Central America; therefore, 

more studies are needed in the area to quantify the long-term impacts of such practices 

on soil health, as well as production and other ecosystem services.
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4. Discussion

Potential increase in soil carbon after the establishment of fodder gardens  
in mixed systems in Eastern African countries

Notes: Dashed lines on maps represent approximate border lines for which there may not yet be full agreement. 
Final boundary between the Republic of Sudan and the Republic of South Sudan has not yet been determined. 
Final status of the Abyei area is not yet determined.
Source: United Nations Geospatial. 2020. Map of the World. United Nations. Cited 22 August 2022. www.un.org/
geospatial/file/2285/download?token=puayKYRA modified with data from Coleman and Jenkinson, 1996.

http://www.un.org/geospatial/file/2285/download?token=puayKYRA
http://www.un.org/geospatial/file/2285/download?token=puayKYRA
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BOX 2

 Assessing the effect of pasture intensification on SOC 
case study Paraguay

Over the last decades, despite heterogeneities at local scales, there has been overall a 

global trend of grazing systems intensification in response to increasing demand for 

livestock products and land competition. In Paraguay, increasing animal productivity 

is on the country’s agenda, but environmental trade-offs should also be considered 

to define tailored interventions which will not compromise soil health and other eco-

system services. Therefore, it is crucial to explore the effect of pasture intensification 

on soil carbon dynamics. For this purpose, the RothC and GLEAM models were soft 

coupled to study the effect of pasture intensification on beef systems. GLEAM (v2.0) 

was run to estimate the N deposited under a business as usual (baseline) scenario; a 

second run was performed to estimate the N deposited after the intensification of 

grassland systems (intervention) in Paraguay. The following changes were made to 

the GLEAM inputs compared to the baseline scenario: feed intake was increased by 

6.5 percent, biomass was increased by 10 percent and 90 kg/ha per year of synthetic 

N fertilizer was applied to the soil (N fertilizer was not applied in the baseline scenar-

io). GLEAM estimates of N deposited for both baseline (BAU) and intervention (INT) 

scenarios were converted to carbon by applying a C:N ratio of 17.5 (FAO, 2015a) and 

then used as input to the RothC model to estimate the change in soil carbon after 30 

years of pasture intensification. To do so, the RothC model was run for 30 years for 

both BAU and INT conditions. Between the two scenarios, all other model inputs (i.e. 

weather, soil pH, soil bulk density and soil texture) were kept constant.

Changes in SOC after 30 years of pasture intensification were calculated as follows:

∆C = SOCINT – SOCBAU

Where ∆C is SOC change, SOCINT is the SOC under the intervention scenario and 

SOCBAU is the SOC under the baseline scenario.

The RothC model estimated a mean potential SOC increase of 27 tonnes C/ha 

after 30 years of pasture intensification in Paraguay, which corresponds to a yearly 

accumulation of about 0.9 tonnes C/ha in the soil. However, changes in SOC differ 

substantially across the country, with accumulation reaching 150 tonnes C/ha in the 

northeast of the country. A substantial depletion in SOC is found in the north/north-

west, with a maximum loss of about 50 tonnes C/ha. Areas with positive change in SOC 

experience an accumulation of carbon in the soil mainly because of the higher carbon 

inputs to the soil from both plants and animals, compared to the baseline scenario. 

In this case, synthetic N fertilizer does not inhibit SOC accumulation, a process that is 

likely to occur in areas where animal density is low and not enough organic material is 

returned to the soil from animal excreta.

 (Cont.)
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Increasing SOC stocks under perennial grasses relies mainly on enhancing carbon 

inputs from plant roots and residues. This can be achieved by managing plant 

biomass removal from grazing or increasing forage production through improved 

species, irrigation and fertilization, yielding increases in SOC stocks of as much as 

10 percent (Conant et al., 2017). In our study, fertilization, yield and animal feeds 

were increased compared to the baseline scenario. As a result, we estimated an 

increase in SOC of 0.9 tonnes C/ha a year, which leads to an increase in SOC stocks of 

about 7 percent. This increase is, however, only achievable in areas where initial soil 

conditions, soil nitrogen and animal density are balanced, otherwise a depletion of 

carbon will occur. Soil carbon is only one component of the carbon balance system. 

Pasture intensification, achieved by increasing fertilization, yield and animal feeds, 

has a large impact on methane emissions and other GHG fluxes. Therefore, for a full 

system budget, it is imperative to include estimates of changes in methane emissions 

following pasture intensification in order to understand the environmental impacts 

of such an intervention on the full system.
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4. Discussion

Potential soil organic carbon (SOC) change (tonnes C/ha)  
after 30 years of pasture intensification

Source: United Nations Geospatial. 2020. Map of the World. United Nations. Cited 22 August 2022. www.un.org/
geospatial/file/2285/download?token=puayKYRA modified with data from Coleman and Jenkinson, 1996.

http://www.un.org/geospatial/file/2285/download?token=puayKYRA
http://www.un.org/geospatial/file/2285/download?token=puayKYRA
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It should be noted that the framework presented here, as well as the SOC stock esti-
mates, follow the approach described in the LEAP guidelines for SOC assessment and the 
GSOC-MRV Protocol, a FAO protocol for measurement, monitoring, reporting and verifi-
cation of SOC in agricultural landscapes (FAO, 2020b). However, several assumptions have 
been used to generalize and simplify the methodology to be applied globally. Moreover, 
datasets on soil, climate and carbon inputs (at both regional and global levels) carry levels 
of uncertainty that should not be disregarded when applying this framework and the SOC 
stock baseline estimates to analyze mitigation strategies. A detailed description of the 
model uncertainties is given in section 4.5. 

4.2 SOIL ORGANIC CARBON BALANCE
Different methods have been used to estimate carbon input to the soil for modelling 
purposes. They range from inverse modelling and allocation functions to expert opinion. 
The diversity of methods and contexts results in a great variety of estimates (Martin et al., 
2021). In our study we estimated carbon inputs in two ways: by IPCC Tier 2 methodology 
using the GLEAM model to quantify the actual input to the soil; and by inverse modelling 
to determine the carbon inputs needed to maintain current levels of SOC stocks. Overall, 
estimated carbon inputs presented here were in line with other estimates found in the 
literature using the RothC model, which ranged from 1.18 (Xu, Liu and Kiely, 2011) to 
5.2 tonnes C/ha/year (Meersmans et al., 2013) for grasslands.

When estimated using an inverse modelling approach, the calculation of these carbon 
input levels results from the interplay between observed SOC stocks, the SOC mineraliza-
tion rates and the quality of the incoming organic matter (i.e. plant residues and organic 
amendments). Unimproved grasslands needed either less carbon input or fewer carbon 
inputs than improved systems to maintain current SOC stocks. This might be explained by 
the fact that unimproved grasslands are mainly located in high altitude regions with lower 
soil organic matter mineralization rates due to lower temperatures as compared to other 
warmer areas, and also by the quality of incoming plant material which has to be specified 
in inverse modelling approaches. Martin et al. (2021) found the same result for French 
grasslands using the same methodological approach used in this study.

The FAO Synthesis Report on the State of the World’s Land and Water Resources for 
Food and Agriculture (FAO, 2021) reports that about 13 percent of grassland area is 
degraded due to high anthropogenic pressure, which is driven by: agricultural expansion, 
deforestation, fire extent and frequency, grazing density, population density, and ratio of 
invasive/native species. Another 34 percent of the global grassland area has reduced bio-
physical status and it is defined as deteriorated. Soil organic carbon is a factor influencing 
land deterioration, but other drivers, such as water erosion rate, wind erosion, water stress, 
native species richness and above-ground biomass contribute to the overall biophysical 
status of land. Interestingly 54 percent of the grassland area is reported to be in a stable 
condition (FAO, 2021). Our global estimates on the state of carbon in grasslands show that 
grasslands were, on average, close to equilibrium (1.09 tonnes C/ha/year for improved and 
1.27 tonnes C/ha/year for unimproved grasslands). Positive Cbal values were found in areas 
where the land is stable or even under improved biophysical conditions, such as grasslands 
in the United States of America, Kazakhstan and Mongolia. These are areas under low 
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human-induced pressure on land (FAO, 2021). The highest negative Cbal was found in East 
Asia, Central and South America, and Africa south of the Equator, meaning that current 
SOC stocks are likely to be decreasing due to anthropogenic stresses combined with climat-
ic conditions (Map 4). This is in accordance with the latest Synthesis Report on the State of 
the World’s Land and Water Resources for Food and Agriculture (FAO, 2021), which identi-
fies these regions as severely affected by soil degradation (FAO, 2021). Most grasslands at 
risk of human-induced land degradation are exposed to decreasing freshwater availability. 
There are exceptions in Southern America and sub-Saharan Africa, where decreasing land 
productivity and soil protection account for declining ecosystem services. In Asia, increasing 
water stress contributes to grasslands at risk. In sub-Saharan Africa, grasslands are prone to 
frequent and intense fire (FAO, 2021).

It is noteworthy that no specific global measurements are currently available, and that 
the diversity of situations – in terms of climate, soils and management practices – might 
have been crucial for soil carbon dynamics in these areas, as evidenced by the variability of 
the carbon input values in grassland systems (Figure 3).

4.3 GRASSLAND POTENTIAL TO SEQUESTER SOIL CARBON
Increasing SOC in grassland areas globally is less likely than on croplands which are already 
intensively managed (Smith et al., 2008). However, the adoption of improved management 
practices on grasslands offers the opportunity to sequester significant amounts of carbon 
in the near term, contributing to global mitigation efforts and restoring degraded lands.  
The 4 per 1000 (4p1000) initiative has identified an aspirational sequestration target of 
3.5 Gt C/year to provide substantive global mitigation. Our estimates suggest that about 
17 percent of this target could be reached in the top 30 cm of grassland soils alone by 
enhancing management through the incorporation of organic manures, some types of 
agroforestry practices, or rotational grazing. However, it is important to note that we used 
an empirical approach to determine the increase in percent-SOC in response to improved 
management, but specific management practices have not been tested. We attempted to 
do so for two case studies, by applying the RothC model in East Africa (Box 1), and Par-
aguay (Box 2), but more work is needed to understand the impact of individual practices 
at global scale.

Our statistical estimate of soil carbon sequestration potential is one of the first attempts 
at providing a detailed, spatially-disaggregated assessment at global level. Petri et al. (2010) 
integrated demographic data with GIS to calculate potential per capita carbon sequestra-
tion and estimate the potential for land managers to engage in mitigation sequestration 
schemes while using the land for their livelihoods. In their study, Petri et al. (2010) calculat-
ed the SOC potential after 20 years by applying sequestration factors for organic carbon as 
a function of grassland typology, management status and climatic zones. Results are given 
for climate and grassland types and the usage of different data sources makes it difficult to 
compare against our estimates by continent. Globally, Petri et al. (2010) estimated a SOC 
change of about 1.5 tonnes C/ha/year, which is somewhat higher than our conservative 
estimates of 0.29 tonnes C/ha/year. This is mainly due to the high sequestration factors 
used for estimating organic carbon sequestration after 20 years. In our study, we used a 
global value of percent increase in SOC, which results in lower SOC potential compared to 

4. Discussion
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the estimates reported by Petri et al. (2010). The spatial distribution of available grassland 
soils is also different in the two studies. In calculating the SOC potential, highly organic 
soils and sandy soils were excluded from the analysis, resulting in a reduced area stud-
ied and lower SOC potential compared to other published estimates (Petri et al., 2010).  
The recently published Global SOC sequestration potential (GSOCseq) map (FAO, 2022) 
reports a mean sequestration rate of 0.19 tonnes C/ha/year in grasslands under a sus-
tainable management scenario which implies a 20 percent increase in C inputs over a 
20-year period. Our empirical approach is based on the assumption that the carbon 
concentration in the soil would increase by 0.27 percent if management practices known 
to improve SOC sequestration would be applied over a 20-year period worldwide.  
Due to this preliminary assumption, our estimates are slightly higher than the GSOCseq 
estimates for grasslands.

It should be noted that the estimated SOC sequestration potential, and its spatial distribu-
tion, is strictly dependent on the initial soil conditions (e.g. soil bulk density and texture), but 
estimates do not account for differences in climate and important soil process issues, such as 
carbon input and turnover rate. However, there is no published work specifically dedicated 
to the prediction of soil carbon sequestration potential in grassland by process-based model-
ling. Indeed, the RothC model (Coleman and Jenkinson, 1996) has been previously used to 
estimate the likely responses of soils to future climate and interactions with projected future 
land-use changes (Gottschalk et al., 2012). A recent study conducted by Morais, Teixeira and 
Domingos (2019) calculated global SOC dynamics for 80 specific land uses within broad land-
use classes (e.g. cropland, forest and grassland). Nevertheless, estimates of SOC sequestration 
potential on grassland are still uncertain, and often included in vast assessments, hence dis-
entangling grassland impact on SOC sequestration appears challenging.

In this study, a simple statistical approach was applied to obtain a first estimate of 
attainable SOC sequestration rates in grasslands, identifying regions with greater poten-
tial to sequester carbon after implementing management practices. It provides a general 
framework for countries with limitations on implementing more complex, intensive data 
requiring, process-oriented modelling approaches.

4.4 SOURCES OF UNCERTAINTIES REGARDING THE BASELINE SOIL 
ORGANIC CARBON STOCKS
The results of the statistical analysis of all variables driving the RothC model show that the 
modelled SOC stocks are correlated to climatic conditions (e.g. temperature and potential 
evapotranspiration). This is an expected result as meteorological conditions directly affect 
soil processes, such as mineralization rates, and indirectly affect the amount of organic 
material (mainly plant residues) entering the soil. Moreover, modelled soil carbon is posi-
tively correlated to carbon inputs (Figure 7). This is also an expected result as inputs from 
plant residues and manure are the main external sources of carbon entering the soil, which 
will be stored in the soil depending on clay and climatic conditions.

In this study, analyses were performed to test the sensitivity effect of three main input 
variables on the baseline SOC stocks. The input variables tested were initial SOC stocks, car-
bon inputs and air temperature (i.e. those with higher correlation with the modelled SOC 
stocks). The relative change (percent) was calculated for four scenarios, as shown in Table 2.
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TABLE 2
Sensitivity analysis of model results (SOC stocks) to changes on main variables used to drive the 
RothC model

Variable Scenario Relative change

Carbon inputs

- 50% of initial carbon inputs
- 20% of initial carbon inputs
+ 20% of initial carbon inputs
+ 50% of initial carbon inputs

-28.8%
-11.5%
14.4%
28.8%

SOC stocks

- 50% of initial SOC stocks
- 20% of initial SOC stocks
+ 20% of initial SOC stocks
+ 50% of initial SOC stocks

-21.2%
-8.5%
10.6%
21.3%

Air temperature

Initial temperature +2 °C
Initial temperature +1 °C
Initial temperature -1 °C
Initial temperature -2 °C

-18.1%
-23.2%
34.9%
41.5%

FIGURE 7
Correlation matrix of main variables used to drive the RothC model

Note: (SOC0=initial SOC, SOC30=Soil Organic Carbon at the end of the 30 years model run (baseline SOC),  
PET= potential evapotranspiration, TEMP=temperature, PREC=precipitation, Cin0= organic carbon input to the soil).

Source: UN. 2020. Map of the World, modified with data from Sommer, R. & Bossio, D. 2014. Dynamics and climate change mitigation 
potential of soil organic carbon sequestration. Journal of Environmental Management, 144: 83–87. https://doi.org/10.1016/j.
jenvman.2014.05.017; Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B.M., Ribeiro, E., Samuel-Rosa, A., Kempen, 
B., Leenaars, J.G.B., Walsh, M.G. & Ruiperez Gonzalez, M. 2014. SoilGrids1km — Global Soil Information Based on Automated 
Mapping. PLOS ONE, 9(8): e105992. https://doi.org/10.1371/journal.pone.0105992
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The results showed that carbon input variability leads to ±30 percent change in the 
baseline SOC stocks, while changes in initial SOC stocks had a relative change from the 
baseline SOC stocks of about ±20 percent. Increasing air temperature will negatively impact 
the baseline SOC stocks, with a relative change of up to -23.2 percent, while a decrease in 
air temperature will have a relative change of up to 41.5 percent.

These results show that the major contributor to baseline SOC stock uncertainty is the 
variability in carbon inputs. In this study, the plant residue inputs to the soil were estimated 
from the dry matter yield estimates (Haberl et al., 2007), and animal excreta was derived 
from the deposited nitrogen simulated by the GLEAM 2.0 model. Both datasets carry some 
uncertainties; for instance, the above-ground dry matter is estimated from NPP, which in 
turn can be estimated through various principles (e.g. light use efficiency, plant growth, 
satellite information). To reduce uncertainties about soil carbon inputs, and therefore on 
SOC estimates presented here and elsewhere, it is crucial to generate local datasets and 
explore new and existing NPP datasets in order to improve the accuracy of plant residue 
estimates. In addition to intrinsic methodological differences among different NPP prod-
ucts, differences in land use definition and distribution contribute to the large uncertainty 
associated with carbon input estimates from plant residues. 

Soil carbon inputs from animals have been estimated by applying a C:N ratio (from lit-
erature; see FAO, 2015a) to the N deposited. In this study, the C:N ratio was derived from 
the literature as a global average value, and as such it could differ from regional figures. 
However, it was observed that the sensitivity of the RothC model to animal excreta quality 
is low (between 1.1 percent and 3 percent) (Jebari et al., 2020), so this variable does not 
impact the SOC stocks modelled by RothC. The quantity of carbon entering the soil from 
animal excreta impacts the SOC results. In this study, this variable was derived from GLEAM 
estimates of deposited N, which follows a Tier 2 approach from IPCC (2006). In addition 
to intrinsic methodological uncertainties linked to such an approach, which are extensive-
ly discussed in Opio et al. (2013), it is important to note that diversity in land maps and 
definitions affects the quantification of N indicators (Kaltenegger et al., 2021). Moreover, 
grassland definition and distribution affect all underlying input data and therefore exac-
erbate the uncertainty of the model results. In general, the ability to accurately estimate 
carbon inputs to the soil is crucial in modelling soil processes and can be a major source 
of uncertainty, as shown here and elsewhere (Hashimoto, Wattenbach and Smith, 2011; 
Neumann et al., 2015; Martin et al., 2021). 

Maps of soil properties are also known to carry a significant uncertainty due to the 
limited freely available soil data needed to calibrate the statistical models used to derive 
maps. In the statistical analysis of model sensitivity to input variables, the SOC stocks used 
to initialize the model significantly affected modelling results. A comparison of three soil 
datasets, namely SoilGrid (Hengl et al., 2014), HWSD (FAO, IIASA, ISRIC, ISS-CAS & JRC, 
2012), which we used in this study, and the Northern Circumpolar Soil Carbon Database 
(Hugelius et al., 2013) was conducted by Tifafi, Guenet and Hatte (2018) to quantify dif-
ferences in soil properties among datasets, and to evaluate them against soil data from 
the United States of America, England, Wales and France. The results of this comparison 
highlighted that global SOC stocks predicted by each product differ greatly, particularly for 
boreal regions where differences can be related to large disparities in SOC concentration. 
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Differences in other regions were mainly related to differences in soil bulk density estimates. 
When comparing the three datasets versus ground truth data, a significant difference in 
spatial patterns was found, with an underestimation in SOC stocks of more than 40 per-
cent compared to field data. The HWSD and SoilGrid maps were also compared globally 
against the GSOCmap, the first global SOC map ever produced through a consultative and 
participatory process involving member countries (FAO and ITPS, 2018). A larger agreement 
between the GSOCmap and the HWSD than between the GSOCmap and the SoilGrids was 
found. Positive and negative changes from the GSOCmap and the HWSD were irregularly 
distributed, but the changes from the GSOCmap to the SoilGrids tended to be positive, 
suggesting a major carbon pool predicted by the latter product (FAO and ITPS, 2018). The 
estimation of the global soil carbon stock is still quite uncertain, and improved geostatistical 
methods are urgently needed to reduce the propagation of such uncertainties on soil mod-
els. Moreover, soil and land-use distribution datasets are not linked and are often produced 
on different timescales. This can lead to the allocation of initial SOC stocks to a land-use 
that does not reflect the current condition. 

The uncertainty regarding initial SOC stocks, and their distribution and allocation to 
different land uses, together with model uncertainties, should be carefully taken into con-
sideration when using the results of this work on the current state of carbon in the soil and 
its potential to be sequestered in grassland systems.
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5. Conclusions and way forward

Soils contribute to the achievement of the UN SDGs through carbon sequestration.  
By enhancing soil health and fertility, soils can play a crucial role in climate action (target 
13.2), land degradation neutrality (target 15.3), and alleviating hunger (targets 2.1 and 
2.4). Despite the undeniable technical potential to sequester carbon in soils, there are 
often significant limitations to achieving that potential in any particular location and within 
specific production systems. 

The present study provides a spatially explicit report on the state of grassland soils, with 
estimates of the SOC stocks for the year 2010. On average, in the year 2010, the SOC in 
global grasslands was about 51 tonnes C/ha to a soil depth of 30 cm, with minor differ-
ences between improved and unimproved systems (53 vs 50 tonnes C/ha). The SOC stocks 
presented in this report can be used as a baseline for future work to explore the impacts 
of livestock management on soil carbon at country and farm levels. However, there is still a 
strong necessity for additional data on current soil conditions, especially from underrepre-
sented regions. The approach used to develop the SOC baseline for grasslands follows the 
methodology recommended by the Global Soil Partnership (GSP) for measurement, moni-
toring, reporting and verification of SOC in agricultural landscapes (FAO, 2020b). Examples 
of practical application of our SOC stock estimates at national level, including specific 
interventions, have been given in Box 1 and Box 2. A recent review of 184 countries’ initial 
NDCs, found that only twenty-eight countries referred to SOC in their NDCs (Wiese et al., 
2021). Countries’ reasons for not including SOC in NDCs included the need to prioritize 
goals of sustainable development and food security above climate mitigation, a lack of 
incentives for farmers to improve management practices, and the difficulty of accurately 
monitoring changes in SOC. The results of this report could therefore support the inclusion 
of SOC targets in NDCs, which will improve NDCs’ comprehensiveness and transparency 
for tracking and comparing policy progress across NDCs.

The majority of grassland soils seem to receive enough organic material to maintain 
current carbon stock levels. However, improved grasslands needed, on average, higher 
carbon inputs than unimproved systems to sustain current SOC stocks (2.1 vs 1.3 tonnes  
C/ha/year). The positive soil carbon balance found in both improved and unimproved sys-
tems globally indicates a potential increase in SOC stocks. Despite such a positive trend 
globally, the large spatial variability of these estimates highlights that the soil state at coun-
try level could differ greatly from the global estimates. Fifty-four percent of the grassland 
area is reported to be in a stable condition (FAO, 2021); our global estimates support this 
finding, showing positive carbon balance in areas where the land is stable or even under 
improved biophysical conditions. On the other hand, negative carbon balance was found 
in East Asia, Central and South America, and Africa south of the Equator, meaning that 
current SOC stocks are likely to be decreasing due to anthropogenic stresses combined 
with climatic conditions. The findings of this analysis show that there is room for additional 
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carbon storage in some grassland soils. The main recommendations for grassland systems 
are to prioritize carbon returns in deteriorated soils that have a negative carbon balance, 
and to protect SOC in areas – particularly under unimproved grasslands – with high carbon 
stocks. Grasslands could contribute to the recarbonization of degraded land and the results 
of the present study can highlight hotspots where interventions on grasslands are needed 
to preserve or increase SOC in the long term.

The empirical approach used in this study made it possible to estimate the soil carbon 
sequestration potential of available grasslands following the application of management 
practices known to improve SOC sequestration or protection. Grasslands could sequester 
0.3 tonnes C/ha/year in the 0−30 cm depth layer, which could be an important contribution 
to global mitigation efforts. The adoption of improved management practices offers the 
opportunity to sequester significant amounts of carbon in the near term, and potentially 
to make an important contribution to global mitigation efforts. The 4p1000 Initiative has 
identified an aspirational sequestration target of 3.5 Pg C/year to provide substantive global 
mitigation. Our estimates suggest that 17 percent of this target could be reached in the top 
30 cm of grasslands and continue over at least 20 years after adoption of SOC enhancing 
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management, such as the incorporation of animal manures, agroforestry and rotational 
grazing. This requires that grasslands increase SOC storage between 0.18−0.41 tonnes C/ha  
every year. Our estimates do not account for differences in climate and important soil 
process issues, notably nutrient and water limitations, biomass production and turnover 
rates. However, sequestering carbon via increases in the soil component on grasslands is 
an achievable and potentially effective route to quickly increasing CO2 sequestration in the 
near term. Despite the large technical potential to sequester carbon in soils, there are often 
significant limitations to achieving that potential in any particular place and within specific 
farming systems. In addition, there may be trade-offs with productivity, food security or 
hydrologic balances, as well as concerns regarding other GHGs, such as N2O. 

A full system analysis requires estimates of GHG emissions alongside SOC estimates, or 
else misleading messages could arise from the investigation of independent components of 
the system balance. The methodology presented here made it possible to assess SOC stocks 
by soft-coupling the RothC soil carbon model with the GLEAM LCA model. Specifically, 
the GLEAM model provided inputs which have been used to drive the soil model. Future 
work should target including soil carbon estimates in full LCA studies. The main challenges 
would be to develop a methodology to allocate SOC stocks to different livestock units and 
to account for temporal dynamics of carbon in the soil. Nevertheless, the addition of a 
soil carbon compartment in the GLEAM model will enable accurate life cycle assessment 
in livestock systems as well as the design of targeted national policies for climate change 
mitigation and food security through the livestock sector.

Potential users should take into consideration the uncertainties deriving from the under-
lying datasets and the limitations of the approaches used to produce the SOC estimates. 
In this context, future technical work should focus on testing the impacts of different data 
sources on the SOC estimates. In particular, newly published soil carbon maps, such as the 
global SOC map (FAO and ITPS, 2018), and spatial data infrastructure such as the Global 
Soil Information System (GLOSIS), could be used to refine global SOC stocks estimates. 
GLEAM’s forthcoming update on livestock LCA analysis for the year 2015 will also be a 
useful tool to acquire newer information on organic inputs to the soil, which could be used 
as a driver for the soil model. In general, the use of alternative sources of all major inputs 
used to estimate SOC stocks would be required to quantify model uncertainties and to 
observe SOC stock changes over time. 

The results arising from the present work provide a global overview of the state of soil 
carbon in grasslands, and their potential to sequester carbon in the soil. The SOC stocks 
and changes have been analysed to a soil depth of 30 cm. However, SOC can also be 
stored at deeper soil layers and future work should aim to both refine current estimates as 
well as develop new approaches to predict SOC in deep soil layers. Moreover, there is still 
a significant need for additional data, especially from underrepresented regions (Merbold  
et al., 2021), on current soil conditions, and on the effects of management practices on 
SOC stocks and GHG emissions. Involving local experts and institutions is a fundamental 
step for modelling improvements as well as knowledge exchange. In this context, the GSP 
partnership has recently published the first ever country-driven global SOC sequestration 
potential (GSOCseq) map (FAO, 2022). The GSOCseq map was developed based on the 
submissions of national experts appointed by FAO Member Nations. A bottom-up approach 
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was used to establish a reliable, transparent and cost-effective mechanism to monitor, 
report and verify changes in SOC stocks in agricultural areas. The methodology used is 
based on the RothC model and it is constantly extended, improved and updated to better 
characterize local SOC dynamics. The FAO LEAP and GSP partnerships are actively collab-
orating to improve the GSOCseq map and methodology in order to better characterize 
soil carbon dynamics in grasslands by refining the definition of grassland (e.g. to include 
improved and unimproved grasslands) and the sustainable soil management scenarios cur-
rently used in the GSOCseq map. 

The work presented here represents a first step to quantify the state of grassland soils, 
as well as to identify and prioritize areas with potential to increase SOC stocks through SOC 
sequestration in order to enable accurate life cycle assessment of livestock systems as well 
as the development of targeted livestock sector-driven national policies for climate change 
mitigation and food security.
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This report presents the estimation of the baseline soil organic carbon stocks 
in global grasslands in the year 2010. It also summarises the assessment of 
the carbon input levels needed to maintain current SOC stocks, and the 
evaluation of the soil organic carbon sequestration potential of grasslands if 
management practices known to improve soil organic carbon sequestration 
are implemented worldwide

The results show the importance of the interaction between climate and 
grassland management, with the latter playing a crucial role in the quality 
and quantity of organic material entering the soil. The report provides 
spatially explicit evidence on the state of grassland soils and can be used as a 
baseline for future work to explore the impacts of livestock management on 
soil organic carbon at regional, country and farm levels.

Grasslands are one of the major ecosystems of the world, covering close to 
one-third of the Earth’s terrestrial surface. Extensively managed grasslands 
are recognized globally for their high biodiversity, and together with other 
rangelands, they often contribute to agricultural production through 
livestock browsing on natural forage, leaves, soft shoots and shrubs. It is, 
therefore, evident that assessing the current state of grassland systems, 
and their potential to sequester carbon in the soil, is of key importance for 
understanding the trade-offs between grassland services on food security, 
biodiversity conservation and climate mitigation and offsets, and how current 
grassland management could be improved to meet global climate targets.
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