

Risk assessment of BTV incursion in Europe from Sardinia by Culicoides spp. wind dispersal

A. Blosse, Davide Martinetti, Giraud Aymeric, Albert Picado de Puig, Karine Chalvet-Monfray, Thibaud Porphyre

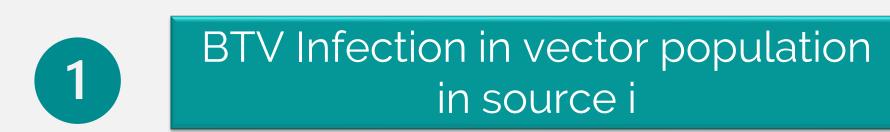
▶ To cite this version:

A. Blosse, Davide Martinetti, Giraud Aymeric, Albert Picado de Puig, Karine Chalvet-Monfray, et al.. Risk assessment of BTV incursion in Europe from Sardinia by Culicoides spp. wind dispersal. 2023 SVEPM conference, Mar 2023, Toulouse, France. . hal-04028945v1

$\begin{array}{c} {\rm HAL~Id:~hal\text{-}04028945} \\ {\rm https://hal.inrae.fr/hal\text{-}04028945v1} \end{array}$

Submitted on 14 Mar 2023 (v1), last revised 15 Mar 2023 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

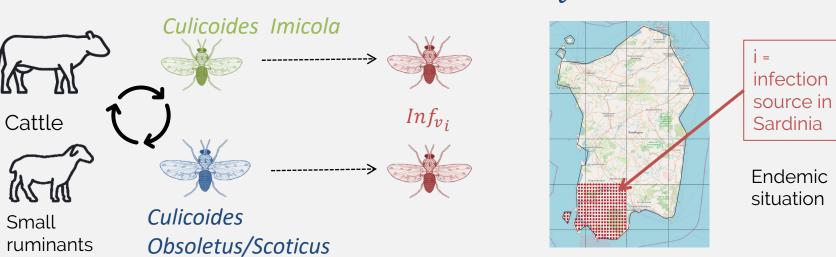


Risk assessment of BTV incursion in Europe from Sardinia by Culicoides spp. wind dispersal

Sardinia island (Italy) experiences regular orbiviruses incursions like serotype 3 of BlueTongue Virus (BTV) in 2018, or Epizootic Hemorrhagic Disease Virus (EHDV) in 2022. Once the disease is established in Sardinia, what is the risk of introduction for the other regions in Europe?

Long-distance dispersal of the Culicoides vectors through the wind is a major disease introduction pathway but remains rarely considered in quantitative risk assessment models. However, combination of epidemiological and meteorological models can provide useful insights on risk estimations. A methodological framework and its first application for Sardinia as the infection source, are hereby presented.

Model Framework


Probability of *Culicoides spp.* to reach destination j from i

BTV establishment in j (Ro)

Risk = BTV Number of local infections in j

Method

BTV infection of vector population in west southern Sardinia : Inf_{v_i}

 $Inf_{v,i}$ ~ Disease prevalence in hosts, vector abundance [1], weekly presence probability [2], livestock abundance [3], vector competence [4] and other vector specific parameters

Probability of long-distance dispersal: P_{LDWD_i}

- 1. Simulate HYSPLIT® aerial trajectories from source area (i) to destination cells (j):
- daily from Week 11 (mid March) to Week 46 (mid November), named « study period »
- at sunrise & sunset

Temperature >10°C

- 2. Filter trajectories according to **survival conditions** of the *Culicoides*. Max duration of aerial transport: scenarios for 24, 48 and 72 hours Trajectory below planetary boundary layer
- 3. Calculate **frequency of trajectories reaching j** as a proxy for the probability to be dispersed from i to destination j by the wind
- 4. Calculate **probability of long distance dispersal** considering ecology & biology of the Culicoides spp.

Probability to be uplifted by the wind

Probability to be

airborne from i to j

Probability to be still alive after dispersion

First local establishment at destination : R_{0i}

R_0 = Basic Reproduction Number

 R_0 = Average number of secondary infections in destination produced by one exogenous infected vector

Disease can be established at destination only if $R_0 > 1$

- R_o formula from Turner et al. [5] consider :
- different hosts populations and vectors populations • potential cross infections between vector populations

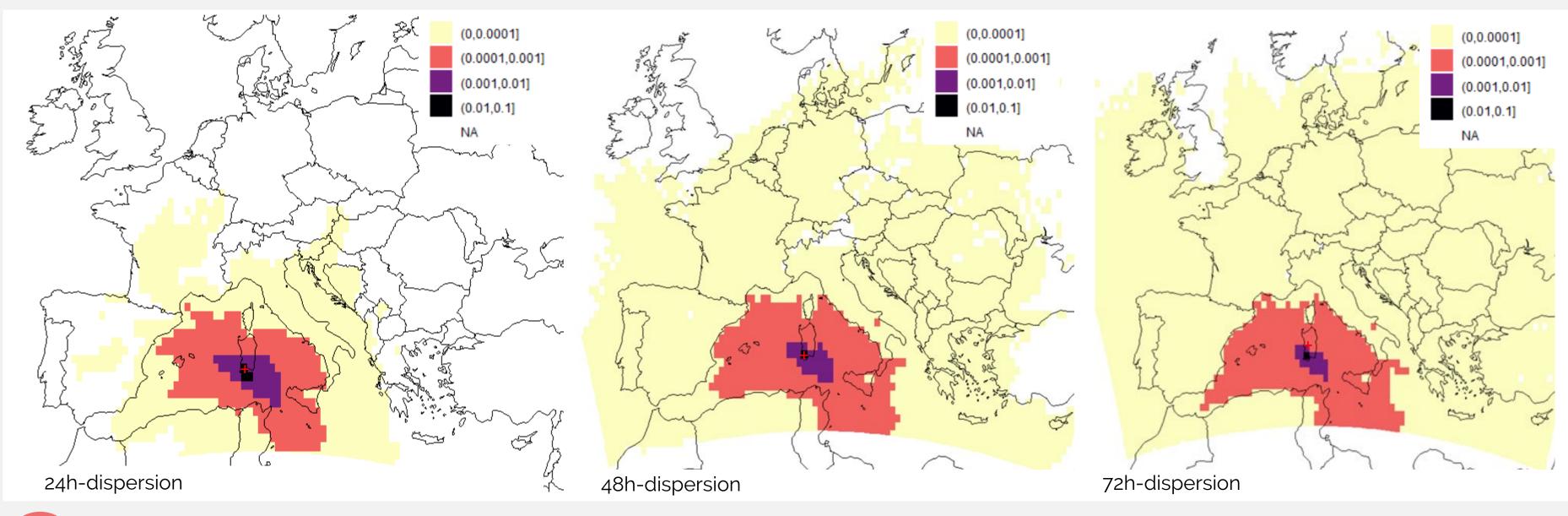
Introduction Risk

Introduction risk in j is a combination of the 3 previous steps

Risk = Number of local infections in destination j per unit of time

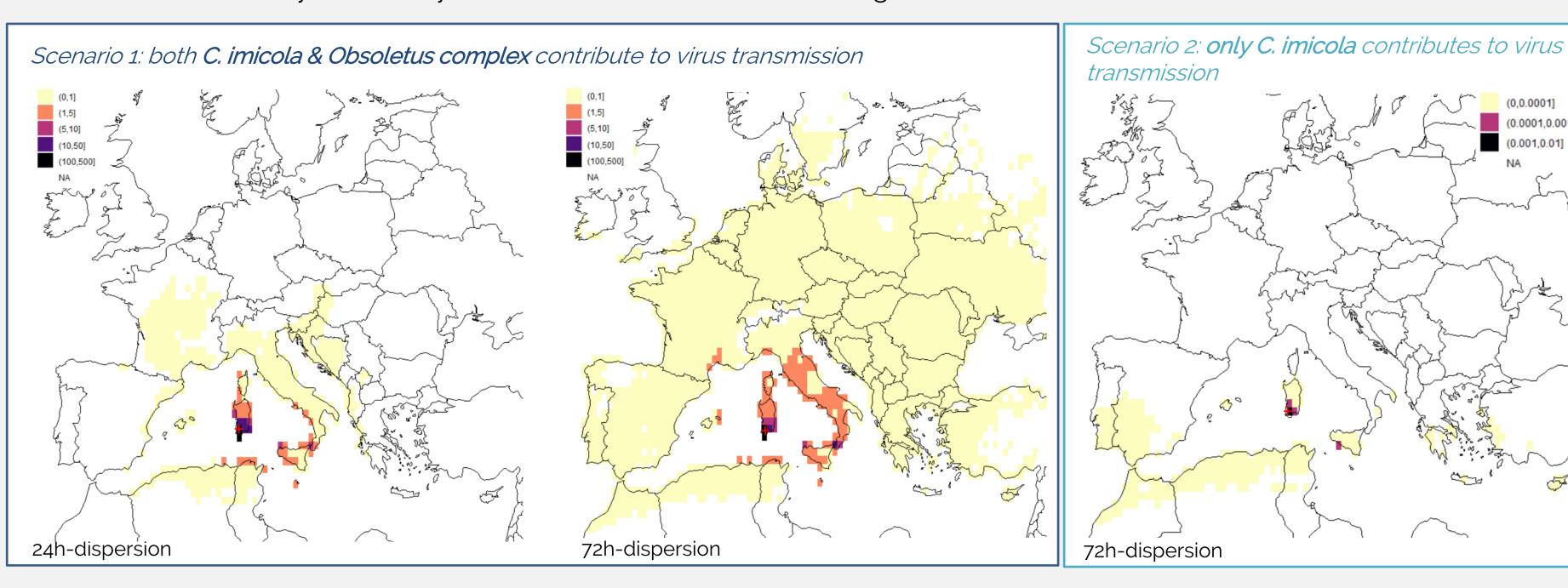
References: [1] https://doi.org/10.5334/ohd.33; [2] 10.1046/j.1439-0450.2003.00632.x; ^[3] 10.1038/sdata.2018.227; ^[4] https://doi.org/10.1038/s41597-020-00587-y; ^[5] 0.1371/ journal.pone.0053128;

Results


Infection in i

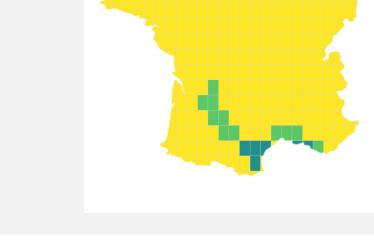
Prevalence arbitrary set in source: 50 cattle cases \ll prev_c = 0.66% 200 small ruminant cases <=> prev_s = 0.06% Vector infection starts end of April and ends mid of November C. imicola: [0,5 - 1,9] infected midges / week

C. obsoletus/scoticus: [45 - 2500] infected midges / week

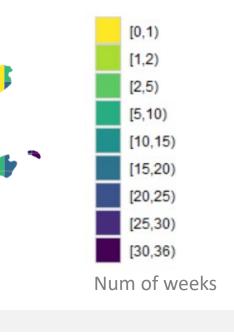

ong distance dispersal to destination j by wind

Mean of weekly probabilities for long distance dispersal from source area i (+) according to 3 scenarios of maximal duration of aerial transport (1, 2 or 3 days)

Yearly risk of introduction at destination


Mean of weekly secondary infections at destination according to vector contribution to transmission

Number of weeks at risk for 3 neighbouring countries


Weekly introduction risk > 1 Study period of 36 weeks

24h-flight scenario

- The vector dispersion halo from Sardinia mostly points to the southeastern direction. It expands to the west as the vector flight duration increases but very rarely to the north.
- Risk of new introduction remains mostly limited to Sicily, continental Italy and Corsica. Annual risk for continental France (southwest) and Spain (Baleares islands) was only evidenced considering 72h of flight and competence of both vector types.
- If only *C. imicola* contributes to the disease transmission, there is no significant risk of further introduction to neighbouring countries.
- Mediteranean islands are exposed almost the entire period whereas continental areas are exposed during only few weeks, at most 3 months.

Next steps:

- Finetune estimations of vectors abundance data
- Perform sensitivity analysis
- Make the model generic for any combination of source and destination

Bibard, Amandine¹; Martinetti, Davide²; Giraud, Aymeric²; Picado De Puig, Albert¹; Chalvet-Monfray, Karine³; Porphyre, Thibaud⁴ ¹Boehringer Ingelheim Animal Health France, Global Innovation, Transboundary and Emerging Diseases, Site de Lyon Porte des Alpes, Saint Priest, France ² INRAE UMR 0546 Biostatistiques et Processus Spatiaux, Avignon, France

³ Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France

⁴ Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France

Amandine Bibard

Boehringer Ingelheim France amandine.bibard@boehringer-ingelheim.com

