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Abstract15

Species distribution models (SDM) are commonly used to identify potential habitats.16

When fitting them to heterogeneous, opportunistically collated presence/absence data,17

imbalance in the number of presence and absence observations often occurs, which could18

influence results. To robustly identify potential habitats for blackspot seabream (Pagel-19

lus bogaraveo) throughout its distribution area in the Northeast Atlantic and the western20

Mediterranean Sea, we used an ensemble species distribution modelling (eSDM) approach,21

modelling gridded presence-absence data with environmental predictors for two types of22

occurrence data sets. The first data set displayed the observed unbalanced spatially het-23

erogeneous presence/absence ratio and the second a balanced presence/absence ratio. The24

data covered the full distribution area, including the European Atlantic shelf, the Azorean25

region and the Western Mediterranean Sea. Across these regions, populations display vari-26

able status. The main environmental predictors for potential habitats were bathymetry27

and annual maximum SST. The fitted ensemble compromise (eSDM) was projected over28

the whole grid to create a habitat suitability map. This map exhibited higher probabilities29

of presence for the balanced-ratio data set. A binary presence-absence map was then gen-30

erated using optimised presence probability thresholds for four validation indices. Using31

the true skill statistic to optimise the threshold, the surface areas of the binary presence-32

absence map was 53% smaller for the balanced data set than for the observed unbalanced33

data set. However, the choice of validation index had an even greater impact (up to 1534

000 %). This indicates that studies using opportunistic data for SDM fitting need to pay35

attention to the effects of presence/absence data imbalance and the choice of validation36

index to fully evaluate uncertainty.37
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1. Introduction41

Actual and potential areas of species distribution can be investigated via eco-42

logical niche modeling (Soberon and Nakamura, 2009). A species’ niche is defined43

as a subset of environmental conditions under which populations of a species have44

positive growth rates (Soberon and Nakamura, 2009). The habitat is then the ge-45

ographical translation of these environmental conditions. The fundamental niche is46

the theoretical combination of environmental variable that allows for physiological47

processes (feeding, growth, reproduction) to take place (Hutchinson, 1978). Essen-48

tial fish habitats, defined as areas or volumes of water and bottom substrates that49

provide the most favourable habitats for fish populations to spawn, feed and mature50

throughout their full life cycle, are thus the geographical translation of the optimal51

part of the fundamental niche of a species (Helaouet and Beaugrand, 2009; Vala-52

nis et al., 2008). The realised niche is the subset of environmental conditions the53

species is actually using (Soberon and Nakamura, 2009). Species may occur outside54

the fundamental niche during migrations. In contrast, the realised niche might be55

reduced when densities are low because of intensive predation or fishing (Helaouet56

and Beaugrand, 2009). The realised habitat of a species can then be defined as57

the geographical translation of the realised niche of a species. It differs from the58

species’ distribution since all locations displaying the environmental conditions of59

the realised niche might not be occupied simultaneously, especially if the species’60

distribution is wide.61

Species distribution models (SDMs) have been used in conservation biology to62

describe the habitat distribution of organisms in both marine and terrestrial sys-63

tems (Laman et al., 2018; Elith & Leathwick, 2009; Valanis et al., 2008). They are64

grounded in the concept of ecological niche (Hutchinson, 1957). They have been65

widely used since 2005 and have reached high statistical sophistication in recent66

years (Schickele et al., 2020; Jiménez & Soberón, 2020; Robinson et al., 2017). Eco-67

logical assumptions implied when using SDMs are that there is niche conservatism68

(Crisp et al., 2009) and unlimited dispersal abilities (Wiens et al., 2009) and that69

biotic interactions do not influence large-scale distributions (Gleason, 1926; Guisan70

and Thuiller, 2005; Wiens et al., 2009; Schickele et al, 2020). Among the numerous71
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statistical SDMs approaches developed to map fish habitats, ensemble species dis-72

tribution modelling (eSDM), also referred to as ensemble niche modelling (Thuillier73

et al, 2016), which combines the use of several SDM categories, appears to be a74

good compromise in terms of programming skills required, computation time and75

consistency of the results (Schickele et al., 2020; Mateo et al., 2009).76

Data availability is often opportunistic, so that neither the fundamental habitat77

nor the realised species’ habitat is entirely represented by SDMs. Indeed, the the-78

oretical entire range of fundamental environmental conditions of a species is never79

fully known and available presence records will never cover the full habitat. Ecol-80

ogists thus generally refer to SDM output as potential niche and habitat of the81

species of interest (Schickele et al., 2020; Helaouet and Beaugrand, 2009). Several82

data filtration and selection processes, as well as physiological prospects (for exam-83

ple, optimal environmental ranges for spawning or egg development) can then help84

approaching the species’ realised or essential habitat (Schickele et al., 2020; Helaouet85

and Beaugrand, 2009).86

Implementing SDMs, especially in the case of widely distributed species such as87

the blackspot seabream Pagellus bogaraveo (Brünnich, 1768), often requires combin-88

ing heterogeneous multiple data sets (Schickele et al., 2020; Fithian et al., 2015).89

In the case of presence/absence data, two types of biases have then to be taken90

into account. First, detectability might vary among sampling techniques used to91

collect data (Kellner and Swihart, 2014). Second, variations in prevalence (i.e. the92

number of presence records among sampled points) might reflect primarily varia-93

tions in abundance rather than habitat suitability. When data are missing on the94

detection probability of sampling techniques, taking into account detection might95

not always improve SDM performance (Welsh et al., 2013), and these two biasing96

effects (detectability and variations in prevalence) might be difficult to disentangle.97

In the case of presence-only data, a common practice is to generate pseudo-absence98

data (Schickele et al., 2020). In this case, the number of generated pseudo-absences99

is generally set equal to the number of presences (Montgomery, 2005). For actual100

presence-absence data, prevalence will vary in space, in particular for large study101

areas. This raises questions given spatial predictions from SDMs are known to be102
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sensitive to sample prevalence (Jimenez-Valverde et al., 2021).103

The general aim of this study was to investigate the potential habitat of the104

blackspot seabream and its occupancy level in three regions in the Northeast At-105

lantic: Atlantic European shelf, the Azorean region and the Mediterranean Sea.106

Occupancy levels were presumed to differ between regions because of the contrasted107

population status and variable degree of fishery exploitation. To evaluate the im-108

pact of heterogeneous prevalence in the data and obtain robust results we compared109

eSDM models using 1) all available presence/absence records, i.e. prevalence varying110

over the distribution area of blackspot seabream; 2) the same number of presence111

and absence record, i.e. constant prevalence over the distribution area.112

2. Material and methods113

2.1. Case study114

The blackspot seabream used to be a widely distributed and abundant species115

of the North Eastern Atlantic shelf from the Faroe Islands down to Gibraltar, the116

Azores and the Western Mediterranean Sea (Desbrosses, 1932; Sanz-Fernandez et117

al., 2019; Pinho et al., 2014; Erzini et al., 2005; Spedicato et al., 2002). In fact, it118

was also referred to as "la dorade commune" (understand "the common seabream")119

by French authors in the early 1900s (Desbrosses, 1932; Olivier, 1928). Increase in120

fishing effort in the Bay of Biscay (North Eastern Atlantic shelf) in the 1960s linked121

to stock declines of other species of fisheries interest such as hake, associated to its122

susceptibility to overexploitation, led to a brutal collapse of this blackspot seabream123

stock 20 years later in 1975-1985 and low stock size ever since (see Fig.1a, Lorance,124

2011; Guichet et al., 1971; Dardignac, 1988).125

Blackspot seabream displays three characteristics that make it susceptible to126

over-exploitation (Francis and Clark, 2005). First, its biological productivity is low,127

individuals reaching 70 cm long in 25 to 30 years and females being mostly the128

older individuals since the species is hermaphroditic protandrous, with changing sex129

from male to female (Guéguen, 1969, Lorance, 2011). Second, blackspot seabream is130

easy to capture during its seasonal migrations because of its aggregative behaviour131

(Afonso et al., 2012; 2014).132
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Figure 1: Commercial landings of blackspot seabream between 1950 and 2020 in the three
regions investigated in this study as total catch (a) and relative to the highest year per
region (b), where dots are individual values and lines are smoothed time trends with 95%
confidence intervals. Data before 2000 from Lorance (2011) and from ICES and FAO catch
statistics thereafter.

Indeed, adults carry out geographic and depth seasonal migrations from coastal133

waters, where they reproduce and where juveniles are found, down to 700 m and134

up to several hundreds of km away from the coast (Morato et al., 2001; Mytilineou135

et al., 2005). Accordingly, in the Bay of Biscay, individuals present to the West of136

Brittany (48°N) were found to overwinter in the Cantabrian Sea (43°N) (Guéguen,137

1974). In Azorean waters, juveniles which are only found in coastal areas migrate to138

isolated seamounts when reaching adult stage, sometimes more than 400 km away139

(Hareide and Garnes, 2003). Lastly, the species has a high commercial value owing140

to its organoleptic quality, comparable to gilthead seabream and sea bass (Rincon141

et al. 2016).142

Overall, available stock assessments and landings of commercial fisheries sug-143

gest that populations from the European shelf are at low level with small recent144

catches (2018-2021) compared to past levels (anterior to 1980), while populations145

from the Azorean region are in better condition with current fisheries being sustain-146

able (ICES, 2021, Fig. 1). Historically (before 1980), catches from the Northeast147

Atlantic shelf constituted the bulk of landings, reaching up to more than 20000148

t per year (Fig. 1a), with the Bay of Biscay being the main fishing area. In149

comparison, levels of gilthead seabream catches were similar back then, while cur-150
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rently, hake is the most fished species in the Bay of Biscay with around 30000 t151

landed per year, followed by monkfish (8000 t per year), sole (3000 t per year) and152

seabass (2000 t per year) (Official Nominal Catches 2006-2019. Version 15-10-2021.153

Accessed 05-05-2022 via https://ices.dk/data/dataset-collections/Pages/Fish-catch-154

and-stock- assessment.aspx., ICES). From the 1990s, catches from the Northern At-155

lantic came mostly from the Iberian coast and the Strait of Gibraltar and were at156

similar level than catches from the Azorean area (Fig. 1a). Reported catches from157

the Mediterranean Sea are probably not realistic, because in this region 5000 to158

10000 tonnes of fish have been landed as unidentified sparid fish or similar labelling159

and this might have comprised catch statistics of blackspot seabream (FAO-GFCM,160

2021). Therefore, the increased reported landings in recent years (Fig. 1b) may161

be due to improved reporting of landings by species. Quotas as well as other man-162

agement measures such as minimum landing size and closed fishing seasons are163

implemented in all areas (Pinho et al., 2014; Lorance, 2011). Indeed, fishing has164

been shown to be the main factor accounting for variations in the species’ stock165

abundance, with values reaching up to 73% of the variations in stock abundance166

nowadays around Gibraltar (Sanz-Fernandez et al., 2019). In the case of poor stock167

status, the species distribution might contract within its essential habitats, that thus168

needs to be identified to enable targeted conservation management measures to be169

implemented.170

2.2. Data171

2.2.1. Species observations172

Presence/absence records of blackspot seabream were compiled from trawling173

and longline scientific surveys (EVHOE, SP-NORTH, SP-ARSA, PT-IBTS, MED-174

ITS, ARQDAÇO) available on the DATRAS portal (https://datras.ices.dk/Data_175

products/Download/Download_Data_public.aspx) or held by national research In-176

stitutes, from commercial fisheries data from the Voracera fleet in Gibraltar and from177

on-board observations of fishing activities in the Bay of Biscay and the Mediter-178

ranean Sea, as well as from the Global Biodiversity Information Facility (GBIF,179

https://www.gbif.org/) (see Fig.2).180
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Figure 2: Presence-absence data for blackspot seabream compiled in this study. Black dots
represent absence records. Coloured dots correspond to presence records from different
data sets: Azores_popa (Fisheries Observer Program, 1998-2013), Azores_survey (ARQ-
DAÇO longline survey, 1996-2013), Baleares (Marine Biodiversity Atlas of the Balearic Sea,
GBIF, 2001-2008), EVHOE (scientific bottom-trawl survey, 1997-2019), MEDITS (sci-
entific bottom-trawl survey, 2004-2019), obsmer_atl and obsmer_med (French onboard
observation program), PT-IBTS (scientific bottom-trawl survey, 2002-2017), SP-ARSA
(scientific bottom-trawl survey, 1996-2019), SP-NORTH (scientific bottom-trawl survey,
2001-2019), StraitGibraltar (Commercial fisheries data, 2009-2011). light grey area is the
model domain composed of three regions: Azores, NE Atlantic region and Mediterranean
Sea.

2.2.2. Environmental data181

Environmental variables consisted of topographic data, sea bottom type and sea-182

water parameters. We extracted bathymetry at a 0.0003° resolution from GEBCO183

(https://www.gebco.net /data_and_products/gridded_bathymetry_data) and the184

R terrain function (raster package, Hijmans et al., 2011) enabled the calculation of185

bottom slope. Seabed habitat data were extracted from EMODnet (https://www.186

emodnet.eu/en/seabed-habitats) at a 250 m resolution. Homogenization of substrate187

type according to EMODnet categories among all regions led to 14 sea bottom type188

categories: unknown, rock or other hard substrata, coarse substrate, coarse and189
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mixed sediment, mixed sediment, sediment, sand, sandy mud, muddy sand, sandy190

mud or muddy sand, fine mud or sandy mud or muddy sand, fine mud, Posidonia191

oceanica, and dead mattes of Posidonia oceanica. Monthly values of Sea Surface192

Temperature (SST), bottom temperature, surface current velocity and salinity be-193

tween January 1994 and December 2018 at a 0.083° resolution were extracted from194

Copernicus Marine Service (GLOBAL_REA NALYSIS_PHY_001_030 product,195

https://resources.marine.co pernicus.eu/). An overview of environmental variables196

investigated is provided in Sup. Mat. 1. The mean, maximum, minimum and stan-197

dard deviation of environmental variables were computed for each grid cell (n =198

6465).199

2.3. Methods200

The general workflow used in this study is presented in Fig. 3. Model reporting201

was done following recommendations by Zurell et al. (2020).202

Figure 3: General workflow of the procedure used for identifying blackspot seabream habi-
tats: (1) compilation, gridding and selection of environmental and occurrence data, (2)
statistical Species Distribution Models (SDM) calibration (for each category) and selection,
(3) Projection of the ensemble (eSDM) model (habitat suitability map), (4) Validation of
projections based on maximization of various indices and determination of threshold value
for (5) binary presence/absence mapping.
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2.3.1. Study area203

Three regions were modelled corresponding to the three main areas of distribution204

of the blackspot seabream: The Northeast Atlantic shelf, the Azorean region and the205

western Mediterranean basin (Fig. 2). A spatial grid of 0.1° x 0.1° cells (44851 in206

total) was created covering the three regions. This resolution was chosen accounting207

for the need for local and general overviews of species habitat, as well as computation208

time.209

2.3.2. Occurrence data compilation, gridding and selection210

For each grid cell with data (n = 6465), the number of presence and absence211

records was counted. The occurrence data set displayed over- and under-sampled212

areas (Fig. 2). In order to take into account this heterogeneity, occurrence records213

were compiled into presence/absence records: cells with at least one presence were214

considered as presence cells, cells with only absence records were considered as ab-215

sence cells and the remaining cells were considered as non-sampled cells and were not216

used for model fitting. In order to maintain an homogeneous distributions of sam-217

pled cells along environmental gradients, continuous environmental variables were218

discretised into 60 classes each (which appeared to be a good compromise to create219

relevant classes for all environmental variables) over the whole grid domain. When220

a given combination of environmental variable classes corresponded to several pres-221

ence cells, only one presence cell was kept, similarly for absence cells. When a given222

combination corresponded to several presence and absence cells, one presence and223

one absence cell was kept. Thus the number of data points used for model fitting224

depended on the environmental predictors included in a particular model (Table 2).225

Since the ratio between the number of presence and absence grid cells still varied226

among regions after the gridding process, two approaches were tested. In the first227

case (observed-ratio data set), all available presence / absence grid cells were kept228

in the next steps of the analysis. In the second case (balanced-ratio data set), the229

same number of absence and presence grid cells was used for all regions by randomly230

selecting absence grid cells among all available absence cells. The second approach231

corresponds to the common practice for presence-only data for which pseudo-absence232
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data are created (Montgomery, 2005)(See Fig. 3, step 1).233

2.3.3. Selection of environmental predictors234

Given the observation of heterogeneous responses to some of the environmental235

variables according to the region (Azores, Atlantic shelf and Mediterranean Sea, see236

Sup. Mat. 2), a categorical predictor was added for region. To identify the most par-237

simonious environmental data set explaining the blackspot seabream distribution,238

pairwise correlations between all environmental variables were investigated with a239

Pearson’s correlation test using as correlation threshold r > 0.7 (Schickele et al.,240

2020; Dormann et al. 2012). When several environmental variables were highly cor-241

related, we retained the environmental variable with the highest relative importance242

(Schickele et al., 2020; Leroy et al., 2014)(Sup. Mat. 3). As the previous selection243

step led to a high number (9) of remaining environmental predictors for both occur-244

rence data sets, multiple models were fitted with decreasing number of predictors245

(9 to 2 predictors), removing sequentially the predictor with the smallest relative246

importance to balance model fit and model complexity (Meynard et al., 2019) (See247

Fig. 3, step 1). Next, for each of the eight combinations of predictors and each248

occurrence data set type (observed-ratio and balanced-ratio), one occurrence data249

set was created for calibration (16 data sets).250

2.3.4. Species distribution model categories and settings251

The following eight SDM categories were implemented in R using the BIOMOD2252

package (Thuillier et al., 2016) with default parameter settings: generalised lin-253

ear model (GLM), generalised boosting model (GBM), generalized additive model254

(GAM), artificial neural network (ANN) model, flexible discriminant analysis (FDA),255

random forest (RF), classification tree analysis (CTA) and surface range envelope256

(SRE) model (Valanis et al., 2008; Thuiller et al., 2009; Albouy et al., 2012; Clair-257

baux et al., 2019; Pecchi et al., 2019). For each SDM category and data set, a 3-fold258

cross validation procedure was performed.259
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2.3.5. SDM category selection and compromise260

We used the True Skill Statistics index (TSS, Allouche et al., 2006) to quantify261

the performance of each of the eight fitted SDMs for each calibration data set (See262

Fig. 3, step 2). It was calculated as TSS = sensitivity (proportion of presence cells263

classified correctly) + specificity (proportion of correct absence cells) - 1. A SDM was264

selected for ensemble modelling if it had TSS > 0.5. A compromise (the ensemble265

Species Distribution Model, eSDM) of the presence probability was then calculated266

as the mean of probabilities of retained SDMs weighted by their TSS value. Presence267

probability uncertainty was quantified using the coefficient of variation from cross-268

validation results. Individual SDM response curves to environmental predictors as269

well as the eSDM resulting presence probabilities according to the different predictors270

(Schickele at al., 2020) are presented in Sup. Mat. 4 and 5.271

2.3.6. Binary habitat maps and predictors selection272

To define habitat suitability maps, for each of the 16 calibrated ensemble models273

(2 data sets x 8 predictors combination with 2 to 9 predictors), presence probabilities274

were projected over the whole domain, including the cells not included in the cali-275

bration process (extrapolation for the non sampled cells). Then, in order to create276

binary presence/absence maps, the habitat suitability maps (presence probabilities)277

were compared to all observed presence and absence compiled cells (not only those278

used for model fitting). Threshold values for binary projections of presence and279

absence were calculated based on a set of indices as recommended by Robinson et280

al. (2017), namely the hit rate (proportion of correctly classified presence cells),281

the True Skill Statistics (TSS, Allouche et al., 2006), the CBI (computed with the282

ecospat.boyce function of the ecospat package on R, Hirzel et al. 2006), and the283

overall accuracy (sum of the proportion of correctly classified presence and absence284

cells, Allouche et al., 2006). More precisely, each validation index was maximized285

varying threshold values for binary projections of presence and absence (from 0 to 1286

with a 0.001 interval) with the optimize function in R. Each maximized index value287

thus corresponded to a distinct optimized threshold value.288

For each data set type, the best calibrated eSDM was chosen as the one showing289
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the lowest number of predictors and the highest validation index values. To combine290

validation index values, their values were re-scaled between 0 (lowest index value291

obtained across eSDM outputs with 2-9 predictors) and 1 (highest index value). In292

the case of the balanced-ratio data set, as absence cells selection might have impacted293

ensemble model performance in the previous steps, 10 data sets with the chosen294

number of predictors and varying absence cells were randomly selected and the295

average of habitat suitability maps (re-calibration) was used for further validation.296

Lastly, for each data set type and validation index, the surface of potential habitat297

was calculated.298

3. Results299

3.1. Data characteristics300

In total, 106 457 occurrence records were compiled, among which 6465 presence301

records, corresponding to 782 cells where the species was present and 5683 cells302

where it was recorded as absent (Fig. 2, Table 1).303

Table 1: Summary of blackspot seabream occurrence data by region. Domain per region as in
Fig. 2. Records correspond to point observations of presence or absence of the species while cells
correspond to grid cells of the domain where one or several presence or absence point observation
was made. One presence observation was sufficient to qualify as presence cells.

Total area Atlantic Azores Mediterranean
records cells rec./cell records cells rec./cell records cells rec./cell records cells rec./cell

N presence 6928 782 8.8 639 389 1.6 4872 165 29.5 1417 228 6.2
Proportion 1.7 % 1.7 % 1.8 % 1.9 %
N absence 99529 5683 17.5 74556 4626 16.1 13906 376 37 11067 681 16.3
Proportion 12.7 % 20 % 4% 5.6 %
N sampled 106457 6465 16.5 75196 5015 15 18778 541 34.7 12484 909 13.7
Proportion 14.4 % 21.6 % 5.8 % 7.4%
N presence 6.5 % 12 % 0.8 % 7.8 % 25.9 % 30.5 % 11.4 % 25 %
/ N sampled
N cells per region 44851 23209 9392 12250

The proportion of presence cells among sampled cells was highly heterogeneous304

between regions, as well as the number of records per cell (respectively 7.8 to 30.5 %305

and 14 to 35 records per cell, see Table 1).306

3.2. eSDM outputs and habitat suitability maps307

After predictor selection using pairwise correlation analysis, nine predictors were308

retained for the ensemble modelling procedure: region (NE Atlantic, Azores, Mediter-309
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ranean Sea), sea bottom type, mean and standard deviation of bathymetry (m), an-310

nual maximum Sea Surface Temperature (SST, °C), annual mean and minimum ab-311

solute current velocity (m.s-1), annual standard deviation of salinity (‰) and annual312

standard deviation of bottom temperature (°C) (Sup. Mat. 3). Mean bathymetry313

and maximum SST had the highest explanatory power for both data sets, both vari-314

ables contributing equally (Table 2). The main difference between ensemble models315

for the two data set types was that for the observed-ratio data set (heterogeneous316

ratios of presence and absence over the model domain), the categorical predictor "re-317

gion" had a high relative importance, which was not the case for the balanced-ratio318

data set (balanced number of presence and absence grid cells in each region) (Table319

2, Sup. Mat. 6).320

SDM categories ANN, GBM and RF were selected in most cases (TSS > 0.5),321

while the selection of the other SDM categories varied according to the number of322

predictors and the data set type used (Table 2, Sup. Mat. 6). TSS values were higher323

for the observed-ratio data set for all models (two to nine predictors), with values324

around 0.7 for the balanced-ratio data set, and around 0.9 for the observed-ratio data325

set (Table 2, Sup. Mat. 6). As a result of the data selection procedure, the data set326

size decreased with decreasing number of predictors, leading to low data set sizes327

for models with less than five predictors (Table 2). Comparing projected habitat328

suitability maps (presence probabilities per grid cell over the whole domain) between329

data set types, it appeared that a balanced ratio between presence and absence330

data led to overall higher presence probabilities and hence a much wider potential331

habitat in the NE Atlantic region and in the Mediterranean Sea region compared to332

the results obtained with the observed-ratio data set, while the projected presence333

probabilities appeared rather similar for the Azores region (Figs. 4 and 5). The334

visual difference was confirmed by the mean projected presence probability over the335

whole domain being 0.16 ˘ 0.19 for the balanced-ratio data set and only 0.07 ˘ 0.09336

for the observed-ratio data set (Fig. 4).337
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Figure 4: Presence probabilities (mean and sd) of the blackspot seabream per region and on the
whole grid according to the data set type used for ensemble species distribution modelling with 6
predictors.

Figure 5: Habitat suitability maps for blackspot seabream for the main distribution area (a, c)
and associated coefficients of variation (b, d) obtained with an ensemble species distribution model
performed using a data set with a balanced number of presence and absence data (balanced-ratio,
a, b) and a data set with the observed and heterogeneous number of presences and absences
(observed-ratio, c, d), for models including six predictors (see Table 2 and Sup. Mat. 6).
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Differences between projected presence probabilities obtained with the balanced-338

ratio data set and the observed-ratio data set were the highest in the NE Atlantic339

(with respective values of 0.19 ˘ 0.21 and 0.06 ˘ 0.07) and the lowest in the Azores340

(with both values equal to 0.07 ˘ 0.10) (Fig. 4). For both data set types, coefficients341

of variation of presence probabilities did not exceed 0.25 (Fig. 5).342

Overall, the choice of data set type impacted presence probability values, but343

did not impact consistently which predictors were selected, except for the region344

predictor, nor the general shape of the response curve for each predictor, except for345

maximum annual SST for which the relationship was dome-shaped for balanced-346

ratio data set and more flat for the observed-ratio data set (Table 2 and Sup. Mat.347

4).348

3.3. Binary habitat maps349

3.3.1. Predictors350

Comparison of the three validation index values between eSDMs using 2 to 9351

predictors normalized between 0 an 1 (0 being the smallest index value across the352

set of of predictors and 1 being the highest) led to select the eSDM with six predictors353

for both data set types. Indeed, these models displayed among the best index values354

for the smallest number of predictors (Fig. 6).355

Figure 6: Normalized values of validation indices (accuracy, Allouche et al., 2006; hit rate, Allouche
et al., 2006; True Skill Statistics, Allouche et al., 2006, Continuous Boyce Index, Hirzel et al. 2006)
of the models according to the number of predictors used, for the balanced-ratio data set type (same
number of absences and presences cells) (a) and the observed-ratio data set type (all records) (b).

The best predictors for the balanced-ratio data set were mean bathymetry, annual356

maximum SST, standard deviation (sd) of bathymetry, sd of mean annual bottom357
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temperature, sd of mean annual bottom salinity and minimum annual absolute cur-358

rent velocity. For the observed-ratio data set, predictor region was selected instead359

of minimum annual absolute current velocity (Table 2, Sup. Mat. 6). The region360

predictor had a 9% contribution to the explained variance and, compared to the361

balanced-ratio data set, contribution of other variables was lower for bathymetry362

and higher for all other variables.363

3.3.2. Indices and threshold optimization364

Validation index values (accuracy, hit rate, CBI and TSS) were slightly higher365

for the observed-ratio data set than for the balanced-ratio data set (Sup. Mat. 8).366

Variations in estimated habitat area between validation indices were higher than367

between data set types (Fig. 7). Overall, the choice of threshold value used for368

transforming presence probabilities into binary habitat maps strongly influenced369

results for the whole area and for each of the regions (Fig. 8). For regional habitat370

area estimation, separate threshold values were obtained by maximising index values371

regionally. Maximizing the hit rate led to the lowest threshold values for the whole372

area and each region, and subsequently the largest habitat areas.373

Figure 7: Blackspot seabream potential habitat area using the best model (6 predictors) and
different validation indices for setting the presence/absence threshold value: accuracy, hit rate,
Continuous Boyce Index and True Skill Statistics. Results for observed- and balanced-ratio data
sets, when models were optimized for the whole model domain (black), the NE Atlantic region
(green), the Azores region (blue), the Mediterranean Sea region (red).

CBI and accuracy led to the smallest habitat areas, especially for the NE Atlantic374
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region for which the observed presence / absence ratio was low. For the whole area,375

averaged across the two data types, the habitat areas for hit rate and TSS were376

14849% and 1280% larger than for CBI respectively. Comparing results between the377

two data sets showed that the balanced data set let to smaller habitat areas for the378

majority of indices for the whole area and each of the three regions (Figs. 7 and 8).379

For the whole area, the difference ((balanced-observed)/observed) ranged between380

-53% for TSS and 4% for CBI. For the Azores the difference ranged between -3% for381

accuracy and 27% for TSS, for the Mediterranean Sea between -36% for TSS and382

0% for CBI, and for the NE Atlantic region between -28% for accuracy and 23 %383

for CBI. Thus, the choice of validation index had a much greater impact than the384

data set type, though the later was also important for certain indices.385

Figure 8: Area of the potential habitat of the blackspot seabream as a function of the threshold
value used for binary presence/absence predictions for the balanced-ratio data set (dotted line)
and the observed-ratio data set (solid line) and results obtained using different validation indices
(accuracy, hit rate, CBI and TSS) for the whole area (a), NE Atlantic region (b), Azores region
(c) and Mediterranean Sea region (d).
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3.3.3. Binary habitat maps386

Visual comparison of binary (presence / absence) habitat maps (threshold opti-387

mized according to TSS index) between data set types showed that for the balanced-388

ratio data set some locations from which the species had been reported were missed,389

particularly to the West of Ireland and along the Mediterranean coast (Figs. 2 and390

9). Overall, it appears that the potential habitat of the species covers a large area391

around seamounts in the Azores region, a wide area on the NE Atlantic shelf and a392

narrower are on the Mediterranean shelf (Fig. 9).393

4. Discussion394

In this study, to obtain robust estimates of the potential habitat of blackspot395

seabream across its wide distribution area exhibiting varying exploitation status, an396

ensemble species distribution modelling approach and two data sets with different397

prevalence levels were used. The identified potential habitats included islands con-398

tours and seamounts in the Azores region, the NE Atlantic shelf south of 48°N, with399

smaller areas further North, and the Northern shores of the western Mediterranean400

Sea, with more extended areas in the Strait of Gibraltar, in the Gulf of Lions and401

along the Italian coast.402

Potential habitats of blackspot seabream were best explained by bathymetry403

(down to 700 - 1000 m) and SST (annual maximum SST generally greater than404

16°C), as well as bottom temperature, salinity and region as secondary predictors,405

independent of the prevalence level in the data set except for region. Further, the406

general shape of the response curves for each predictor were similar for the two data407

sets except for max SST (see response curves in Sup. Mat. 4). Other studies have408

reported the same main factors influencing the species’ distribution and abundance,409

with occurrences reported in areas with bottom depths between 100 m and 700 m410

(Santos et al., 2019; Mytilineou et al., 2014; Burgos et al., 2013; Menezes et al.,411

2013; D’Onghia et al., 2010; Gueguen, 1974) and environmental conditions linked to412

temperature and salinity influencing stock variations (Sanz-Fernandez et al., 2019).413
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Figure 9: Map of estimated potential habitats with six predictors (yellow) for blackspot seabream
over its whole area of distribution using the balanced-ratio data (a) or the observed-ratio data set
(b) maximizing the TSS index for presence threshold estimation, and difference between the two
potential habitat maps (c, red).
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è The general importance of the region predictor can be explained by regional414

differences in biophysical conditions while the difference in importance of this pre-415

dictor for the two prevalence data sets is most likely caused by differences in the416

prevalence in the observed-ratio data sets (Table 2). These regional discrepancies417

in prevalence might be explained by the differences in population status, with the418

Northeast Atlantic population being most depleted. It is less likely caused by dif-419

ferences in detectability by the employed sampling methods, which could however420

be explored by comparing several methods for the same area and using models in-421

tegrating detectability (Fithian et al., 2015; Fletcher et al., 2016; 2019).422

In the Bay of Biscay, which is in the center of the Northeast Atlantic region, the423

eSDM suggested that the potential habitat covered a large part of the continental424

shelf. Indeed, the species used to occur over most of this shelf before the population425

collapsed in the late 1970s. In the Azorean region, which has been termed an426

oceanic seamount ecosystem (Silva and Pinho, 2007), the species occurs around427

islands, with juveniles distributed in near coast habitats as in the Bay of Biscay428

and adults spread from the coast to island slopes and isolated seamounts; juveniles429

never occur at sea mounts (Pinho et al., 2014). Depth was identified as the main430

factor for explaining blackspot seabream abundance and size composition on Azorean431

seamounts (Santos et al., 2021). In the same area, Morato et al. (2001) showed that432

the species feeds on both pelagic and benthic preys and suggested that its food supply433

on seamounts may depend upon oceanic production that drifts past seamounts,434

which in turn makes bottom slope a factor for the species distribution as current435

strength and therefore the amount of prey advected increase with slope. At the scale436

of the environment perceived by individual fish, similar hydrological conditions,437

in particular strong and variable tidal currents resulting from the interaction of438

oceanic water masses (Koslow, 1996; Lorance et al. 2002) prevail at seamounts439

and along the continental slope, where blackspot seabream also occurs. At this fine440

scale, the species shows diel vertical migrations (Afonso et al., 2012), which may441

suggest a behavior similar to that of deeper living "seamount aggregators" which442

share with blackspot seabream a high lipid content and strong swimming abilities,443

which are both related to high metabolism (Koslow, 1996). Overall, the habitat444
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characteristics of fish displaying this type of behavior include sloping sea bottom445

and related variations in current speed, which generate also temperature variations446

and is in-line with habitats variables found to be predictors of blackspot seabream447

presence-absence in this study.448

The ratio between presence and absence cells in the data impacted strongly the449

projected probabilities of presence. Imposing a balanced-ratio between the number of450

presence and absence cells for model calibration led to higher presence probabilities451

on average compared to using the observed-ratio data set with a large majority of452

absence cells (0.16 ˘ 0.19 and 0.07 ˘ 0.09 respectively). Thus, including primarily453

absence cells in model calibration reduced estimated presence probabilities.454

The habitat suitability map for the balanced-ratio data set indicated wide po-455

tential habitats over the NE Atlantic shelf and along the western Mediterranean456

and Azores coasts, while potential habitats were smaller using the observed-ratio457

data set. The habitat size was reversed between the two data sets for the corre-458

sponding presence/absence maps, with larger binary habitats for the observed-ratio459

data set due to a smaller optimized threshold value. These binary maps obtained460

by applying a optimized presence probability threshold are probably closer to the461

realised habitat of the species as it involved the full presence/absence data to set the462

threshold values. The binary presence habitat was notably smaller over the Euro-463

pean shelf, where one regional population is depleted. The past high abundance of464

the species throughout the Bay of Biscay (Olivier, 1928; Desbrosses, 1932; Guichet465

et al., 1971) indicates that this area was suitable for the species 100 to 50 years ago.466

The increase of fishing effort on the species at the same period (Lorance, 2011) must467

indeed have been the main trigger for the species’ decreased abundance, leading to468

a concentration of the remaining individuals into the most suitable habitats in this469

region (along the coast around isobath -100m and on the continental slope). The470

present study suggests that current environmental factors remain suitable for the471

species, although environmental changes have occurred since, notably a tempera-472

ture rise of 0.2 °C/decade for the period 1965 - 2004 in the 0 - 200 m water column473

layer (Michel et al., 2009, Valencia et al., 2019). The observed presence-absence474

ratio data set had higher validation indices for the fitted model compared to the475
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balanced ratio data set. Further, the corresponding binary habitat map included476

more areas outside the sampled area. For example, it predicted the species’ presence477

close to the West of Ireland, where the species did indeed occur in the past (Guégen,478

1974) and more widely along the western Mediterranean coast where it is present479

nowadays (Spedicato et al., 2002; Lechekhab et al., 2010).480

The use of different validation indices (hit rate, TSS, CBI and accuracy) led to481

different threshold values for transforming the probability of presence into binary482

habitat and subsequently different habitat surface areas. Overall, the difference483

in the size of estimated habitat area was larger between validation indices when484

between data set types. Differences in predicted habitat areas according to the485

selected thresholding method have been reported by various authors (Nenzen and486

Araujo, 2011; Jimenez-Valverde and Lobo, 2007; Liu et al., 2005). In our case, given487

the species’ low prevalence, absence cell records had a large impact on the estimated488

threshold when maximizing using the accuracy index, leading to habitats mostly489

restrained to the cells where species observations had been made, hence being closer490

to the (only partial) observed distribution. Although its use has been recommended491

in the case of unbalanced prevalence (Leroy et al., 2018), the use of the CBI index492

led to the same effect. In contrast, using the TSS index for setting the probability493

threshold value involved balancing correct predictions of both presence and absence494

cells, and hence seemed more likely to lead to binary habitats closer to the species’495

potential habitats.496

The difference between habitat areas derived using TSS optimized threshold val-497

ues for balanced and observed unbalanced data sets depended strongly on the region498

used for optimization. The largest negative difference was observed for the whole499

area (-53%), while it was negligible (-2%) for the NE Atlantic region and positive500

(27%) for the Azores. Unbalanced prevalence has been reported to artificially in-501

crease the TSS value (Leroy et al., 2018), which implies that the balanced data set502

should have provided a better understanding of blackspot seabream potential habi-503

tats. Contrary to this expectation it seems that in our case using a bigger data set504

with unbalanced presence/absence cells was more informative than using a smaller505

data set with a selected number of balanced presence/absence cells.506
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Several studies have shown that the use of presence-true absence data are gen-507

erally better than presence-only data with or without using pseudo absences, and508

that presence-only models generally under-estimate the species’ presence in loca-509

tions where is has not been sampled (Dorazio, 2014; Meynard et al., 2019; Wisz510

and Guisan, 2009). Our study is in accordance with this general result. In addition511

it showed that the proportion of absences data matters. The difference between512

the estimated area of the blackspot seabream potential habitat obtained with the513

observed-ratio data set and the balanced-ratio data set for the same threshold value514

increased with the decreasing proportion of presence data in the observed data, from515

the Azores to the NE Atlantic, which in turn corresponds to decreasing stock status516

of blackspot seabream. In summary, the results of this study provided evidence that517

when using opportunistic data for SDM fitting attention needs to be paid to the518

effects of presence/absence data imbalance as well as the choice of validation indices519

to fully evaluate uncertainty of estimated habitat maps.520
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