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Abstract 

Background Assessing the performance of elite lines in target environments is essential for breeding programs to 
select the most relevant genotypes. One of the main complexities in this task resides in accounting for the genotype 
by environment interactions. Genomic prediction models that integrate information from multi‑environment trials 
and environmental covariates can be efficient tools in this context. The objective of this study was to assess the pre‑
dictive ability of different genomic prediction models to optimize the use of multi‑environment information. We used 
111 elite breeding lines representing the diversity of the international rice research institute breeding program for irri‑
gated ecosystems. The lines were evaluated for three traits (days to flowering, plant height, and grain yield) in 15 envi‑
ronments in Asia and Africa and genotyped with 882 SNP markers. We evaluated the efficiency of genomic prediction 
to predict untested environments using seven multi‑environment models and three cross‑validation scenarios.

Results The elite lines were found to belong to the indica group and more specifically the indica-1B subgroup which 
gathered improved material originating from the Green Revolution. Phenotypic correlations between environments 
were high for days to flowering and plant height (33% and 54% of pairwise correlation greater than 0.5) but low for 
grain yield (lower than 0.2 in most cases). Clustering analyses based on environmental covariates separated Asia’s and 
Africa’s environments into different clusters or subclusters. The predictive abilities ranged from 0.06 to 0.79 for days 
to flowering, 0.25–0.88 for plant height, and − 0.29–0.62 for grain yield. We found that models integrating genotype‑
by‑environment interaction effects did not perform significantly better than models integrating only main effects 
(genotypes and environment or environmental covariates). The different cross‑validation scenarios showed that, in 
most cases, the use of all available environments gave better results than a subset.

Conclusion Multi‑environment genomic prediction models with main effects were sufficient for accurate pheno‑
typic prediction of elite lines in targeted environments. These results will help refine the testing strategy to update the 
genomic prediction models to improve predictive ability.

Keywords Rice, Oryza sativa, Elite lines, Genomic prediction, Genotype by environment interactions, Environmental 
covariates, Multi‑environment genomic prediction models
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Introduction
Rice (Oryza sativa L.) is one of the most important food 
crops in the world and in Asia in particular. About 3.5 
billion people depend on rice as their main food source. 
As the world’s population increases, the demand for rice 
will be under pressure as an estimated 116 million addi-
tional tons of rice will be needed to meet demand by 
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2035 (Seck et al. 2012). In this context, genetic improve-
ment for yield potential is considered to be one of the 
most effective strategies to meet this growing demand 
and also to address the growing impact of climate change 
on rice production (Saito et  al. 2021). Rice breeders, 
therefore, must increase yield potential at a greater pace 
(Cobb et  al. 2019). However, the use of conventional 
breeding methods is time-consuming and can take up to 
ten years to develop and evaluate new elite varieties (Col-
lard and Mackill 2008). To some extent, the advances of 
marker-assisted selection (MAS) enable faster develop-
ment of new varieties but are limited to the introgression 
favorable alleles of major genes or quantitative trait loci 
(QTLs) with large effects mainly related to abiotic (e.g. 
submergence, salinity) or biotic (e.g. blast, bacterial leaf 
blight) stress tolerance into elite backgrounds (Gregorio 
et al. 2013; Jena and Mackill 2008). MAS is not tailored 
to enhance the effectiveness of breeding strategies for 
quantitative traits like grain yield which are governed by 
a large number of genes or QTLs with small effects (Jena 
and Mackill 2008).

With the reduction in genotyping costs, genomic selec-
tion (GS) has arisen as a more efficient option for breed-
ing program optimization (Ahmadi et  al. 2020; Heffner 
et  al. 2009). GS can accelerate the rate of genetic gain 
without significantly increasing the size of the breed-
ing program by reducing the length of the breeding 
cycle (Cobb et al. 2019). GS uses genome-wide markers 
(mainly SNPs markers) to predict the genomic estimated 
breeding values (GEBV) of selection candidates based on 
statistical models trained on a reference population that 
is both genotyped and phenotyped (Ahmadi et al. 2020; 
Jannink et  al. 2010; Meuwissen et  al. 2001). Since 2010, 
many GS studies have been published on small grain 
crops such as wheat, barley, oats, or rice, indicating that 
GS has been successfully applied in cereals breeding pro-
grams to increase the rate of genetic gain (Crossa et  al. 
2017). More recently, genomic prediction models inte-
grating multi-environment data have emerged in the 
plant breeding community in order to increase accuracy 
by modeling the genotype-by-environment interactions 
(G × E) rather than ignoring them (Burgueño et al. 2012; 
Heslot et al. 2013; Jarquín et al. 2014; Lopez-Cruz et al. 
2015). The G × E interactions in plant breeding are usu-
ally evaluated through multi-environment trials and refer 
to changes in the ranking of genotypes between envi-
ronments (Freeman 1973). The G × E analysis also plays 
a key role in evaluating the stability of genotypes across 
environments (Cooper et  al. 1993; Elias et  al. 2016). 
Crossa et al. (2022) have recently reviewed the evolution 
of genomic prediction models that consider G × E inter-
actions. Burgueño et al. (2012) and Schulz-Streeck et al. 
(2013) proposed the first multi-environment prediction 

models. These models were subsequently enhanced by 
using different statistical regressions and kernel methods 
(Crossa et al. 2019; Cuevas et al. 2016, 2019; Lopez-Cruz 
et al. 2015, p.; Montesinos et al. 2016, 2018), or by using 
crop growth models (Cooper 2015; Heslot et  al. 2014; 
Messina et al. 2017; Rincent et al. 2017) and recently by 
using reaction-norm models integrating the informa-
tion of environmental covariates, such as weather and 
soil information of the experimental trials, for prediction 
in the context of G × E (Costa-Neto et al. 2020, 2021; de 
los Campos et al. 2020; Jarquín et al. 2014; Ly et al. 2018; 
Millet et al. 2019; Morais Júnior et al. 2017). In this lat-
ter approach, G × E is accounted for by using the inter-
action between markers and environmental covariates 
(ECs) and has been shown to increase the accuracy of 
genomic prediction in plant breeding. For example, Jar-
quín et al. (2014), using wheat data, reported an increase 
in the accuracy of the reaction-norm model integrating 
ECs compared to models with main effects alone. The 
effectiveness of the use of ECs in GS is also discussed in 
the literature (Costa-Neto et al. 2020; Heslot et al. 2014; 
Millet et al. 2019; Monteverde et al. 2019; Morais Júnior 
et  al. 2017). In rice, a large number of GS studies have 
been published since 2014, when the first empirically 
based study was published (see a review by Bartholomé 
et  al. 2022). Through these studies, we gained a better 
understanding of the benefits and limitations of GS in the 
context of rice breeding. The impact of trait architecture, 
population structure, the training set size, and compo-
sition, as well as marker density, has been well covered. 
However, the impact of G × E has received somewhat 
less attention. Indeed, only a few studies using breeding 
material have used multi-environment models including 
G × E (Ben Hassen et  al. 2018; Monteverde et  al. 2018, 
2019; Morais Júnior et al. 2017). The conclusions arising 
from these works based on a relatively small number of 
environments are that multi-environment models tend to 
give higher prediction accuracies.

This study aimed to assess the efficiency of multi-
environment genomic prediction models in the context 
of an applied breeding program. We used an elite core 
panel that represents the elite diversity managed by the 
irrigated rice breeding program at the International Rice 
Research Institute (IRRI). This panel was phenotyped in 
15 environments in Asia and Africa regions from 2018 
to 2020. This information from multi-environment trials 
(phenotypic data and environmental covariates) was used 
to characterize the level of G × E interaction and to clus-
ter the environments. We then compared seven genomic 
prediction models to evaluate the impact of modeling 
G × E and environmental covariates on predictive abili-
ties when new environments were predicted.
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Materials and Methods
Plant Material and Genotypic Characterization
The plant material consisted of 111 elite lines from the 
IRRI breeding program for irrigated systems (Addi-
tional file  1: Table  S1), hereafter referred to as the elite 
core panel (ECP). The ECP represents the elite diversity 
of the parental lines used in IRRI’s breeding program for 
irrigated systems and is derived mostly from the breed-
ing efforts that were conducted at IRRI since the 1960s 
(Juma et al. 2021). The population included recent varie-
ties such as IRRI 154, IRRI 156, IRRI 174, IRRI 180, IRRI 
186, and IRRI 193 as well as current parental lines.

The ECP was genotyped using the 1K Rice Custom 
Amplicon assay (1K-RiCA, Arbelaez et al. 2019). Leaf tis-
sues of single plants of each line of the ECP were collected 
and freeze-dried. Genomic DNA (gDNA) was extracted 
using the CTAB method (Cetyl Trimethyl Ammonium 
Bromide), as described by Murray and Thompson (1980). 
The quality of gDNA was visually checked on 1% aga-
rose gel. The quantity of gDNA was then evaluated using 
 PicoGreen® (https:// www. biotek. com) fluorometric kits 
and adjusted to obtain a concentration close to 10  ng/
µl gDNA for the library preparation.  Illumina®’s TruSeq 
Custom Amplicon chemistry was used to create the 
libraries and the sequencing was performed using the 
MiSeq Sequencing-by-Synthesis Technology System. A 
custom SNP-calling pipeline was used to align sequence 
data on the Nipponbare rice genome MSU7 (Kawahara 
et al. 2013). The sequences with non-alignment and mul-
tiple positions were then removed. SNP data was saved 
in a HapMap format (Gibbs and et  al. 2003). The raw 
SNP data was then filtered with TASSEL 5 (Bradbury 
et  al. 2007). The SNPs with more than 20% of missing 
data, a minor allele frequency (MAF) lower than 5%, and 
a percentage of heterozygous calls greater than 10 were 
removed. Consequently, four out of 111 ECP lines have 
been removed from the list. A final set of 107 lines and 
882 SNP markers distributed along the rice genome was 
used for the analyses (Additional file 2: Fig. S1). The gen-
otypic information for the ECP is available in HapMap 
format (Additional file 3).

The genotypic characterization of the ECP in rela-
tion to O. sativa subgroups was performed by combin-
ing the genotypic data of the ECP from the 1K-RiCA 
assay above with the 3000 rice genomes (3 K-RG) data 
(Wang et  al. 2018). The physical positions of the 882 
SNPs were used to extract a dataset of filtered SNPs 
for the entire 3 K-RG using the rice SNP-seek database 
(Mansueto et al. 2017). As a result, a total of 837 SNPs 
in common in both data sets were used for downstream 
analysis. The SNPs were then encoded from nucleotide 
alleles into numeric genotypes as 0, 0.5, and 1. A prin-
cipal component analysis (PCA) was carried out using 

the function dudi.pca within the R package ade4 (Dray 
and Dufour 2007), the PCs were then visualized using 
the R package ggplot2 (Wickham 2016). An unweighted 
neighbor-joining tree between ECP and 3  K-RG’s sub-
groups was constructed using TASSEL 5 software 
(Bradbury et al. 2007).

Multi‑environment Evaluation of the Elite Breeding Lines
Within the IRRI breeding program framework, the ECP 
was evaluated in multi-environment trials at 12 differ-
ent locations including IRRI headquarter (Los Baños, the 
Philippines) and research stations from partners in Asia 
and Africa. The information regarding the locations of 
the 15 field experiments is available in Table 1 and Addi-
tional file 1: Table S2. The experiments were carried out 
in both the dry (DS) and wet seasons (WS) from 2018 
to 2020. Different experimental designs were used to 
accommodate partners’ capacities: alpha-lattice, rand-
omized complete block, row-column, partially replicated, 
or systematic arrangement designs with either one or two 
replicates for each. Due to limited seed availability, not all 
the elite lines were evaluated in all 15 experiments result-
ing in sparse testing evaluation. The number of lines 
evaluated in each location ranged from 39 to 111 lines, 
as detailed in Table 1 and Additional file 2: Fig. S2. Most 
of the experiments were carried out by transplanting, 
except for one experiment conducted with direct seeding 
(at Maputo–Mozambique). Standard management prac-
tices were applied in all trials with basal fertilizer applica-
tions along with chemical and/or manual pest and weed 
control.

Three agronomic traits were measured on each elite 
line: days to flowering (DTF), plant height (HT), and 
grain yield (YLD). DTF (days) were calculated as the 
number of days from seeding to the time of 50% of the 
plants flowering within a plot. The plant height (cm) was 
measured from the ground level to the tip of the highest 
panicle (awns excluded) at the maturity of five randomly 
selected plants for each elite line. For grain yield (tons/
ha), each plot was harvested excluding border rows. 
From this sample, grain moisture content was measured 
using a moisture meter. Then, plot-level grain yield was 
computed as the grain weight in kilograms from each 
plot, normalized at 14% of moisture, and adjusted by the 
harvested areas to obtain the yield in tons per hectare.

Phenotypic Data Analysis
For the statistical analysis of the trials, two linear mixed 
models were used to take account of the diversity of 
the experimental design. The general form of the base 
models was:

https://www.biotek.com
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where y is the vector of phenotypes, b is the vector of 
fixed effects, and X is the associated design matrix, u 
is the vector of random effects and Z is the associated 
design matrix, and e is the vector of residuals. For tri-
als with a rectangular field layout, a model with first-
order autoregressive spatial structure (AR1 ⊗ AR1) was 
used (Gilmour et al. 1997). For these models, all vectors 
and incidence matrices are the same as the base model 
above, it only differs in the structure of variance residu-
als. The matrices of variance residuals are defined as 
R = σ2

eΣc(pc) ⊗ Σr(pr), where σ2
e is the variance compo-

nents of residual, Σc(pc) and Σr(pr) are the correlation 
matrices of the first-order autoregressive, pc and pr are 
the autocorrelation parameters for the spatial coordi-
nates, columns, and rows of plots respectively, ⊗ is the 
Kronecker product from the auto-regressive process in 
columns and rows, respectively. The factors of fixed, ran-
dom, and residual effects for statistical models of each 
trial were described in detail in Additional file 1: Table S3.

The analyses were performed using the asreml() func-
tion of the R package asreml (version 4.1.0.143) (Butler 
et al. 2017). Broad-sense heritability  (H2) was estimated 
for each trait using the following formula:

y = Xb+ Zu+ e

H2
= σ 2

g / σ 2
g + σ 2

e

where σ2
g is the genotypic variance obtained from 

the experimental data and σ2
e is the residual variance 

obtained from the model.  H2 and the associated standard 
error were estimated with the function predict(). The best 
linear unbiased predictors (BLUPs) for all genotypes were 
extracted for each trial and each trait and were used as 
adjusted phenotypes for further analysis. For the two tri-
als without the replications (Nizmawna-Bangladesh and 
Hyderabad-India), we used the phenotypic data directly. 
The phenotypic information of the ECP is available in 
Additional file 4.

We considered an environment as the combination 
of location, year, and season. Analysis of correlation 
between the three traits within single environments, 
and between environments was performed using the 
Pearson correlation method within the ggpairs() func-
tion in the GGally R package (Schloerke and et  al. 
2020). The hierarchical clustering analysis of the envi-
ronments was carried out using the pvclust package in 
R (Suzuki and Shimodaira 2006).

A simple analysis of variance (ANOVA) for genotype 
by environment interaction (G × E) upon the pheno-
typic performance of ECP was also carried out using 
the metan R package (Olivoto and Lúcio 2020).

Weather Data and Environmental Covariates
The weather data of each environment were obtained 
from the NASA POWER database (https:// power. larc. 

Table 1 Information of fifteen yield trials conducted on the elite core panel (ECP)

At the No. lines column, the numbers contained within the brackets show the numbers of lines having SNP data from the 1K-RiCA dataset

Country Location Year & Season Study name No. lines Experimental 
design

Replication 
level

No. checks Seeding date Harvest date

Bangladesh Gazipur 2019‑Wet BD‑GZ‑19W 93 (90) P‑REP 27% lines 9 2019‑07‑08 2019‑11‑05

Bangladesh Nizmawna 2019‑Wet BD‑NM‑19W 93 (90) Systematic 
arrangement

1 6 2019‑07‑11 2019‑11‑10

India Hyderabad 2018‑Wet IN‑HY‑18W 39 (37) RCBD 2 4 2018‑07‑17 2018‑11‑27

India Cuttack 2019‑Wet IN‑CU‑19W 40 (38) RCBD 2 11 2019‑07‑10 2019‑11‑19

India Hyderabad 2019‑Dry IN‑HY‑19D 39 (37) RCBD 2 4 2019‑01‑17 2019‑05‑19

India Hyderabad 2019‑Wet IN‑HY‑19W 40 (38) Augmented 
RCBD

3% lines 5 2019‑07‑02 2019‑12‑07

India Maruteru 2019‑Wet IN‑MA‑19W 40 (38) P‑REP 43% lines 4 2019‑07‑06 2019‑11‑17

India Raipur 2019‑Wet IN‑RP‑19W 40 (38) P‑REP 43% lines 5 2019‑07‑15 2019‑12‑03

Kenya Ahero 2019‑Dry KE‑AH‑19D 92 (89) RCBD 2 5 2019‑08‑21 2020‑01‑04

Kenya Mwea 2020‑Wet KE‑MW‑20W 92 (89) RCBD 2 5 2020‑02‑24 2020‑07‑19

Mozambique Chokwe 2020‑Wet MZ‑CK‑20W 93 (90) Row‑Column 2 3 2019‑11‑05 2020‑04‑09

Mozambique Maputo 2020‑Wet MZ‑MP‑20W 93 (90) Row‑Column 2 3 2019‑11‑21 2020‑04‑11

Philippines Los Baños 2019‑Dry PH‑LB‑19D 111 (107) Alpha Lattice 2 5 2019‑01‑15 2019‑05‑13

Philippines Los Baños 2019‑Wet PH‑LB‑19W 111 (107) Alpha Lattice 2 5 2019‑06‑20 2019‑10‑17

Tanzania Dakawa 2020‑Wet TZ‑DK‑20W 91 (88) Augmented 
RCBD

5% lines 6 2020‑03‑16 2020‑08‑01

https://power.larc.nasa.gov/
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nasa. gov/). This database was queried using the R pack-
age nasapower (Sparks 2018) via the R packages EnvR-
type (Costa-Neto et  al. 2021). The get_weather function 
was used to retrieve daily weather data based on the geo-
graphical coordinates (N latitude and E longitude) of each 
trial. The following daily weather variable from the trans-
planting date to the harvesting date was obtained for all 
the trials: the total precipitation (PP, mm), the dew-point 
temperature at two meters (DPT, °C  d−1), the minimum, 
maximum and mean temperature at two meters (TMIN, 
TMAX and TM, °C   d−1), the relative humidity at two 
meters (RH, %), the all-sky surface photosynthetically 
active radiation total (APAR, W   m2) and the clear sky 
surface photosynthetically active radiation total (CPAR, 
W   m2). The processWTH function from the R package 
EnvRtype was then used to compute the temperature 
range (TR, °C), the potential evapotranspiration (PET, 
mm   d−1) and the vapor pressure deficit (VPD, kPa   d−1) 
(Costa-Neto et  al. 2021). Finally, eight environmental 
covariates (ECs) were selected for further analysis: PP, 
DPT, PET, VPD, TM, TR, APAR, and CPAR (Additional 
file 1: Table S4).

To assess the effects of ECs through different devel-
opmental phases of the ECP on the genomic predictive 
ability, the phenology of the crop was identified for each 
environment consisting of: the vegetative phase (from the 
transplanting date to the earliest line); the reproductive 
phase (the interval between the earliest and latest date of 
flowering); and the ripening phase (from the latest date of 
flowering up to the latest harvest date) (Additional file 2: 
Fig. S3). The information on the 24-ECs is available in 
Additional file  5. The evaluation of the level of similar-
ity between environments (based on ECs) was performed 
by the hierarchical clustering analysis using the pvclust 
package of R (Suzuki and Shimodaira 2006).

Genomic Prediction Analysis
Statistical Models for Genomic Prediction Analysis
Due to its stability of accuracy across different environ-
ments and traits and its ease of implementation, GBLUP 
(genomic best linear unbiased prediction) is the most 
used method on rice (Bartholomé et  al. 2022). In this 
study, we focused our effort on GBLUP, which is cur-
rently used routinely at IRRI. Seven genomic prediction 
models were implemented to predict DTF, HT, and YLD. 
The first model was the standard GBLUP model with 
only the main effect of the genotypes (VanRaden 2008):

where μ is the overall mean; gi is the random effect of the 
i-th genotype, denoted as g ∼ N

(

0, σ 2
g G

)

 with the 
genomic relationship matrix (G) estimated as 

(1)Model G : yi = µ+ gi + εi

G = X *  XT/p, in which X is the n × p matrix of centered 
and standardized markers, n is the number of genotypes 
and p is the number of markers and εi is the residual 
effects denoted as ε ∼ N

(

0, σ 2
ε

)

 . The G model was used 
as a baseline model to construct the remaining six mod-
els by adding the main effect of the environments (E), the 
environmental covariates (W), or the interaction effects 
with G (G × E and GxW) into the model (1). Ultimately, 
four models included only the main effects and three 
models also included interaction terms based on the 
approach of reaction norm models developed by (Jarquín 
et al. 2014):

where ej is the effect of the j-th environment  
which is denoted as e ∼ N(0, σ 2

e  ), with σ 2
e  representing  

the variance component of the environments; geij is  
the interaction effects of the i-th genotypic within  
the j-th environment which is modeled by the  
Hadamard product of ZgGZ

T
g  and ZeZ

T
e  , denoted as 

ge ∼ N
(

0,

[

ZgGZ
T
g

]

◦
[

ZeZ
T
e

]

σ 2
ge

)

 with  Ze as the inci-
dence matrix for the environmental effects that connect 
the phenotypes with environments; wij is the effect of the 
environmental covariates (ECs) in the ij-th genotype X 
environment combination which is denoted as 
w ∼ N

(

0,�σ 2
w

)

 with Ω computed using ECs and propor-
tional to WW’, where W is a matrix with centred and 
standardised values of the ECs; gwij the interaction effect 
of the genotypic and environmental covariates in the ij-th 
genotype X environment combination which is modelled 
by the Hadamard product of ZgGZ

T
g  and � , denoted as 

gw ∼ N
(

0,

[

ZgGZ
T
g

]

◦�σ 2
gw

)

 with Zg as an incidence 
matrix for the vector of additive genetic effects.

The genomic heritability ( h2g ) of the studied traits was 
estimated based on the seven models described above. 
The different estimates of h2g were obtained with the fol-
lowing formula (de los Campos et al. 2015):

(2)Model GE : yij = µ+ gi + ej + εij

(3)Model GW : yij = µ+ gi + wij + εij

(4)Model GEW : yij = µ+ gi + ej + wij + εij

(5)
Model GE−G× E : yij = µ+ gi + ej + geij + εij

(6)
Model GW−G×W : yij = µ+ gi + wij + gwij + εij

(7)
Model GEW−G× E−G×W : yij

= µ+ gi + ej + wij + geij + gwij + εij

https://power.larc.nasa.gov/
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where σ 2
g  is the additive genetic variance obtained with 

the genomic relationship matrix (G) and σ 2
ε  is the resid-

ual error variance as defined previously.
The analyses of genomic prediction were performed 

in R (R Core Team 2022) using the R statistical package 
BGLR (Pérez and de los Campos 2014). The hyperparam-
eters for prior specification and the number of iterations 
for the Markov Chain Monte Carlo (MCMC) algorithm 
were set up with 25,000 iterations, with a burn-in of 5000 
and a thinning of 10.

Cross‑Validation Experiments: Assessing Predictive Abilities 
for Untested Environments
Three different cross-validations (CV) experiments were 
designed to assess the predictive abilities (PA) in untested 
environments. In the first CV experiment (CV-RAN), the 
target environment (validation set) was predicted using 
four environments selected randomly among the 14 
remaining environments from the training set. Random 
sampling was repeated 50 times. The predictive ability 
was computed for each of the 50 replicates and then aver-
aged. An ANOVA and Tukey’s tests were then carried 
out at the significance level of 5% based on z-transformed 
values (Z = 0.5 [ln(1 + r) − ln(1 − r)]), to identify the sig-
nificant differences in predictive ability (r) among the 
models in each environment. Analyses were performed 
separately for each trait. After the confidence limits and 
means for Z were estimated, these were transformed 
back to r values.

For the second CV experiment (CV-SEL), the target 
environment was predicted using four environments 
specifically selected among the remaining fourteen envi-
ronments to form the training set. The selection of envi-
ronments for the training set was based on Euclidean 
distance in terms of ECs. The closest environments were 
then identified (Additional file  1: Table  S5). The predic-
tion was performed once for each target environment.

For the third CV experiment, we used the “leave-one-
environment-out" (CV-LOEO) method. The target envi-
ronment was predicted using the remaining fourteen 
environments as a training set. Each environment was 
predicted using the model trained based on the informa-
tion (genotypic and phenotypic data as well as ECs) of 
the remaining fourteen environments.

For the three CV experiments, the PAs were measured 
as the Pearson correlation coefficient between the pre-
dicted values and the adjusted phenotypes in the valida-
tion set (target environment).

h2g =
σ 2
g

σ 2
g + σ 2

ε

Cross‑Validation Experiment: Assessing Predictive Abilities 
for Untested Lines
For this CV experiment, we used the leave-one-out 
method for predicting the untested lines. The models 
were trained using all the environment and all the lines 
except one. The remaining line was predicted across all 
environments. We repeated this process for all 33 lines 
evaluated in all fifteen environments. In this CV experi-
ment, the PAs (Pearson correlation coefficient) were 
measured in two ways: at the line level (correlation 
between the predicted values and the adjusted pheno-
types across the fifteen environments for a given line) 
and at the environment level (correlation between the 
predicted values and the adjusted phenotypes in given 
environments across all the 33 lines).

The R scripts for the different CV experiments are pro-
vided in the Additional file 6.

Results
Characterization of Genetic Structure for the ECP
The results showed that the Japonica (GJ), circum-Bas-
mati (cB), circum-Aus (cA), and Indica (XI) subgroups 
from 3  K-RG were clearly separated and confirmed the 
clustering of the ECP into the XI subgroups (Fig.  1A). 
When only the Indica (XI) subgroups were used, the ECP 
was found to be close to the XI-1B subgroup (Fig.  1B). 
XI-1B is known to include essentially modern varie-
ties largely generated by the IRRI’s breeding program 
in Southeast Asia. Similar results were found with the 
neighbor-joining tree between ECP with the whole 
3 K-RG samples and with only the XI subgroups (Addi-
tional file 2: Fig. S4).

Phenotypic Variation of the ECP Across Environments
A large phenotypic variability was found for the three 
traits across all the environments (Table  2, Fig.  2). For 
DTF, the average value per trial ranged from 86 (Los 
Baños, wet season) to 118 days (Chokwe) with most of the 
trials displaying a vegetative phase of about 90 days. The 
duration of flowering (calculated as the difference between 
the earliest and latest in a given environment) ranged 
from 17 days (Hyderabad-dry season) to 56 days (Maputo) 
with an average value of 32 days. Trials at Ahero, Maputo, 
and Los Baños (dry and wet seasons) had longer flower-
ing times compared to the others. For HT, a continuous 
gradient in the average value per trial was found with val-
ues ranging from 78.6 (Maputo) to 130.2 cm (Maruteru) 
(Table  2). As expected, a similar trend was observed for 
YLD with an average value per trial ranging from 3.76 
(Gazipur) to 6.46 ton/ha (Los Baños-dry season).

Broad-sense heritability  (H2) was rather high for all 
three traits. The  H2 ranged from 0.52 (Ahero) to 0.96 
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(Cuttack) for DTF, from 0.27 (Chokwe) to 1.0 (Cuttack) 
for HT, and from 0.19 (Gazipur) to 0.89 (Cuttack and 
Dakawa) for YLD trait (Table 2).

For most of the environments, the phenotypic corre-
lations between traits (DTF, HT and YLD) were low to 
medium (− 0.31–0.53). No clear trend was identified for 
all environments, although HT was significantly corre-
lated with days to flowering in nine of the environments 
and flowering was significantly correlated with yield in 
only five environments (Additional file 2: Fig. S5).

Characterization of G × E Interactions upon the Phenotypic 
Performance of ECP
The environment, genotypes, and their interaction effects 
were found to be significant for the three traits (Addi-
tional file  1: Table  S6). The heritabilities based on the 
combined analysis of all trials  (h2

g) confirmed the strong 
effect of the environments (Additional file  1: Table  S7). 
For the models including the G × E interactions,  h2

g 
ranged from 0.52 to 0.57 for DTH, from 0.41 to 0.44 

for HT, and from 0.10 to 0.12 for YLD. The correlations 
between environments corroborated these differences 
between traits. For DTF, correlations with values rang-
ing from 0.07 to 0.82 were found with 33% of the pair-
wise correlations greater than 0.5 (Additional file 2: Fig. 
S6A). A similar trend was observed for HT with correla-
tions ranging from 0.04 to 0.77 and 54% of the correlation 
being greater than 0.5 (Additional file 2: Fig. S6B). On the 
contrary, only 18% of the correlations were significant in 
the case of YLD and most of the correlations were below 
0.2 (Additional file 2: Fig. S6C). Three environments had 
significant correlations with most of the other environ-
ments for the three traits considered: Hyderabad-India 
(2018-WS), Mwea-Kenya and Los Baños (2019-DS).

In order to better identify similar environments based 
on phenotypic performances, a clustering analysis was 
conducted for the three traits (Fig. 3). For the DTF, two 
main clusters were identified: one comprising five loca-
tions from Bangladesh and India (except Hyderabad) and 
the other including ten locations from Africa, the Phil-
ippines and Hyderabad (Fig. 3A). For the HT, two main 
clusters were identified (Fig.  3B). The first cluster had 
only two environments (Hyderabad-wet season 2019 and 
Los Baños-wet season 2019) that presented lower cor-
relations with other environments. The second cluster 
gathered all other environments. However, similarly to 
DTF, two subclusters tend to separate environments in 
Bangladesh and India to the rest (Africa and the Philip-
pines). For YLD, since the level of correlation between 
environments was lower, the environments were spread 
in more clusters. Indeed, four clusters were identified 
with no clear structuration by regions or by seasons 
(Fig.  3C). However, the environments from the same 
location (Hyderabad or Los Baños) clustered together.

Characterization of Environments Based on Environmental 
Covariates
The clustering analysis for the four periods showed 
different patterns (Fig. 4A–D). For the whole growing 
season, two main clusters were found. The first clus-
ter grouped India’s, and Bangladesh’s environments 
and Los Baños in the wet season. The second cluster 
included a subcluster of Hyderabad’s environments 
and Los Baños in the dry season, and a subcluster 
with all of Africa’s environments. Similar results were 
found for the reproductive phase with two main clus-
ters. These clusters were also similar to the clustering 
of environments for DTF but very different from those 
of HT and YLD traits. For the vegetative and ripening 
phases, environments from Asia tend to cluster with 
environments from Africa with no clear separation 
between the two regions.

Fig. 1 The principal component analysis between the elite core 
panel (ECP) and 3000 rice genomes (3K‑RG) accessions. (A) The 
ECP with all subgroups of 3K‑RG; (B) the ECP with only indica (XI) 
subgroups. The analysis is based on 837 common SNPs. The ECP lines 
are denoted with black dots. The subgroups from 3K‑RG included 
Admix, circum‑Basmati, circum‑Aus, indica (1A, 1B, 2, 3, admix), and 
japonica (admix, subtropical, temperate, tropical)



Page 8 of 17Nguyen et al. Rice            (2023) 16:7 

Genomic Prediction for Untested Environments
Impact of the Prediction Models
We evaluated the efficiency of the different models 
to predict untested environments with the CV-RAN 

scenario. The predictive abilities (PAs) ranged from 0.19 
(Ahero) to 0.67 (Hyderabad-2018) for DTF, from 0.28 
(Los Baños - wet season) to 0.83 (Hyderabad-2018) for 
HT and from − 0.06 (Nimwa) to 0.45 (Hyderabad-2018) 

Table 2 Phenotypic values and broad‑sense heritability  (H2) for the three traits across environments

DTF days to flowering; HT plant height; YLD grain yield. In the two environments of Bangladesh-Nizmawna and India-Hyderabad, the broad-sense heritability was not 
calculated due to the experimental design without replications

Country Location Study name DTF (days) HT (cm) YLD (t/ha) H2 (SE)

Range Mean Range Mean Range Mean DTF HT YLD

Bangladesh Gazipur BD‑GZ‑19W 82–102 90 111.6–137.2 122.6 3.28–4.09 3.76 0.69 (1.02) 0.55 (2) 0.19 (0.15)

Bangladesh Nizmawna BD‑NM‑19W 86–105 92 100.2–146.8 120.4 3.75–6.06 5.01 – – –

India Hyderabad IN‑HY‑18W 96–116 105 74.1–101.6 85.9 4.93–6.87 5.94 0.85 (0.14) 0.74 (0.71) 0.67 (0.08)

India Cuttack IN‑CU‑19W 89–106 97 94.3–135.1 116.0 3.34–6.71 4.96 0.96 (0.02) 1 (0.0003) 0.89 (0.03)

India Hyderabad IN‑HY‑19D 86–97 90 74.8–103.7 87.1 3.90–7.58 6.01 0.64 (0.37) 0.72 (0.7) 0.7 (0.09)

India Hyderabad IN‑HY‑19W 99–118 109 75.0–133.3 104.5 1.97–8.34 5.47 – – –

India Maruteru IN‑MA‑19W 89–101 95 109.9–145.4 130.2 3.09–5.91 4.03 0.73 (0.41) 0.93 (0.15) 0.87 (0.05)

India Raipur IN‑RP‑19W 99–117 107 98.7–134.1 114.7 4.15–6.36 5.25 0.92 (0.08) 0.91 (0.29) 0.53 (0.19)

Kenya Ahero KE‑AH‑19D 95–104 98 86.3–109.9 98.1 3.98–5.45 4.83 0.52 (0.55) 0.51 (1.08) 0.28 (0.1)

Kenya Mwea KE‑MW‑20W 95–112 103 73.2–103.8 86.6 3.12–5.52 4.28 0.6 (0.65) 0.69 (0.84) 0.59 (0.09)

Mozambique Chokwe MZ‑CK‑20W 106–128 118 65.1–92.9 80.0 4.44–6.54 6.01 0.91 (0.04) 0.27 (6.81) 0.28 (0.1)

Mozambique Maputo MZ‑MP‑20W 92–124 108 66.0–102.1 78.6 3.74–5.40 4.70 0.78 (0.5) 0.7 (0.77) 0.45 (0.1)

Philippines Los Baños PH‑LB‑19D 78–99 88 90.5–124.3 107.2 4.72–7.94 6.46 0.87 (0.08) 0.73 (0.66) 0.75 (0.04)

Philippines Los Baños PH‑LB‑19W 72–98 86 100.8–138.4 119.3 3.56–6.68 5.33 0.82 (0.2) 0.5 (1.93) 0.71 (0.04)

Tanzania Dakawa TZ‑DK‑20W 78–101 88 88.4–119.7 104.9 3.36–5.72 4.87 0.93 (0.09) 0.74 (1.4) 0.89 (0.05)

Fig. 2 Distribution of phenotypic values of elite lines for the three traits evaluated across the 15 environments. DTF days to flowering; HT plant 
height; YLD grain yield. The boxes with orange colors indicated the trials conducted in the dry season, and the boxes with the blue color indicated 
the trials in the wet season
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for YLD (Additional file 1: Table S8). As expected, DTH 
and HT presented higher PAs than YLD. Consider-
ing the models, the integration of the main effect of the 
environment (E) or the environmental covariates (W) 
significantly increased the PA for DTF (12 environments 
over 15) and HT (all environments) compared to base-
line model G (Fig.  5). However, for YLD, the GE, GW 
and GEW models did not perform significantly better 
than the G model, except in one case (Chokwe). Inter-
estingly, in most of the cases, no significant increase in 
PA was found between models including the interaction 
term (G × E or/and G × W) and GE, GW or GEW model. 
Indeed, for DTF, the models with interactions were sig-
nificantly better than models with main effects in only 
three environments. For HT and YLD, the models with 
interactions (more specifically with GxW) showed a sig-
nificant decrease in PA in five and six environments, 
respectively.

Impact of Training Set Composition
We compared three cross-validation scenarios (CV-RAN, 
CV-SEL, and CV-LOEO) with only GE and GE-G × E 
models, to evaluate the effect of training set composi-
tion on PA. For DTF, the PA ranged from 0.19 (Ahero) 
to 0.67 (Hyderabad 2018) for CV-RAN, from 0.2 (Ahero) 
to 0.79 (Hyderabad 2018) for CV-SEL, and from 0.18 
(Ahero) to 0.77 (Dakawa) for CV-LOEO. For HT, PA 
varied from 0.36 (Hyderabad 2019 wet season) to 0.83 
(Hyderabad 2018), from 0.34 (Hyderabad 2019 wet sea-
son) to 0.81 (Hyderabad 2018) and from 0.38 (Hyderabad 
2019 wet season) to 0.87 (Hyderabad 2018) for CV-
RAN, CV-SEL and CV-LOEO, respectively. While YLD 
reached PA ranging from − 0.06 (Nizmawna) to 0.32 (Los 
Baños 2019 dry season), from −  0.05 (Dakawa) to 0.62 
(Hyderabad 2018) and from −  0.1 (Nizmawna) to 0.48 
(Hyderabad 2019 wet season) for CV-RAN, CV-SEL and, 

CV-LOEO, respectively (Fig. 6). The CV-LOEO scenario 
presented the highest PAs in five to fourteen environ-
ments depending on the trait. The CV-SEL scenario was 
the second in terms of PA with higher PA in two to six 
environments. Similar results were found when compar-
ing CV scenarios using GW and GW − G × W models, 
or GEW and GEW − G × E–G × W models (Additional 
file 2: Fig. S7A–B). To see the impact of the experimental 
design, we calculated PAs with CV-SEL and CV-LOEO 
using a subset of 33 common lines in all environments. 
The results revealed similar trends in PA between bal-
anced and unbalanced datasets: no major gain in PA was 
observed when the interactions were included in the 
models (Additional file 1: Table S9–S10).

Genomic Prediction for Untested Lines
The performances of untested lines across the fifteen 
environments were predicted with high accuracy with 
all the models including environmental effects or envi-
ronmental covariates (GE, GW, GEW, GE-GxE, GW-
GxW and GEW-GxE-GxW models, Table  3). The PAs 
were close to 0.95 on average for DTF and HT, and close 
to 0.81 on average for YLD. No differences were found 
between these models. As expected, the model with only 
the main effect of the genotypes (G) displayed PA close to 
0 on average. When we looked at the environment level, 
we found lower PAs and large differences between envi-
ronments. The PA ranged from −  0.03 to 0.56 for DTF, 
− 0.05 to 0.53 for HT and − 0.37 to 0.52 for YLD. A simi-
lar trend to that of the untested environment prediction 
was found: the models with the main effects of the envi-
ronment (GE, GW, and GEW) tend to present higher PA 
than the other models. However, a large variability was 
found between environments and traits (Additional file 1: 
Table S11).

Fig. 3 Hierarchical clustering of environments for the three traits. DTF days to flowering (panel A); HT plant height (panel B); YLD grain yield (panel 
C). The different colors present different clusters among environments. The names of environments in the clusters are formatted by ordering 
country name, location, year, and season (see Table 1)
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Discussion
Performance of Elite Breeding Lines
The characterization at both genetic and phenotypic 
levels of elite lines is a key aspect of breeding programs. 
This information allows the breeder to drive the breeding 
population in the desired direction while making efficient 
use of the available genetic diversity. In the framework 
of IRRI breeding programs for irrigated systems, a panel 
representing the elite diversity of the program was con-
stituted in 2018 and then enriched with recent parental 
lines (Juma et al. 2021). In this study, we took advantage 

of the ECP and evaluated it in 15 environments in Asia 
and Africa. Although the trials were conducted with the 
standard practices for irrigated systems, important differ-
ences in the average performances were found between 
environments for three traits measured (DTF, HT, YLD). 
For example, a difference of 32 days was found for DTF 
between the two extreme environments. For YLD, the 
productivity was on average 2.7 t.ha higher in the most 
productive environment compared to the least produc-
tive. In addition to these differences, our results showed 
medium G × E for DTF and HT and a strong G × E for 

Fig. 4 Hierarchical clustering of environments upon ECs throughout (A) the whole growing season, each developmental phase (B–D). Different 
colors show the different clustering between environments. The names of environments in the clusters are formatted by ordering country name, 
location, year, and season (see Table 1)
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YLD. These levels of G × E are slightly higher than the 
ones generally found in similar studies on rice (Mon-
teverde et  al. 2019; Morais Júnior et  al. 2017; Spindel 
et al. 2015). These results can partly be explained by the 
wide distribution of the trials and the associated environ-
mental variations. Indeed, the clustering analysis based 
on eight ECs and four different phases (whole growing 
season, vegetative, reproductive, and ripening phases) 
showed similarity to the ones based on phenotypic per-
formances. However, the clustering structure did not 
clearly separate Asian and African environments. This 
information will be used for a better definition of the tar-
get population of environments in the future (Atlin et al. 
2000).

Prediction Accuracies of Multi‑environment Models
In rice, a wide variety of populations (diversity panels, 
breeding population, biparental crosses,…) have been 
used in GS studies depending on the context and the 
objective (Bartholomé et al. 2022). In the present study, 
we focused our efforts on a set of elite breeding materials 
phenotyped by the partners of the program. The number 

of environments available enables us to assess the impact 
of G × E modeling on PA for untested environments and 
untested lines using seven genomic prediction models. 
For untested environments, the approach resulted in 
high PAs for different combinations of trait/environment 
with values as high as 0.77 for DTF, 0.88 for PH, and 0.62 
for YLD. However, YLD was poorly predicted in nearly 
half of the environments with values close to zero. This 
difference between more heritable traits (e.g. DTF and 
HT) and less heritable traits (e.g. YLD) has been already 
reported in the literature on rice (Ben Hassen et al. 2018; 
Monteverde et  al. 2018; Morais Júnior et  al. 2017). For 
untested lines, the PAs were very high (0.80–0.90) high-
lighting the complexity of predicting performance in new 
environments versus predicting new lines in known envi-
ronments. We also found that, in most cases, the inte-
gration of environments (E), environmental covariates 
(W), and interaction effects (G × E or/and G × W com-
ponents) increased PA when compared to the baseline 
G model. Interestingly, the integration of the interaction 
effects did not result in better PAs for all environments 
and in some cases even decreased the PA, especially for 

Fig. 5 Predictive abilities for untested environments using the CV‑RAN scenario. Seven different models are compared (see material and methods 
section). The letters at the top of each bar represent the results of Tukey’s HSD comparison between models in each environment. The means 
between two groups are significantly different (p‑value < 0.05) if there is no letter in common. The error bars are presented by PA mean ± SE where 
SE is the standard error of PA values from 50 replicates. DTF days to flowering; HT plant height; YLD grain yield
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HT and YLD. We found a similar trend with a smaller 
but balanced data set suggesting that the poor estima-
tion of the G × E was related to other factors such as the 
use of reaction norms to model the interactions (Cuevas 
et al. 2016). In rice, two studies reported the use of multi-
environment models to predict the performances of gen-
otypes in untested environments and obtained similar 

results (Monteverde et al. 2019; Morais Júnior et al. 2017). 
Morais Júnior et al. (2017) used historical data from three 
cycles of a breeding program with a total of 10 environ-
ments to assess the predictive ability of a single-step 
reaction norm model. They obtained high accuracies 
for the prediction of untested environment for the three 
traits evaluated: DTF (0.5–0.9), HT (0.25–0.7), and YLD 

Fig. 6 Comparison of the predictive abilities between the three cross‑validation scenarios: CV-RAN (random), CV-SEL (selected environments) and 
CV-LOEO (leave one environment out). Two models are presented: the first one with only the main effects of genotypes and environments (GE) and 
the second one with the main effect and the interaction (GE − G × E). The error bars are presented by PA mean ± SE where SE is the standard error 
of PA values from 50 replicates. DTF days to flowering; HT plant height; YLD grain yield

Table 3 Predictive abilities of untested lines

DTF days to flowering; HT plant height; YLD grain yield; SE standard error values

The average values are computed from predictive ability across 33 lines in each model

Model DTF HT YLD

Range Mean SE Range Mean SE Range Mean SE

G − 0.59–0.53 − 0.10 0.056 − 0.48–0.47 − 0.01 0.046 − 0.46–0.37 − 0.05 0.039

GE 0.82–0.99 0.94 0.007 0.8–0.99 0.95 0.008 0.4–0.94 0.79 0.021

GW 0.82–0.99 0.94 0.007 0.8–0.99 0.95 0.008 0.39–0.94 0.79 0.021

GEW 0.82–0.99 0.94 0.007 0.8–0.99 0.95 0.008 0.4–0.94 0.79 0.021

GE‑GxE 0.8–0.99 0.95 0.007 0.79–0.99 0.94 0.009 0.57–0.95 0.81 0.018

GW‑GxW 0.79–0.99 0.95 0.008 0.8–0.99 0.94 0.008 0.43–0.95 0.79 0.019

GEW‑GxE‑GxW 0.79–0.99 0.95 0.008 0.79–0.99 0.94 0.009 0.58–0.95 0.81 0.018
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(0.15–0.65). Morais Júnior et al. (2017) also evaluated the 
effect of GxE modeling in the context of the prediction 
of untested lines but did not find important differences 
with the models including only the main effects. Using 
two breeding populations (indica and japonica), Mon-
teverde et al. (2019) found that modeling the interaction 
effects with the G × W component (G + W + G × W) did 
not give better results than modeling the main effects of 
genotypes and ECs (G + W). Similarly to our results, the 
integration of the interactions (G × W) even decreases 
the PA in some cases compared to the simple GBLUP 
model (G model). These results contrast with previ-
ous studies on barley and wheat where the use of ECs to 
model the environmental effects has resulted in higher 
prediction accuracies for untested environments (Jar-
quín et  al. 2014; Malosetti et  al. 2016). Previous studies 
on rice also showed that the modelling of G × E inter-
actions tends to increase PA (Baertschi et  al. 2021; Ben 
Hassen et al. 2018; Bhandari et al. 2019; Monteverde et al. 
2018). However, most of these studies predict the perfor-
mance of untested lines in known environments using 
two common cross-validation approaches to evaluate the 
PA of multi-environment models: CV1 and CV2 (Bur-
gueño et al. 2012). For example, Ben Hassen et al. (2018) 
reported a better prediction performance of multi-envi-
ronment models than single environment models using a 
diversity panel phenotyped under alternate wetting and 
drying and continuous flooding conditions. The gain in 
accuracy of multi-environment models over single-envi-
ronment models was 30% under CV2. Similar results 
were also reported by Monteverde et al. (2018) and Bae-
rtschi et  al. (2021) but with contrasted gains depending 
on the traits.

Impact of Training Set Composition
To achieve a higher level of PA for untested environ-
ments, the selection of environments to compose the 
training set can play an important role (Jarquín et  al. 
2014). In this study, the PAs were found to be higher for 
both CV-LOEO (all environments) and CV-SEL (four 
correlated environments) compared to the CV-RAN 
(four random environments), confirming that using a 
training set with only correlated environments can be 
a good strategy. Indeed, several studies have shown 
that correlations between environments is a key fac-
tor in achieving good prediction accuracy, and the use 
of training data derived from correlated environments 
can improve prediction accuracy (Spindel and McCouch 
2016). For example, Rogers and Holland (2022), using 
empirical data on maize, found a sharp decrease in pre-
dictive ability for the scenario “leave out related envi-
ronments” compared to the scenario “leave out related 
hybrids”. They concluded that environmental similarity is 

an important driver of prediction accuracy compared to 
genetic similarities for environment-specific predictions. 
In a study on rice, Spindel et al. (2016) found that one of 
the major differences in prediction accuracies was associ-
ated with the level of correlation between environments, 
in which the prediction accuracies were generally higher 
when the training data used were from well-correlated 
environments. In this context, the use of environmental 
covariates is central to guide the choice of phenotyping 
sites and potentially reduce phenotyping efforts while 
maintaining a high level of precision. Therefore, the topic 
of multi-environmental prediction models and integra-
tion of ECs has gradually developed over the past decade 
in the plant breeding community (Crossa et al. 2022). In 
contrast to optimizing the composition of the training set 
(genotypes), optimizing the environmental information 
to be used for training the models has received less atten-
tion (Isidro et al. 2015; Rio et al. 2021).

Implications for the Breeding Strategy at IRRI
Much of the complexity of plant breeding programs 
arises from G × E. For traits with a large proportion of 
G × E, such as yield, breeders have different options 
for evaluating them in their breeding programs. Since 
the costs of phenotyping are usually a major limita-
tion, a small number of promising genotypes are evalu-
ated in multi-environment trials to quantify the level 
of G × E and select the genotypes with the best perfor-
mance (Comstock 1977). This can be a limitation if the 
goal is to exploit G × E interactions rather than minimize 
them. For this reason, the concept of a target popula-
tion of environments (TPE) was defined. This is a set of 
environments that are homogeneous in terms of pheno-
typic perforations in which future varieties will be grown 
(Crespo-Herrera et al. 2021). However, it can be difficult 
to sample efficiently the TPE, especially in small public 
breeding programs. Being able to predict the perfor-
mance of untested environments using multi-environ-
ment models and ECs can be very useful for a breeding 
program that operates in different countries like the IRRI 
program for irrigated systems. Recently, the program was 
redesigned to integrate genomic selection with enhanced 
multi-environment evaluations (first-stage yield tri-
als) with the partners. The objective was to shorten the 
breeding cycle while optimizing multi-environment 
evaluations (Bartholomé et al. 2022). The findings of the 
present study support the idea to use all the phenotypic 
information from correlated environments to make the 
prediction. Currently, the predictions are made by region 
but the results from the CV-SEL and CV-LOEO showed 
that information from other environments can be bor-
rowed to increase the PA. In practice, the use of ECs can 
help to consider more carefully the correlations between 
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the different environments and therefore restructure 
the genomic prediction pipeline. In addition, perhaps 
the program is currently implementing a sparse-test-
ing approach that aims to increase the number of lines 
evaluated while keeping the number of plots to a man-
ageable size (Atanda et  al. 2021; Jarquin et  al. 2020). In 
that context, the genotypes are not fully replicated across 
environments making the estimation of GxE interactions 
more difficult. It is, therefore, necessary to go towards the 
estimation of the marker by environment interactions or 
marker by ECs to keep maintain the level of accuracy.

Conclusion
Understanding the level of G × E in a given population 
and a given set of environments or locations is essential 
to better guide the testing strategy of a breeding program. 
However, the number of environments that can be evalu-
ated by a program is often limited. The use of genomic 
prediction can be useful in a different way in this aspect. 
In this study, we showed that multi-environment mod-
els can predict untested lines with high accuracy. How-
ever, the prediction of an untested environment presents 
some challenges. We showed that models with only the 
main effects (G + E or G + W) were sufficient to obtain a 
good level of accuracy and that modelling the genotype 
by environment interaction (G × E or G × W) did not 
increase the accuracy. These results will allow more effi-
cient use of the information generated by the IRRI breed-
ing program and optimization of the testing strategy for 
updating the GS models.
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