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ABSTRACT 10 

Recent epidemiological studies show that current levels of exposure to polychlorinated biphenyls 11 

(PCBs) remain of great concern, as there is still a link between such exposures and the development of 12 

chronic environmental diseases. In this sense, most studies have focused on the health effects caused 13 

by exposure to dioxin-like PCBs (DL-PCBs), although chemical exposure to non-dioxin-like PCB 14 

(NDL-PCB) congeners is more significant. In addition, adverse effects of PCBs have been 15 

documented in humans after accidental and massive exposure, but little is known about the effect of 16 

chronic exposure to low-dose PCB mixtures. In this work, exposure to Aroclor 1260 (i.e. a 17 

commercially available mixture of PCBs consisting primarily of NDL-PCBs congeners) in pigs is 18 

investigated as new evidence in the risk assessment of NDL-PCBs. This animal model has been 19 

selected due to the similarities with human metabolism and to support previous toxicological studies 20 

carried out with more frequently used animal models. Dietary exposure doses in the order of few 21 

ng/kg body weight (b.w.) per day were applied. As expected, exposure to Aroclor 1260 led to the 22 

bioaccumulation of NDL-PCBs in perirenal fat of pigs. Metabolomics and lipidomics have been 23 

applied to reveal biomarkers of effect related to Aroclor 1260 exposure, and by extension to NDL-24 

PCB exposure, for 21 days. In the metabolomics analysis, 33 metabolites have been identified (level 1 25 

and 2) as significantly altered by the Aroclor 1260 administration, while in the lipidomics analysis, 39 26 

metabolites were putatively annotated (level 3) and associated with NDL-PCB exposure. These 27 

biomarkers are mainly related to the alteration of fatty acid metabolism, glycerophospholipids 28 

metabolism and tryptophan-kynurenine pathway. 29 
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1. Introduction 32 

The Stockholm Convention sets the goal of reducing and ultimately eliminating the production and 33 

release of persistent organic pollutants (POPs), such as PCBs, into the environment due to their 34 

toxicity to human health and ecotoxicity (Xu et al., 2013). PCBs comprise a chemical class of 209 35 

congeners consisting of a thermodynamically stable chlorine-substituted biphenyl ring. Two classes of 36 

PCBs have been classified according to their toxicological properties, dioxin-like PCBs (DL-PCBs) (n 37 

= 12), which have an analogous toxicity to dioxins, and non-dioxin-like PCBs (NDL-PCBs) (EFSA, 38 

2005). About 1,3 million tons of PCBs were produced between 1930 and 1993 for use in various 39 

materials and applications due to their physico-chemical properties, including non-flammability, 40 

chemical stability, high boiling point, and high dielectric constants (IARC, 2016). Commercial 41 

production of PCBs was initially banned by the Toxic Substances Control Act (TSCA) in the United 42 

States in 1979 due to their risks for human health, and this prohibition has been subsequently adopted 43 

by almost all industrialized countries since the late 1980s. However, PCBs are currently present as 44 

environmental pollutants even in the most remote regions of the world (Carlsson et al., 2018)(Kim et 45 

al., 2021).  46 

The ubiquitous presence of PCBs in the environment has made their toxic effects a public health 47 

concern for a long time because these chemicals are still detected in human samples (Weitekamp et al., 48 

2021). Epidemiologic data suggest that body burdens of DL-PCBs and dioxins are at (or near) the 49 

point where adverse health effects may be occurring; therefore, greater efforts are required to reduce 50 

exposure to PCBs in order to prevent health (White and Birnbaum, 2009). The main sources of 51 

exposure to PCBs are diet, especially fat-containing foods, and indoor air due to the extensive use of 52 

PCBs in building materials (Grimm et al., 2015)(Lehmann et al., 2015). In 2005, the European Food 53 

Safety Agency (EFSA) indicated that more than 90% of exposure to NDL-PCBs in the general 54 

population is related to dietary exposure and estimated that the daily dietary intake of total NDL-PCBs 55 

was between 10 and 45 ng/kg b.w. per day (EFSA, 2005). Depending on the context of the study or 56 

investigation, specific congeners may be monitored. For instance, the Stockholm Convention on POPS 57 

recommends the measurement of six indicator PCBs (PCB28, PCB52, PCB101, PCB138, PCB153, 58 

and PCB180) to characterize NDL-PCB contamination. These NDL-PCBs are the most frequently 59 

detected and represent 50% of the total PCB concentration. The second French Total Diet Study has 60 

shown that mean exposure (95th percentile) to these six indicator PCBs is estimated at 2.7 (7.9) ng/kg 61 

b.w. per day in the adult population. Recently, in the French Infant Total Diet Study, the exposure 62 

levels to the six indicator PCBs were estimated between 0.87 and 3.53 ng/kg b.w. per day in children 63 

between 1 and 36 months of age (Hulin et al., 2020). In the aforementioned cases, it was observed that 64 

in some age groups the tolerable daily intake was exceeded. In this sense, tolerable daily intake s of 20 65 

and 10 ng/kg b.w. per day have been established for total PCB exposure and exposure to the six 66 

indicator PCBs, respectively (AFSSA, 2007)(Faroon et al., 2003). 67 
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The chemical risks of PCBs are related to their persistence, bioaccumulation, and toxicity which 68 

depends on the PCB congener. Animal toxicology studies show that PCB mixtures with larger 69 

percentages of congeners with higher chlorine content and DL-PCBs carry an increased risk of liver 70 

toxicity and disturbance of thyroid function; however, similar results have been obtained for such 71 

mixtures and for PCB mixtures with lower chlorine content in immunotoxicity and neurotoxicity 72 

assays (Christensen et al., 2021). Although NDL-PCBs are present in a higher proportion in 73 

environmental PCB mixtures, risk assessments of PCBs have traditionally focused on the effects of 74 

DL-PCB congeners because they generally exert more potent toxic effects (Pikkarainen et al., 75 

2019)(Alarcón et al., 2021). Nevertheless, government agencies such as the EFSA and the Joint 76 

FAO/WHO Expert Committee on Food Additives (JECFA) have recently pointed out the need to 77 

address the possible adverse health effects associated with exposure to NDL-PCBs, especially in the 78 

early life stage (EFSA, 2005)(JECFA, 2016). Recent studies suggest that NDL-PCBs are primarily 79 

responsible for the developmental neurotoxicity associated with PCB exposure (Klocke and Lein, 80 

2020). Although their role in occupational hepatotoxicity caused by higher exposure levels has been 81 

known for a long time, NDL-PCBs as well as DL-PCB congeners have also recently been associated 82 

with an environmental liver disease, specifically nonalcoholic fatty liver disease (Wahlang et al., 83 

2019). In this framework, there is a great concern about the risks associated with environmental and 84 

dietary exposure to chemicals with endocrine disrupting properties such as PCBs, as they have 85 

recently been identified as one of the main factors to contributing to the rapid increase in the incidence 86 

of metabolic diseases such as nonalcoholic fatty liver disease (Heindel et al., 2017). In addition, it is 87 

necessary to improve knowledge about the mechanisms by which these environmental exposures 88 

induce toxic effects. Thus, later, they can be applied to relevant disease models to determine the 89 

importance of chronic environmental exposure to low chemical doses to the initiation and/or 90 

progression of disease etiologies (Armstrong and Guo, 2019).  91 

‘Omics approaches have recently emerged as interesting alternative methodologies to address the risk 92 

assessment of chemicals and involve a shift in the way toxicological studies are conducted, from 93 

identifying apical endpoints of toxicity to understanding the mechanisms of toxicity (EFSA, 2014). In 94 

this sense, the identification of effect biomarkers by ‘omics contributes to reveal the mode of action of 95 

chemicals, which encompasses a sequence of plausible biological events in the organism caused by 96 

exposure to a chemical hazard and leads to an observed effect (Simon et al., 2014). Although 97 

transcriptomics has been the most widely applied ‘omics approach in chemical risk assessment, the 98 

implementation of proteomics and, especially, metabolomics has experienced increasing interest in the 99 

last decade (Pielaat et al., 2013)(Hernández-Mesa et al., 2021). The metabolome is the biological layer 100 

closest to the phenotype and the exposure environment, so up- and/or down-regulated metabolites may 101 

be directly associated with the effects of chemical exposure. Investigating metabolome disturbances 102 

represents a straightforward strategy to assess the biological plausibility of chemicals and establish 103 
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their mode of action (Wishart, 2016). In recent years, metabolomics has been explored as an efficient 104 

methodology to carry out the risk assessment of a wide range of chemicals (Orešič et al., 2020)(Dai et 105 

al., 2020)(Olesti et al., 2021), including environmental contaminants such as PCBs (Shi et al., 106 

2012)(Carrizo et al., 2017)(Pikkarainen et al., 2019)(Deng et al., 2019)(Zhang et al., 2020). In this 107 

context, metabolomics is required to not only focus on revealing the mode of action of chemicals, but 108 

also address current risk assessment challenges such as effects related to chemical co-exposures and 109 

exposures at low dose levels (Hernández-Mesa et al., 2021). Many toxicological studies for risk 110 

assessment of PCBs involved exposure doses that imply obvious toxicity; therefore, the results are 111 

only representative in human populations after accidental and massive exposure (Ulbrich and 112 

Stahlmann, 2004). Metabolomics provides the advantage of revealing early biomarkers of effect that 113 

may be related to an adverse response of the body to low-dose chemical exposure scenarios, and which 114 

manifest before visible toxicity. Consequently, metabolomics makes it possible to detect the presence 115 

or absence of an effect even when the latter goes unnoticed by other toxicological methods (Pielaat et 116 

al., 2013)(Viant et al., 2019)(Hernández-Mesa et al., 2021). 117 

The objective of this study is to identify biomarkers of effect associated with PCB exposure at dietary 118 

exposure levels. Previous animal toxicology studies applying metabolomics have typically evaluated 119 

the effects of PCB exposure using mice as animal model (Shi et al., 2012)(Petriello et al., 2018)(Deng 120 

et al., 2019)(Lim et al., 2020). Although less used for obvious reasons of infrastructure requirements 121 

and associated costs, the pig is recognized as a relevant animal model for the study of endocrine 122 

disruptors (Yang et al., 2020). In addition to a lifespan that allows for significant accumulation of 123 

environmental pollutants, it shows phylogenetic, physiological, nutritional, and pathological 124 

similarities with humans. Therefore, it is increasingly used in toxicology and biomedical research. 125 

Therefore, this work proposes a combined metabolomics-lipidomics approach to investigate PCB 126 

exposure in pigs as new piece of evidence for PCB risk assessment. To our knowledge, it is the first 127 

time that metabolomics/lipidomics has been applied to the discovery of biomarkers of effect related to 128 

PCB exposure in pig serum. In addition, an exposure dose of 20 ng/kg b.w. per day of a ‘PCB 129 

cocktail’, consisting primarily of NDL-PCBs (Aroclor 1260 mixture), was selected as an approach to 130 

investigate the effects on the metabolism caused by exposure to NDL-PCBs at dietary exposure levels 131 

according to the second French Total Diet Study outcomes (Sirot et al., 2012). Aroclor 1260 was 132 

selected for this study because its composition best mimics the bioaccumulation of PCBs found in 133 

human adipose tissue (Wahlang et al., 2014). 134 

2. Material and methods 135 

2.1 Materials and reagents 136 

All reagents and solvents used in this study were of analytical grade unless otherwise specified. 137 

Acetonitrile (MeCN), methanol (MeOH), isopropanol (IPA), acetic acid, and ammonia were supplied 138 
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by Honeywell (Bucharest, Romania). Ultra-pure water was acquired from VWR (Fontenay-sous-Bois, 139 

France), while chloroform was purchased from Carlo Erba Reactifs (SDS, Peypin, France). 140 

Ammonium acetate salt (Emsure grade) was purchased from Merck (Darmstadt, Germany). 141 

Metabolomics isotope-labeled internal standards (L-leucine-5,5,5-d3, L-tryptophan-2,3,3-d3, indole-142 

2,4,5,6,7-d5–3-acetic acid, and 1,14-tetradecanedioic-d24 acid) were from Sigma–Aldrich (Saint 143 

Quentin Fallavier, France) and from CDN Isotopes (Québec, Canada). Lipidomics internal standards 144 

[(LPC (15:0), PC (15:0/15:0), and TG (17:0/17:0/17:0)] were purchased from Avanti Polar Lipids 145 

(Alabaster, Alabama, USA). MSCAL6 ProteoMass LTQ/FT-Hybrid standard mixtures used for 146 

calibration of the MS instrument were obtained from Sigma–Aldrich (Saint Quentin Fallavier, France). 147 

Aroclor 1260 (certified reference material, 1000 µg/mL in isooctane) was supplied by Sigma–Aldrich 148 

(Saint Quentin Fallavier, France). 149 

2.2 Animal experimental design 150 

Six 4-month-old female pigs (Terrena, France) weighting 29.8 ± 2.3 kg were randomly assigned to 151 

control (n = 2 animals) and exposed (n = 4 animals) groups. The animal experiment was carried out 152 

for 32 days and consisted of three different stages (i.e. periods of acclimatization, exposure, and 153 

detoxification), as shown in Figure 1. During the exposure period, exposed pigs received orally a 154 

daily dose, of Aroclor 1260 (20 ng/kg b.w.) in 20 mL of sunflower oil whereas a 20 mL placebo of 155 

sunflower oil was administrated orally to the control group. Aroclor 1260 is a mixture of highly 156 

chlorinated PCBs (60% chlorine by weight) that contains 30.7% by weight of the six NDL-PCBs 157 

known as the six indicator PCBs (i.e. PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180) 158 

(Rushneck et al., 2004). The exposure dose selected for this study (6.1 ng/kg b.w. per day 6 NDL-159 

PCBs) was based on the observed P95 exposure level of the French population to the six PCB 160 

indicators in the second Total Diet Study (i.e. 7.9 ng/kg b.w. per day) (Sirot et al., 2012). This 161 

exposure level is also close to but slightly lower than the tolerable daily intake of the 6 NDL-PCBs 162 

(i.e. 10 ng/kg b.w. per day) (AFSSA, 2007)(Faroon et al., 2003).  163 

Blood samples from control and exposed pigs were collected on days (D) 2, 4, 8, 11, 16, 19, 22, 26, 29 164 

and 32. Animals were euthanized just after the last blood sampling point and several tissues and 165 

organs, including perirenal fat, were recovered for further investigation. The blood samples were 166 

allowed to clot at room temperature, recovering the serum part by centrifugation. Aliquots of serum 167 

samples were subsequently stored at -80°C. 168 

The animal study was approved by the French Ethical Committee (n°6) under project agreement 169 

APAFIS#15159-2018051920446340 v2 (ONIRIS agreement E44271). 170 

2.3 Sample preparation 171 
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The extraction of metabolites and lipids from serum samples was performed with a biphasic solvent 172 

system [(1) MeOH + water and (2) chloroform] (Peng et al., 2017). Briefly, 30 µL of serum were 173 

extracted with 190 µL of cold MeOH containing the metabolomics isotope-labeled internal standards 174 

(1 µg/mL), 390 µL of cold chloroform containing the lipidomics isotope-labeled internal standards (1 175 

µg/mL) and 120 µL of pure water. The samples were vigorously vortexed and centrifuged at 3500 g 176 

for 20 minutes at 4 °C. For metabolomics and lipidomics analyses, 95 µL of the upper or aqueous 177 

phase (MeOH + water) and 200 µL of the chloroform phase were collected, respectively. Pooled 178 

quality control (QC) samples (i.e. a mixture of aliquots from the entire sample set) and extraction 179 

blanks (water samples) were extracted and processed as the serum samples. 180 

2.4 UHPLC-HRMS analysis 181 

Metabolomics and lipidomics analyses were carried out on an Ultimate® 3000 Series HPLC system 182 

coupled to a hybrid quadrupole-Orbitrap (Q-Exactive™) mass spectrometer (ThermoFisher Scientific, 183 

Bremen, Germany) equipped with a heated electrospray (H-ESI II) source. The HRMS instrument was 184 

set in dual polarity (positive/negative) acquisition mode. Metabolomics analyses were performed on a 185 

Hypersil Gold C18 column (2.1 × 100 mm, 1.9 µm particle size; Thermo Fisher Scientific) coupled 186 

with the corresponding guard column, whereas lipidomics analyses were performed on an Acquity® 187 

CSH C18 (column (2.1 × 100 mm, 1.7 µm particle size; Waters, Manchester, UK) coupled with the 188 

corresponding guard column. For metabolomics analyses, chromatographic conditions, ESI source 189 

conditions and MS tuning parameters were the same as previously reported (Peng et al., 2017). For 190 

lipidomics analyses, a previously described non-targeted UHPLC-HRMS workflow was selected 191 

(Marchand et al., 2021). For either metabolomics or lipidomics analysis, samples were randomized 192 

and divided into three batches for analysis. Data acquisition was carried out following the quality 193 

assurance (QA) plan described in the Supplementary Material.  194 

QC samples were also submitted to data-dependent acquisition (DDA) to generate fragmentation 195 

spectra of the five most intense peaks per scan. For lipidomics, DDA experiments were replicated 3 196 

times for each polarity, providing an exclusion list of peaks already fragmented in the previous 197 

analysis, to obtain fragmentation data of more chromatographic peaks. For metabolomics, selected 198 

reaction monitoring mode was also applied to target the features highlighted by the statistical analysis 199 

as potential biomarkers.  200 

2.5 Data preprocessing 201 

LC–HRMS raw data files were initially preprocessed with Xcalibur 2.2 to check the analytical 202 

performance of the method, evaluating retention time and signal intensity of internal standards. The 203 

raw (*.raw) files were converted to *.mzML format and polarity split using MSConvert (Kessner et 204 

al., 2008). The *.mzML files were subsequently uploaded to the online collaborative research resource 205 

Workflow4Metabolomics (W4M) (Guitton et al., 2017). Peak picking, grouping of chromatographic 206 
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peaks within and between samples, retention time alignment, and peak filling were applied through the 207 

XCMS R package (Smith et al., 2006) within the LC-MS workflow of the W4M platform. In general, 208 

the default parameters were applied. ‘CentWaveWith-PredIsoROIs’ was selected as the extraction 209 

method for peak detection, and ‘PeakDensity’ was used for peak grouping. 210 

The data matrices generated on the W4M platform were uploaded to the NOREVA platform for data 211 

filtering, imputation of missing values, QC sample correction and normalization (Li et al., 2017). 212 

Variables (or peak features) were considered only when they were detected in 80% of the QC samples 213 

and a bias-variance tradeoff of 75% for signal correction was applied. NA values were transformed to 214 

the mean value of the 'k'-neighbors found in the datasets (KNN algorithm). Batch correction was 215 

performed using local polynomial fits, while normalization was achieved by applying the EigenMS 216 

algorithm (Karpievitch et al., 2014). Furthermore, a time 0 centering (T0-centering) was also applied 217 

as previously proposed (Narduzzi et al., 2020) to evaluate the time-trends of the variables. 218 

2.6 Statistical analysis 219 

Analysis of Variance (ANOVA)‐Simultaneous Component Analysis (ASCA) was performed with the 220 

MetStaT package (Smilde et al., 2005) in R environment (R Development Core Team, 2008). The 221 

datasets were subsequently explored with the SIMCA-P 13.02 software (Umetrics, Umea, Sweden), 222 

applying mean centering and Unit-Variance (UV) scaling to all variables. Unsupervised Principal 223 

Component Analysis (PCA) and supervised (Orthogonal) Partial Least Squares-Discriminant Analysis 224 

[(O)PLS-DA] were investigated as discriminant models. The validation and robustness of each model 225 

were evaluated by R2X (cum), R2Y(cum) and Q2(cum) parameters, cross validation-analysis of 226 

variance (CV-ANOVA), permutation tests and misclassification test. Variable Importance in 227 

Projection (VIP) score greater than 1.5 was established as threshold. Additionally, heatmap analysis 228 

was performed using the “heatmap.plus” package (Day, 2015), using “euclidean” as distance function 229 

and “ward.D2” as clustering algorithm in R environment. 230 

2.7 Metabolite annotation 231 

First, the relevant features were compared with the CAMERA groups (Kuhl et al., 2012) obtained on 232 

the W4M platform to remove possible isotopes and adduct peaks. Subsequently, tentative 233 

identification was carried out by comparing the relevant features with an internal database of 500 234 

metabolites analyzed under the same analytical conditions, applying an in-house developed script 235 

(Narduzzi et al., 2018) for matching with a tolerance threshold of 5 ppm and 30 seconds for m/z and 236 

retention time, respectively. Matches were confirmed by injection of the metabolite standards and 237 

comparison of MS2 spectra; therefore, level 1 annotation was considered for these metabolites 238 

according to the confidence levels for compound annotations as recently proposed by the Compound 239 

Identification work group of the Metabolomics Society (Blaženović et al., 2018). The ‘remaining’ 240 

features were putatively annotated by interrogating MS2 spectra with SIRIUS 4.0 (Dührkop et al., 241 
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2019). Metabolites that showed a high agreement with a single molecular structure were annotated as 242 

level 2. In this sense, published literature was reviewed to consider only those molecular candidates 243 

capable of explaining the biological plausibility of exposure to PCBs. Metabolites were annotated as 244 

level 3 when only a probable structure could be assigned to the metabolite (e.g. molecules with a wide 245 

range of possible isomers were annotated as level 3). Finally, those features with no MS/MS spectra 246 

match were investigated in Metlin (Guijas et al., 2018) and HMDB (Wishart et al., 2018) to annotate 247 

metabolites based simply on their accurate mass. These metabolites were annotated as level 4. 248 

Furthermore, features with an accurate mass that could only provide a single chemical formula were 249 

also annotated as level 4. The annotation of lipids was achieved by interrogation of MS2 spectra with 250 

MS-Dial ver. 4.24 (Tsugawa et al., 2020), and assigned as levels 3 to 4 after manual confirmation.  251 

In addition, and to provide more confidence in the annotated metabolites, their octanol/water partition 252 

coefficient (log P) was investigated to evaluate their fit in a simple linear regression curve built with 253 

information from our in-house library. This was a tentative approach to exclude annotated metabolites 254 

that were clearly outliers in the ‘log P vs retention time’ trend; therefore, their annotation was 255 

probably incorrect based on the observed retention time for the related feature (Kaliszan, 1992). 256 

The “Pathway Analysis module” included in the web-tool MetaboAnalyst 4.0 was used to identify the 257 

metabolic pathways more affected by exposure to Aroclor 1260 according to the biomarkers of effect 258 

identified (Chong et al., 2018).  259 

2.8 Bioaccumulation of PCBs caused by Aroclor 1260 exposure 260 

The bioaccumulation of DL-PCBs and NDL-PCBs in the pigs during the entire period of animal 261 

experimentation was investigated by respective analysis of the 12 DL-PCBs and the 6 PCB indicators 262 

(i.e. PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180) in perirenal fat, which was recovered 263 

in the euthanasia of the animals. The samples were analyzed by gas chromatography (GC)-HRMS 264 

applying an analytical method already implemented in our laboratory (Vaccher et al., 2020). In order 265 

to evaluate whether the bioaccumulation of PCBs in the perirenal fat between exposed and control 266 

groups was statistically significant, F-test (for equality of variance) and T-test (for equality of means) 267 

were performed in Microsoft® Excel® 2013 included in the Microsoft Office Professional Plus 2013 268 

software package. 269 

3 Results 270 

3.1 Body weight development and general observations 271 

In general, no visual observation allowed to indicate significant differences between the control and 272 

exposed pigs. Animals in both groups were weighted on the same day that serum sampling was carried 273 

out to monitor growth and the possible impact of PCBs exposure on it. The animals weighed 30 ± 2 kg 274 

at the beginning of the experiment (D2) while they weighed 53 ± 1 kg at the end of the experiment 275 
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(D32). Weight gain was consistent for the experimentation period and the animal species according to 276 

the animal handlers (i.e. 22 ± 2 and 23.2 ± 0.8 kg for the control and exposed animals, respectively); 277 

therefore, no significant differences were observed within both groups of animals. 278 

The mean concentration levels of DL-PCBs in the perirenal fat for control and exposed groups were 279 

not statistically different for a 95% confidence level (i.e. 0.0915 ± 0.0007 and 0.09 ± 0.02 ng DL-280 

PCBs/kg of fat weight, respectively). On the contrary, statistical differences were observed for NDL-281 

PCBs (p-value < 0.05), with mean concentration levels of 0.3 ± 0.1 and 1.2 ± 0.1 ng NDL-PCBs/kg of 282 

fat weight in the perirenal fat of control and exposed animals, respectively. In the latter case, the f-test 283 

indicated that the variance for both groups was statistically equivalent. These results are in accordance 284 

with our expectations, as Aroclor mixtures mainly consist of NDL-PCB congeners (98%) (Klocke and 285 

Lein, 2020).  286 

3.2 LC–HRMS data 287 

Serum samples were analyzed applying traditional non-targeted LC-HRMS workflows, resulting in 288 

four datasets: two datasets from metabolomics analysis of serum samples under ESI+ and ESI- 289 

conditions, and another two datasets from lipidomics analysis applying both ionization conditions. 290 

After data deconvolution, 1813 and 1731 features were obtained for metabolomics analysis in positive 291 

and negative ionization mode, respectively. In the case of lipidomics, 3624 and 1450 features were 292 

detected in ESI+ and ESI- mode, respectively.  293 

After data pre-processing, metabolomics datasets (ESI+ and ESI- mode) consisted of 725 and 1731 294 

variables, respectively, while 3561 and 1439 variables were contained in lipidomics datasets (ESI+ 295 

and ESI- mode, respectively). In general, the number of variables in the datasets corresponds to the 296 

number of features detected by XCMS deconvolution, except for the metabolomics ESI+ dataset. In 297 

this case, less than half of the detected features remained as variables after data pre-processing. It was 298 

directly related to the fact of an observed depletion of signal intensity during batch-to-batch data 299 

acquisition. 300 

3.3 General data exploration 301 

In our experimental design, two groups of animals (i.e. control and exposed pigs) and three 302 

experimental stages (i.e. periods of acclimatization, exposure, and detoxification) were established. In 303 

total, ten blood samples were collected per animal throughout the investigation period as indicated in 304 

Figure 1, and all of these samples were included in further metabolomics studies. Since the animals in 305 

both groups were under the same experimental conditions during the acclimatization and 306 

detoxification stages, the samples from the datasets were divided into four different observation 307 

classes for initial data exploration (i.e. ‘acclimatization’, ‘detoxification’, ‘exposed’ and ‘control’ 308 

groups). Neither non-supervised (i.e. PCA) nor supervised (i.e. PLS-DA) multivariate analysis 309 
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provided separation of the four groups. However, preliminary results showed that statistical separation 310 

of groups was possible when data from the ‘detoxification’ group were included in ‘exposed’ and 311 

‘control’ groups according to the animal to which the serum sample belonged to. In this context, three 312 

classes of samples belonging to ‘acclimatization’ (n = 12 observations), ‘exposed’ (n = 32) and 313 

‘control’ (n = 16) groups were established for further statistical exploration of the data.  314 

Furthermore, ASCA analysis indicated that the intrinsic biological difference of each animal in our 315 

experiment was one of the main sources of variance in all metabolomics and lipidomics datasets 316 

(‘subject’ factor, Table 1). In contrast, ‘exposure’ (or not) to Aroclor 1260 was not a factor by itself 317 

that explains the variance observed in the datasets. However ASCA analysis also highlighted that the 318 

interaction between the ‘subject’ and ‘exposure’ factors was significant, indicating that there was a 319 

subject-specific effect of the treatment.  320 

To overcome the masking effect of the inter-individual variability, T0-centering was applied to all 321 

datasets to address inter-individual differences and highlight differences between groups. Using 322 

metabolomics data acquired under ESI- conditions as an example, Figure 2 shows how the groups are 323 

clearly separated after T0-centering when PCA is performed, while the differences between them are 324 

masked before T0-centering. After T0-centering, it can be observed how the individual variability for 325 

D2 and D4 is reduced; thus, leading to the grouping of samples from the acclimation period (Figure 326 

2.b). A subsequent representation of the appropriate principal components on the score plot of the 327 

PCA model (Figure 2.c) visually highlights the differences between samples based on animal biology 328 

and the presence or absence of exposure to Aroclor 1260. In this case, the PCA model consisted of 329 

eight principal components and while the first principal component of the model (y-axis) remarks the 330 

biological differences existing in the animals of each group, the fourth principal component (x-axis) 331 

highlights the differences in the samples due to exposure to Aroclor 1260. A similar pattern was 332 

observed for the other datasets as indicated in Supplementary Material (Figures S1-S3). Applying this 333 

approach, and in addition to the separation of the different groups, clustering of the samples of 334 

singular individuals was also observed. 335 

Significant differences in features in the datasets for the three group classes were shown in clustering 336 

heatmap. Figure 3 shows the differences observed for features detected in lipidomics analysis under 337 

ESI+ conditions. This preliminary non-supervised analysis allowed to confirm the clustering of 338 

samples from ‘control’, ‘exposed’ and ‘acclimatization’ groups, respectively. Furthermore, samples 339 

from the same individual also clustered together except for one of the subjects from the ‘exposed’ 340 

group, confirming the importance of the biological status of each subject in our datasets. In addition, 341 

the time factor demonstrated to not have any relevance in our datasets since no clustering from 342 

samples from the sampling day was observed. 343 

3.4 Discriminant models to highlight biomarkers of effect  344 
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Since the previous results showed differences in the groups due to exposure to Aroclor 1260, PLS-DA 345 

models were built to highlight relevant features that could represent biomarkers of effect associated 346 

with said chemical exposure. The three groups considered in our datasets were separated in all cases 347 

(Figure 4 and Figure S4). CV-ANOVA showed that the four PLS-DA models are statistically 348 

significant (p-value < 0.05), while the values of the R2Y(cum) and Q2Y(cum) were always ≥ 0.649 349 

and ≥ 0.405, respectively, demonstrating the robustness of the models (Table 2). Permutation tests 350 

consisting of 100 permutations were also carried out for each PLS-DA model and for the ‘control’ and 351 

‘exposed’ groups, confirming that the models are not the result of a random factor and that they offer a 352 

valid and robust discrimination between control and exposed populations. Furthermore, a 353 

misclassification test was performed on each PLS-DA model obtaining a classification accuracy 354 

greater than 91.7%, with two of the four models correctly assigning the classes to all samples (Table 355 

2). 356 

Subsequently, VIP-plots of each PLS-DA model, including all components (2 or 3 components 357 

according to the PLS-DA model) were investigated to highlight the relevant features that differentiated 358 

the classes in the statistical models. Features with VIP values > 1.5 in any of the model components 359 

were retained as possible biomarkers related to exposure to Aroclor 1260. In total, 129 and 276 360 

features were retained from metabolomics datasets (ESI+ and ESI- conditions, respectively), while 361 

589 and 240 features were retained from lipidomics datasets (ESI+ and ESI- conditions, respectively). 362 

These features were considered of interest for our study since they represented the variables 363 

responsible for the separation of the groups in the PLS-DA projection. These relevant features were 364 

investigated against CAMERA groups to remove isotopes or adducts and considering only protonated 365 

ions for subsequent metabolite annotation. Features that CAMERA noted as adducts or isotopes were 366 

removed from the list of relevant features when their related protonated ions showed VIP values < 1. If 367 

their VIP values were greater than 1 for any of the model components, the adducts and isotopic 368 

features were replaced by the protonated ion feature in the list of relevant features. The number of 369 

aforementioned features was reduced by 11.6 and 33.6 % after relevant features selection, specifically 370 

referring to the ‘metabolomics ESI+’ and ‘lipidomics ESI+’ datasets, respectively.  371 

Finally, OPLS-DA models were built to confirm that the selected features differentiated the ‘control’ 372 

and ‘exposed’ groups and to generate S-line plots to further establish whether the annotated 373 

metabolites were down- or up-regulated in pigs exposed to Aroclor 1260 (Figures S5-S6). The CV-374 

ANOVA of the four OPLS-DA models indicated that they are statistically significant (p-value < 0.05), 375 

while R2Y(cum) (> 0.94) and Q2(cum) (> 0.887) parameters showed that the data fit well to the 376 

models as well as their high degree of classification (Table S1). 377 

3.5 Metabolite annotation 378 
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Table 3 shows all the metabolites annotated as level 1 or 2, while the relevant features found by 379 

metabolomics and annotated either as level 3 or 4 are included in Tables S2-S4. Lipids were only 380 

annotated as level 3 as the maximum confidence level for the annotation due to the wide range of 381 

isomeric lipids present in nature and the little structural information from our experiments for their 382 

unequivocal annotation at a higher level of confidence (Table S5-S7). 383 

Finally, in the ‘metabolomics’ datasets, 9, 24, 18, and 105 metabolites were annotated as level 1, 2, 3 384 

and 4, respectively. Although metabolite annotation is time-consuming and, in general, most of the 385 

relevant of features remain unidentified when performing metabolomics studies, a great effort was 386 

made to annotate as many metabolites as possible. As consequence, up to 44.7 % of the features 387 

observed as relevant in Section 3.4 were annotated at any of the annotation levels considered in this 388 

study. In the case of ‘lipidomics’ datasets, up to 39 and 55 lipids were putatively annotated with an 389 

annotation confidence level of 3 and 4, respectively. The annotated lipids represented only 16.1% of 390 

the features highlighted as relevant variables in the discriminant models discussed in the previous 391 

section. This highlights the main drawback of metabolomics and lipidomics approaches which is 392 

metabolite annotation.  393 

Biomarkers of effect, previously identified or putatively annotated, were investigated using the 394 

MetaboAnalyst 4.0 pathway analysis (Chong et al., 2018), showing that lipid metabolism was 395 

significantly affected by exposure to Aroclor 1260 (Figure 5). In this sense, for example, lipid-lipid 396 

correlation analysis has shown relevant negative correlations between lysophophatidylcholines (LPCs) 397 

[i.e. LPC (16:0) and LPC (18:0)] and phosphatidylcholines (PCs) [i.e. PC (35:2) and PC (37:4)] for 398 

exposed animals, which have not been observed for control animals (Figure S7). 399 

4. Discussion 400 

The pig was selected as an animal model due to the comparable physiology of pigs to that of humans, 401 

making it an ideal model to address chemical risk assessment for human health (Goldansaz et al., 402 

2017). Both groups of animals showed similar bioaccumulation of DL-PCBs related to unknown 403 

environmental and dietary exposures, while significant bioaccumulation of NDL-PCBs caused by 404 

exposure to Aroclor 1260 was observed in the perirenal fat of the exposed animals compared to the 405 

control group. Therefore, and in the framework of this study, the possible disturbances observed in the 406 

metabolism of the pigs caused by exposure to Aroclor 1260 are attributed to NDL-PCBs. 407 

The general data exploration highlighted that the inter-individual variability masks the effect of the 408 

exposure to low doses of NDL-PCBs. This fact reflects one of the main risks of toxicological 409 

metabolomics studies involving low doses of exposure. Chemical exposure cannot show a clear impact 410 

on the metabolism because the subject variability masks the effect of the treatment. There are some 411 

strategies to overcome this limitation, but given the limited number of samples, we selected the most 412 

basic approach: T0-centering. This method makes it possible to follow the fate of the variables over 413 
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time. Thus, if the fate of the variables varies in the different groups (control vs. exposed), it means that 414 

there is a difference in their metabolism between them. The results clearly show that this approach 415 

highlighted several features with a different fate between the groups, indicating a change in their 416 

metabolism due to the exposure to Aroclor 1260. 417 

Our study is a first approach to evaluate the consequences of exposure to NDL-PCBs in pigs at 418 

realistic exposure levels (in the order of few ng/kg b.w. per day), at which no observable toxicity is 419 

expected. There was great uncertainty at the time of planning the animal experimentation as to 420 

whether the metabolism of pigs would be altered by such low levels of exposure to NDL-PCBs or if 421 

these alterations would have any toxicological relevance, while the selection of a greater number of 422 

animals for this first approach was not exempt of greater economical and ethical costs. In this sense, 423 

current ethical standards in animal experimentation require replacing, refining and reducing the use of 424 

animals in scientific research and testing as much as possible (3R principles) (Scholz et al., 2013). In 425 

this context where only six animals were included in the animal experiment. We preferred to 426 

unbalance the experiment towards the exposed group to reduce the odds of missing biomarkers 427 

(reduce the false negative ratio). Certain limitations can be attributed to the present study due to the 428 

low number of animals included in the experimentation which might undermine the validity of the 429 

biomarkers found. Therefore, as discussed below, the main results obtained in our study have been 430 

compared to previous toxicological and epidemiological studies that include a greater number of 431 

individuals under study to give a biological explanation of the biomarkers, strengthening their validity. 432 

Nevertheless, we are aware that a complete validation will require further experimentation to confirm 433 

or discard these biomarkers. Indeed, taken singularly, none of the metabolic markers identified in this 434 

experiment are unique to Aroclor 1260 exposure. The strength of this experimentation is the fact that, 435 

through a multi-marker approach, it was possible to identify a metabolic profile uncommon in young 436 

pigs, which is generally associated with long-term disease development. This study demonstrates that 437 

such risks of disease development are associated with environmental exposure to chemicals as NDL-438 

PCBs at low doses, as discussed below. Linoleic acid metabolism, glycerophospholipid metabolism, 439 

and arachidonic acid metabolism were the metabolic pathways more impacted by this chemical 440 

exposure.  441 

PCB exposure has previously been associated with glucose and lipid metabolic disorders in the liver, 442 

which can lead to chronic systemic metabolic disorders such as obesity, type 2 diabetes, fatty liver 443 

disease, cardiovascular disease, and cancer (Shan et al., 2020). Serum lipids have also been shown to 444 

be disturbed by PCB exposure, causing dysregulation of cholesterol synthesis and degradation 445 

mechanisms (Hennig et al., 2005). Among the lipids tentatively annotated in this work, 446 

glycerophospholipids and specifically glycerophosphocolines and glycerophosphoethanolamines, 447 

which are involved in lipid metabolism and regulation, are the main classes of lipids disturbed by 448 

exposure to NDL-PCBs. Previous research has already shown disturbances in glycerophospholipid 449 
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levels in serum and plasma samples from humans exposed to POPs, including PCBs (Carrizo et al., 450 

2017)(Walker et al., 2019). Glycerophospholipids are involved in the formation of the cellular 451 

membranes of all organisms and organelles within cells, as well as in cell signaling systems and as an 452 

anchor for proteins in cell membranes. They are also involved in the transport of triacylglycerols and 453 

cholesterol in the body (Blanco and Blanco, 2017)(Carrizo et al., 2017)(Triebl, 2019). Important 454 

metabolome alterations, mainly related to glycerophospholipid levels in serum, have recently been 455 

reported in rat offspring after in utero and lactational exposure to PCB 180, which is a NDL-PCB 456 

congener and one of the most abundant in the environment (Pikkarainen et al., 2019). Furthermore, a 457 

generalized increase in glycerophospholipid levels has also been observed in rat pheochromocytoma 458 

PC12 cells exposed to PCB 153, which is also a NDL-PCB congener (Wang et al., 2019). 459 

Within the group of glycerophosphocolines, and as observed in our study, it has been found that LPCs 460 

are the main biomarkers of effect in the serum of mice exposed to diethylhexylphthalate (DEHP) and 461 

Aroclor 1254 at doses higher than environmental exposure levels (Zhang et al., 2012). Either in mice 462 

(Zhang et al., 2012) or in pigs (as shown in this work), animals exposed to Aroclor mixtures show 463 

increased concentration levels of LPC (16:0) and LPC (18:0) in serum in comparison to control 464 

individuals. Increased plasma levels of LPCs are related to cardiovascular diseases, diabetes, ovarian 465 

cancer, and renal failure (Law et al., 2019). These findings indicating an impact on LPC levels 466 

associated with NDL-PCB exposure are in line with previous studies. They have linked 467 

cardiometabolic diseases and exposure to endocrine disrupting compounds, such as PCBs, where LPC 468 

metabolites have been suggested as mediators in those events (Salihovic et al., 2016). LPCs result 469 

from the cleavage of PCs through the action of phospholipase A2 (PLA2) and/or by the transfer of 470 

fatty acids to free cholesterol through lecithin-cholesterol acyltransferase. LPCs can be converted back 471 

into PCs by the action of the enzyme lysophosphatidylcholine acyltransferase in the presence of Acyl-472 

CoA (Law et al., 2019). These metabolic processes are part of the Lands’ cycle, which in addition to 473 

the Kennedy pathway and the phosphatidylethanolamine N-methyltransferase pathway constitute the 474 

synthesis pathways of PCs (Moessinger et al., 2014). In this framework, the negative correlations 475 

between LPC (16:0) and LPC (18:0) with PC (35:2) and PC (37:4) for exposed animals indicate a 476 

probable disturbance of the Lands’ cycle. This hypothesis is also supported by the identification at 477 

level 1 of arachidonic acid as a biomarker of effect of exposure to NDL-PCBs. Furthermore, in the 478 

present work, several sphingomyelins, which belong to the sphingolipid class, have also been 479 

determined as potential effect biomarkers of Aroclor 1260 exposure. Sphingomyelins also participate 480 

in PLA2 activity (Rodriguez-Cuenca et al., 2017), which reinforces our hypothesis on the alteration of 481 

Lands’ cycle caused by exposure to NDL-PCBs at environmental dose levels. 482 

As mentioned above, PLA2s hydrolyze the sn-2 ester bond of cellular phospholipids, producing LPCs 483 

and free fatty acids, frequently arachidonic acid, which is the precursor to the eicosanoid family of 484 

potent inflammatory mediators (Balsinde et al., 2002). Activation of PLA2s and increased arachidonic 485 



15 

 

acid levels caused by exposure to NDL-PCBs have also been previously reported in rat cells and 486 

human platelets (Brant and Caruso, 2006)(Forsell et al., 2005). Increased levels of arachidonic acid are 487 

associated with inflammatory processes that, even at low-grade levels, can induce metabolic and 488 

cardiovascular diseases (Sonnweber et al., 2018). Free arachidonic acid also induces oxidative stress, 489 

which is a relevant factor in the development of hepatic steatosis (Sonnweber et al., 2018). Hepatic 490 

steatosis is an hepatic disorder that can lead to the development of nonalcoholic fatty liver disease, 491 

which has previously been associated with exposure to NDL-PCBs (Wahlang et al., 2019). The 492 

hepatotoxicity of Aroclor 1260 mixture and the link between exposure to it and nonalcoholic fatty 493 

liver disease progression have been previously documented (Armstrong and Guo, 2019). Although it is 494 

not yet clear, oxidative stress may be the key link between nonalcoholic fatty liver disease and 495 

cardiovascular disease (Polimeni et al., 2015). The alteration of the linolenic acid pathway represents 496 

another evidence of oxidative stress caused by exposure to PCBs. Bioactive oxidized linoleic acid 497 

metabolites and diols of linoleate epoxides have previously been linked to oxidative stress and 498 

inflammatory disorders (Deng et al., 2019). 499 

In addition, several ether-linked phosphatidylcholines and ether-linked phosphatidylethanolamine 500 

were found as biomarkers of effect in the serum of pigs exposed to Aroclor 1260. In contrast to LPCs, 501 

a general decrease of ether lipid levels was observed in the serum of exposed animals compared to the 502 

control animals. Recently, ether lipids have been proposed as potential biomarkers of various diseases, 503 

linking decreased ether lipid synthesis with multiple neurological and metabolic abnormalities (Dean 504 

and Lodhi, 2018). However, it is not yet clear whether they are simply by-products of disease 505 

processes or whether they contribute to disease pathogenesis. Decreased levels of ether-phospholipids 506 

in the liver have also been observed in rats exposed to different doses of a DL-PCB, specifically PCB 507 

126, and which have been related to hepatic disorders (Kania-Korwel et al., 2017). In this sense, 508 

although DL-PCBs and NDL-PCBs have been shown to have different mechanisms of action in liver 509 

diseases such as nonalcoholic fatty liver disease, they share common effects (Wahlang et al., 2019). 510 

Although all these results show a significant impact on lipid metabolism caused by exposure to NDL-511 

PCBs, other identified biomarkers of effect indicate an alteration of other metabolic pathways. Several 512 

metabolites from the kynurenine pathway of tryptophan metabolism have been identified as effect 513 

biomarkers of Aroclor 1260 exposure, namely L-tryptophan, kynurenine, quinaldic acid and N'-514 

formylkynurenine. Previous in vivo and in vitro studies have shown an impact of Aroclor 1254 515 

mixture and PCB3, which is a NDL-PCB congener, on tryptophan metabolism (Khan and Thomas, 516 

2004)(Zhang et al., 2012)(Zhang et al., 2021). Similar evidences have been reported for exposure to 517 

DL-PCBs (Mesnage et al., 2018). The disturbance of tryptophan-kynurenine pathway is related to 518 

inflammation, oxidative stress and immune activation in cardiovascular diseases (Wang et al., 2015). 519 

This finding agrees with the previous discussion about abnormal lipid metabolism caused by exposure 520 

to Aroclor 1260, which is another metabolic indicator of the pathogenesis of cardiovascular disease. 521 
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Indeed, there are several pieces of evidence linking chemical exposure to PCBs and the development 522 

of cardiovascular diseases (Perkins et al., 2016). In this sense, this work provides new evidence that 523 

current environmental exposures to NDL-PCBs can cause health effects similar to those previously 524 

observed in toxicological studies at higher exposure doses but likely to be observed after a longer 525 

period of exposure. Therefore, although levels of exposure to PCBs have been reduced in recent 526 

decades (Lehmann et al., 2015), the observed metabolic changes caused by exposure to Aroclor 1260 527 

suggest that actual exposure scenarios to NDL-PCBs contribute to the onset and progression of 528 

environmental diseases, namely cardiovascular disease. 529 

5 Concluding remarks 530 

This study provides new information on biomarkers of effect in serum samples associated with 531 

exposure to Aroclor 1260 at dietary dose levels (i.e. 6.1 ng of six NDL-PCBs/kg b.w. per day). By 532 

extension, these biomarkers of effect have been related to exposure to NDL-PCBs, which have been 533 

shown to bioaccumulate in perirenal fat. In addition, the investigation of the pig as an animal model 534 

for the hazard identification of NDL-PCBs gives new evidence for the human health risk assessment 535 

of NDL-PCBs. Our no hypothesis-driven approach has demonstrated to be suitable to highlight the 536 

biomarkers of effect related to exposure to NDL-PCBs at levels of environmental exposure. Several 537 

glycerophosphocholines, some fatty acids, including arachidonic acid and linolenic acid, tryptophan, 538 

kynurenine and some of its metabolites, have been found as probable biomarkers of effect of said 539 

chemical exposure. These metabolites are mainly associated with glycerophospholipids metabolism, 540 

fatty acid metabolism and tryptophan-kynurenine pathway; thus, these metabolic pathways have been 541 

identified as the main pathways impacted by exposure to NLD-PCBs at low dose levels. Such 542 

metabolic alterations induce chronic oxidative stress and inflammation that are important factors in 543 

cardiovascular disease. These observations agree with other toxicological and epidemiological studies 544 

and suggest that exposure to current low levels of NDL-PCBs may still cause adverse health effects. 545 
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Figure captions 

 

Figure 1. Stages of animal experimentation in this study, indicating the sampling days. 

Figure 2. Score plots for PCA models built with the ‘metabolomics ESI-’ dataset before (a) and after 

(b, c) T0-centering. Number of principal components of each model: 7 (a) and 8 (b, c). The first and 

second principal components are represented in the score plots (a) and (b), while the first and fourth 

principal components are represented in the score plot (c). Group classes: red circles refer to samples 

from the acclimatization period, green circles indicate control samples from the exposure and the 

detoxification stages, and blue circles represent samples from exposed pigs collected in the periods of 

exposure and detoxification. Samples from the groups of control and exposed animals are indicated by 

(A,B) and (C-F), respectively.  

Figure 3. Clustering heatmap and hierarchical analysis resulted from the NDL-PCB-related lipidomics 

study of serum samples analyzed by LC-HRMS under ESI+ conditions. In red / blue, the group of 

lipids with an increase / decrease in their concentration in serum associated with exposure to Aroclor 

1260. 

Figure 4. Evaluation of the PLS-DA model for the ‘lipidomics ESI-’ dataset: (a) PLS-DA score plot, 

(b) permutation tests for ‘control’ and ‘exposed’ groups. Group classes: red circles refer to samples 

from the acclimatization period, green circles indicate control samples from the exposure and the 

detoxification stages, and blue circles represent samples from exposed pigs collected in the periods of 

exposure and detoxification. Samples from the groups of control and exposed animal are indicated by 

(A,B) and (C-F), respectively.  

Figure 5. Significantly disturbed metabolic pathways identified from pathway analysis by using the 

web service of MetaboAnalyst 4.0. 
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Table 1. Analysis of Variance (ANOVA)‐Simultaneous Component Analysis (ASCA) of each of the datasets generated in this work. The confidence level 

was established at 95%. 

Factor Subject Time Exposure Subject × Time Subject × Exposure Time × Exposure Subject × Time × Exposure 

Dataset p-value 

Metabolomics (ESI+) < 0.05 0.08 1.00 0.99 < 0.05 0.33 0.91 

Metabolomics (ESI-) < 0.05 0.30 1.00 0.94 < 0.05 0.38 0.82 

Lipidomics (ESI+) < 0.05 0.10 1.00 1.00 < 0.05 0.41 0.97 

Lipidomics (ESI-) < 0.05 < 0.05 1.00 1.00 < 0.05 0.52 0.98 
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Table 2. PLS-DA statistics of the models differentiating serum samples from pigs exposed (or not) to Aroclor 1260, as well as serum samples from the 
acclimatization period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset 
Number of 

components 

CV-

ANOVA 

(p-value) 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

Classification 

accuracy 

Metabolomics ESI+ 3 1.025×10-16 0.176 0.836 0.639 100 % 

Metabolomics ESI- 2 1.436×10-19 0.101 0.746 0.462 98.3 % 

Lipidomics ESI+ 2 1.534×10-17 0.145 0.649 0.405 91.7 % 

Lipidomics ESI- 2 2.597×10-19 0.129 0.690 0.506 100 % 
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Table 3. Metabolites annotated (with confidence level 1 or 2) as possible biomarkers of exposure to Aroclor 1260 and previously found as relevant features in 
metabolomics datasets. Notes: a measured m/z of protonated ions; b m/z related to [M+H-NH3]+ ion; c m/z related to [M-H-H2O]- ion. In red/blue, the group of 
metabolites with an increase/decrease in their concentration in serum associated with exposure to Aroclor 1260. 

m/za 
RT 

(min) 

Ionization 

mode 
Putative annotation 

Confidence level 

of annotation 

Variation of metabolite concentration levels in serum as a 

consequence of Aroclor 1260 exposure 

114.0661 0.67 ESI+ creatinine Level 1  
218.1385 1.1 ESI+ propionyl-L-carnitine Level 1  
190.1185 0.67 ESI+ L-homocitrulline Level 2  

214.2164 11.81 ESI+ tridecanamide Level 2  

225.0519 1.56 ESI- 3-nitro-L-tyrosine Level 1  

303.2331 13.24 ESI- arachidonic acid Level 1  

87.0087c 0.77 ESI- glyceric acid Level 2  

89.0244 0.82 ESI- glyceraldehyde Level 2  

156.0667 6.97 ESI- N-tiglylglycine Level 2  

188.0705b 2.38 ESI+ L-tryptophan Level 1  
141.0051 0.56 ESI+ phosphono carbamimidate Level 2  
231.1450 0.67 ESI+ L-alaninamide, L-alanyl-L-alanyl- Level 2  

338.0867 4.56 ESI+ 3-indoleformate glucuronide Level 2  

230.1749 7.26 ESI+ N-decanoylglycine Level 2  

432.3107 8.08 ESI+ 3-hydroxy-5-cholenoylglycine Level 2  

357.2785 9.04 ESI+ chola-4,6-dien-24-oic acid Level 2  

467.3164 15.77 ESI+ L-eicosanoyl-glycero-3-phosphate Level 2  

207.0775 1.42 ESI- kynurenine Level 1  

197.0432 1.28 ESI- vanillylmandelic acid Level 1  

201.1133 5.39 ESI- sebacic acid Level 1  

171.1391 9.91 ESI- capric acid Level 1  

129.0194c 0.79 ESI- 2-hydroxyglutaric acid Level 2  
145.0143 0.86 ESI- 2-oxoglutaric acid Level 2  

130.0874 0.96 ESI- DL-leucine Level 2  

292.1403 0.96 ESI- N-isopropyl-2'-deoxyadenosine Level 2  

117.0558 2.29 ESI- 3-hydroxy-2-methyl-butanoic acid Level 2  

188.0929 5.97 ESI- N-lactyl-valine Level 2  

172.0405 6.38 ESI- quinaldic acid Level 2  

211.0977 7.25 ESI- 3,4-methyleneazelaic acid Level 2  

228.1605 7.27 ESI- N-decanoylglycine Level 2  

242.1763 7.86 ESI- 11-acetamidoundecanoic acid Level 2  

243.1602 8.75 ESI- brassylic acid Level 2  

191.1079 9.2 ESI- 6-phenylcaproic acid Level 2  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 






