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Abstract  11 

 12 

Drought is expected to increase in frequency and severity with climate change, leading to 13 

more intense impacts on grasslands and their associated ecosystem services. Complementary 14 

to ground experiments, remote sensing technologies allow for the study of drought impacts 15 

with large spatio-temporal coverage in real-life-conditions. We aimed to quantify the 16 

variability of grassland sensitivity to drought using a long-term satellite image time series of 17 

394 temperate permanent grassland plots to identify factors influencing these sensitivities. 18 

Accordingly, we assessed the slope of the linear relationship between satellite-based 19 

vegetation status, using the standardized anomalies of the vegetation indices (VIs), and 20 

drought severity, using a modified version of the Standardized Precipitation 21 

Evapotranspiration Index (SPEI), from 1985 to 2019. The process was repeated for 24 VIs 22 

and five SPEI timescales. We then conducted a linear model selection procedure, using the 23 

grassland sensitivity derived from the most responsive VIs (i.e., VIs for which anomalies 24 

indicated a tighter linear relationship with the modified SPEI), to identify which grassland 25 
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properties influenced sensitivity to drought. A total of 29 properties, grouped into 26 

pedoclimate, agricultural management, and vegetation diversity factors, were derived from 27 

ground measurements. Overall, we demonstrated that the influence of predictors on grassland 28 

sensitivity to drought varied across the drought integration timescales. Our results highlighted 29 

the significant mitigating effect of soil water holding capacity on sensitivity to drought for 30 

short timescales of fewer than 30 days. The date of first herbage use by farmers was positively 31 

related to grassland sensitivity to drought across all timescales. We also demonstrated that 32 

higher vegetation diversity significantly reduced sensitivity to drought. However, for the long 33 

timescales of drought integration, such influence was mainly redundant with management 34 

(i.e., shared partition of variance) suggesting complex cascading effects between agricultural 35 

practices and plant community structure that still need to be addressed comprehensively in 36 

future studies.  37 

 38 
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List of abbreviation 41 

ARVI   Atmospherically Resistant Vegetation Index 42 

C: N  Carbon to Nitrogen Ratio 43 

CWM  Community Weighted Mean 44 

DIVGRASS Plant Functional DIVersity of GRASSlands 45 

DVI  Difference Vegetation Index  46 

EVI  Enhanced Vegetation Index 47 

EVI2  Enhanced Vegetation Index 2 48 

Fdis  Functional dispersion 49 

GCI   Green Chlorophyll Index 50 

GEMI   Global Environment Monitoring Index 51 

GNDVI  Green Normalized Difference Vegetation Index 52 

GVMI  Global Vegetation Moisture Index 53 

IPVI   Infrared Percentage Vegetation Index 54 

K20  Potassium oxide 55 

MgO   Magnesium oxide 56 

MSR   Modified Simple Ratio 57 

MTVI2 Modified Triangular Vegetation Index 2 58 

NDSVI  Normalized Difference Senescence Vegetation Index 59 

NDVI  Normalized Difference Vegetation Index 60 

NDWI  Normalized Difference Water Index 61 

NIR  Near Infrared 62 

NLI   Non-Linear Index 63 

NMDI   Normalized Multi-band Drought Index 64 

NRI  Nitrogen Reflectance Index 65 

OSAVI Optimized Soil-Adjusted Vegetation Index 66 

P2O5  Phosphorus pentoxide 67 

RS  Remote sensing 68 

SAFRAN Système d’Analyse Fournissant des Renseignements Adaptés à la Nivologie 69 

SAVI  Soil-Adjusted Vegetation Index 70 

SIPI  Structure Insensitive Pigment Index 71 

SLA  Specific Leaf Area 72 

SLAVI  Specific Leaf Area Vegetation Index 73 
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SOC  Soil Organic Carbon 74 

SON  Soil Organic Nitrogen 75 

SPEI  Standardized Precipitation Evapotranspiration Index 76 

SRVI  Simple Ratio Vegetation Index 77 

SWHC  Soil Water Holding Capacity 78 

SWIR  Shortwave Infrared 79 

TVI  Transformational Vegetation Index 80 

TWI  Terrain Wetness Index 81 

VARI  Visible Atmospherically Resistant Index 82 

VI  Vegetation Index 83 

84 
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1. Introduction 85 

Meteorological droughts – in other words, deficits in the climatic water balance – of 86 

varying severity, frequency, and duration affect several components of agroecosystems, with 87 

serious consequences for agricultural production and environmental health (Howden et al., 88 

2007). Similar to other agroecosystems, managed grasslands are influenced by drought 89 

impacts. The increasing frequency and severity of drought threaten the multiple ecosystem 90 

services – provision, regulation, and cultural – provided by grasslands and their associated 91 

biodiversity (Bengtsson et al., 2019; Chang et al., 2021; Hofer et al., 2016; Zwicke et al., 92 

2013). Grasslands contribute significantly to milk and meat production (O'Mara, 2012) and 93 

provide an estimated one billion jobs around the world (Buisson et al., 2022). In addition to 94 

provisioning services, grasslands securely store an estimated 30.6% of terrestrial carbon 95 

below ground in the roots and soil (Bai and Cotrufo, 2022; Lei et al., 2016) and host a large 96 

number of species, some of which are endangered (Dengler et al., 2014). Unfortunately, 97 

extreme drought events are well recognized to be detrimental to grassland biodiversity and 98 

ecosystem function (Newbold et al., 2016; Strömberg and Staver, 2022). One of the most 99 

evident consequences is the reduction of net ecosystem productivity, which reduces 100 

agricultural production but also converts grasslands from sinks to sources of carbon (Ciais et 101 

al., 2005; Lei et al., 2016; Nagy et al., 2007; Zhang et al., 2020).  102 

Knowledge of grassland sensitivity to drought and its determinants has emerged from field 103 

experiments and, more recently, from Earth surface observations. Field observations and 104 

semi-controlled experiments have provided, thus far, the most comprehensive insights 105 

regarding grassland properties that either promote or suppress vegetation sensitivity to 106 

drought. The most obvious properties, or drivers, are related to pedoclimatic conditions. 107 

Higher sensitivity to drought has been found in grasslands that are topographically exposed to 108 

solar radiation (Yang et al., 2020), situated at low elevations (Catorci et al., 2021; Gharun et 109 
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al., 2020), and found on soils with low water retention capacity (Buttler et al., 2019). 110 

Additionally, grassland management practices, which refer to the modalities of fertilizer 111 

application and herbage usage by mowing and/or grazing, have been tested partially and 112 

sometimes have revealed mixed effects. High fertilizer addition can either increase sensitivity 113 

to drought (Bharath et al., 2020; Klaus et al., 2016; Rose et al., 2012) or have no effect (Vogel 114 

et al., 2012; Weisser et al., 2017). More frequent mowing events have been related to stronger 115 

negative effects of drought (Vogel et al. 2012; Weisser et al., 2017; Zwicke et al., 2013), and 116 

grazing has been associated with greater sensitivity to drought than mowing (Deléglise et al., 117 

2015). Finally, experimental studies have further highlighted the mixed influences of 118 

grassland diversity. Higher taxonomic or functional diversity has often been associated with 119 

lower sensitivity to drought (Grange et al., 2021; Griffin-Nolan et al., 2019; Isbell et al., 2015; 120 

Kreyling et al., 2017), but some studies have indicated an opposite effect of species richness 121 

(Vogel et al., 2012; Weisser et al., 2017) or the absence of effect (de Boeck et al., 2018). 122 

According to these findings from drought experiments conducted in managed grasslands, the 123 

properties influencing vegetation sensitivity to water deficit can be categorized into 124 

pedoclimatic, management, and biodiversity drivers. 125 

Despite their incontestable scientific value, the results provided by semi-controlled 126 

experiments conducted at the field level reveal some limitations. These experiments are, in 127 

essence, restricted in their design (e.g., limited combinations of rainfall regimes, levels of 128 

diversity, type of soils, etc.) and geographic coverage. These limitations hinder the analysis of 129 

complex combinations of potential drivers that prevail in real-life conditions (Fraser et al., 130 

2013; Matos et al., 2020) and prevent the generalization of the results to all biogeographic 131 

contexts on Earth. In addition, those experiments usually report limited temporal coverage of 132 

grassland responses to drought over one or few successive growing seasons (Hoover and 133 

Rogers, 2016). Although coordinated and long-term observations and experiments (Fraser et 134 
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al., 2013; Knapp et al., 2017a, 2017b; Lemoine et al., 2016) push those limitations, spatially 135 

and temporally wider analyses of existent grasslands are needed. 136 

The rapid development of Earth observation techniques tremendously increases both 137 

spatial and temporal coverage of agroecosystem monitoring (Ali et al., 2016; Anderson, 2018; 138 

Arun Kumar et al., 2021; Reinermann et al., 2020). Therefore, recent studies have assessed 139 

the response of natural ecosystems and agricultural lands to drought severity using satellite 140 

images at a wide range of spatial scales (Jiao et al., 2019; Maurer et al., 2020; Vicente-141 

Serrano, 2007; Vicente-Serrano et al., 2013). Such assessment is based either on the 142 

quantification of the relationship between the local satellite reflectance and climatic variables 143 

(Cabello et al., 2012; Graw et al., 2017; Nanzad et al., 2019), or it is based on the satellite 144 

product anomalies and the measured standardized drought indices (e.g., Li et al., 2015; Li et 145 

al., 2022; Ye et al., 2020). Consequently, these relationships depict the sensitivity of vegetated 146 

surfaces to drought events (Vicente-Serrano, 2013). Afterward, remotely sensed sensitivity 147 

can be related to geographic variations of a set of environmental parameters, considered to be 148 

the hypothetical drivers of vegetation response to drought.  149 

Remote sensing (RS) analyses of drought effects on vegetated surfaces are based on 150 

various methodological choices. Regarding drought estimates, studies frequently used the 151 

Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index 152 

(SPEI), and Palmer Drought Severity Index (PDSI). From here, the standardized precipitation 153 

indices can be used to determine drought severity at different timescales (Vicente-Serrano et 154 

al., 2010; Nanzad et al., 2019), but seldom considered in studies (Almeida-Ñauñay, et al., 155 

2022; An et al., 2020; Dong et al., 2019; Zhao et al., 2018). Research that considered multiple 156 

drought timescales has identified grassland and cultivated vegetation response to drought to 157 

be best correlated at a timescale of one to three months (e.g., Almeida-Ñauñay et al., 2022; 158 

An et al., 2020; Zhao et al., 2018). However, these studies used monthly meteorological data. 159 
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Finer climate data resolution, such as weekly or daily, is needed to reveal more accurate 160 

impacts of meteorological variations on vegetation property changes (Salehnia et al., 2018; 161 

Wang et al., 2015). Regarding RS-based vegetation condition estimates, studies generally 162 

used Normalized Difference Vegetation Index (NDVI) or the Enhanced Vegetation Index 163 

(EVI), or their derivatives, such as the Vegetation Condition Index (VCI), and the Vegetation 164 

Health Index (VHI; Graw et al., 2017; Kogan et al., 2004; Picoli et al., 2019; Vicente-Serrano, 165 

2007). Aside from these greenness-based satellite proxies, indices related to the hydric status 166 

of vegetation, such as the Normalized Difference Water Index (NDWI) or Land Surface 167 

Water Index (LSWI), have emerged in other studies (Bajgain et al., 2015; Picoli et al., 2019). 168 

However, vegetation indices (VI), such as the NDVI, are used to represent multiple vegetation 169 

properties and do not always perform well in the assessment of drought when implemented in 170 

other ecoregions (Bajgain et al., 2015; Ebrahimi et al., 2010; Maurer et al., 2020). These 171 

discrepancies in methodological choices between studies limit the generalization of the 172 

published results and their comparison. 173 

Thus far, the RS studies have attempted to identify the drivers of vegetation sensitivity to 174 

drought through a focus on specific categories of drivers, namely, the abiotic environment, 175 

land management, and vegetation properties, usually in isolation. Some of these categories 176 

have been understudied in grasslands. The investigated drivers are in topographic factors for 177 

forests and shrublands (Cartwright, 2020), and soil properties, such as the soil water holding 178 

capacity for different land covers (Ji and Peters 2003; Thoma et al., 2019). Some studies 179 

further considered the influence of land use (Burrell et al., 2020; Munson et al., 2016; 180 

Tollerud et al., 2020) and, in the case of grasslands, the type of agricultural management 181 

(Burrell et al., 2020; Catorci et al., 2021; Graw et al., 2017; Wagle et al., 2019). A final group 182 

of studies has highlighted the importance of vegetation cover (De Keersmaecker et al., 2015) 183 

and vegetation diversity (De Keersmaecker et al., 2016; van Rooijen et al., 2015) through the 184 
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lens of taxonomic diversity rather than functional diversity. These studies have contributed to 185 

a better understanding of why some types of vegetation are more sensitive to drought than 186 

others, although the influence of abiotic factors in grassland deserves more attention. 187 

However, an important gap of knowledge remains in the assessment of the relative influences 188 

of these different drivers – classified as pedoclimatic, agricultural management, and 189 

biodiversity factors – at the same time. 190 

In this study, we pursued two main objectives. First, we aimed to quantify the sensitivity of 191 

managed grassland to drought at various timescales using satellite-based VI anomalies that 192 

were best related to irregularities of climatic water balance (i.e., SPEI). This was conducted 193 

over a 34-year period for a vast geographic region predominantly covered by typical Western 194 

European grasslands managed for cattle and sheep breeding. Second, we aimed to assess the 195 

relative influence of pedoclimate, agricultural management practices, and vegetation diversity 196 

factors on grassland sensitivity to drought. To do so, RS-based assessments of sensitivity to 197 

drought were analysed against 29 grassland descriptors measured at the ground level for the 198 

394 vegetation plots of the study area.   199 

 200 

2.  Material and methods 201 

 202 

2.1. Study area 203 

The Massif central is a mountainous region ranging from 300 to 1,885 metres above sea 204 

level in France. It exhibits four climatic zones: mountainous and semi-continental in the major 205 

center areas, with influences of oceanic climate in both the northern and western parts, and of 206 

Mediterranean climate near the southeastern part (Joly et al., 2010). The mean annual 207 

cumulative precipitation, between 1985 and 2019, was 1,067 millimetres (mm) with a 208 

standard deviation of 348 mm, while the mean annual temperature was 9.3 °C with a standard 209 
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deviation of 1.96°C. The 85,000 square kilometres (km2) region is covered mostly by 210 

managed perennial grasslands representing 60% of agricultural areas, which comprise one-211 

third of the French permanent grasslands.  212 

Our analyses included a total of 143 grassland parcels. These parcels were homogenous 213 

areas of management with heterogeneous vegetation, topography, and soil characteristics. An 214 

average of three vegetation plots were distributed within each grassland parcel (minimum of 215 

one and maximum of 10 plots). The subsequent analyses, therefore, were based on the 394 216 

vegetation plots distributed among the 143 parcels (Figure II - 1). These plots have an average 217 

area of 25 square metres (m2) and range from 2 to 100 m2. The sampling design aimed to 218 

represent the main types of grassland vegetation within the Massif central region (Galliot et 219 

al., 2020; Hulin et al, 2012, 2019; Le Hénaff et al., 2021). 220 
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 221 

Figure 1. Distribution of the grassland parcels and vegetation plots in the Massif central 222 

region (France). The main map depicts the topographic elevation and relief from a 25 223 

m x 25 m digital elevation model of the Copernicus Land Monitoring Service 224 

(http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem/eu-dem-225 

v1.1/view). The lower right inset map presents the vegetation plots found with a 226 

parcel, together with the Landsat 30m x 30m pixel grid.   227 

 228 

2.2. Data 229 

We collected satellite images and meteorological data from 1985 to 2019 for each of the 230 

394 vegetation plots to quantify the temporal changes in vegetation reflectance and drought 231 
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severity, respectively. We further characterized the pedoclimate, agricultural management 232 

practices, and vegetation diversity of these plots from ground observations collected by 233 

several projects implemented in the region during the period of interest. 234 

 235 

2.2.1. Drought estimates over the 1985–2019 period 236 

We built the time series of the local climatic water balance, computed as the difference 237 

between precipitation and potential evapotranspiration (P-PET), during the 1985–2019 period. 238 

To do so, we used the meteorological records from the Système d’Analyse Fournissant des 239 

Renseignements Adaptés à la Nivologie (SAFRAN) data for France (Durand et al., 1993). 240 

SAFRAN provides daily information on a set of meteorological parameters in NetCDF or as 241 

raster with a spatial resolution of 8 km x 8 km. We checked the local uncertainty of the 242 

SAFRAN estimates with spatially accurate daily records from a set of 140 local 243 

meteorological stations within the Massif central region (Météo-France). Our comparisons 244 

revealed tight linear relationships between the two data sources, validating the use of 245 

SAFRAN for assessing local variations of the climatic water balance in the study area 246 

(Appendix A). 247 

 248 

Modified standardized precipitation evapotranspiration index (SPEI)  249 

We then quantified the drought severity with a modified version of SPEI. The original 250 

version of this index is based on the long-term time series of the climatic water balance (Di), 251 

which is the difference between the monthly precipitation (P) and potential evapotranspiration 252 

(PET) measurements integrated over a given timescale of one, three, six, nine, 12 and 24 253 

months (Beguería et al., 2014; Pei et al., 2020; Vicente-Serrano et al., 2010; Zargar et al., 254 

2011). For example, a seasonal or three-month drought timescale is the integration of Di at a 255 

given month and the two preceding months. 256 
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where i = month  (Equation 1) 257 

 258 

To compare the surplus and deficit of the water balance between different sites with 259 

different climates or dates, the aggregated Di values are standardized. To do so, the D time 260 

series is fitted into a log-logistic distribution using a three-parameter probability distribution 261 

function. The probability distribution of D is standardized to obtain the SPEI using the 262 

approximation of Abramowitz and Stegun (1965). The statistical distribution seeks to define 263 

the normal expectation. Negative SPEI values indicate a deficit of the water balance with 264 

respect to normal conditions, while positive values indicate a surplus of precipitation. Since 265 

the SPEI is multi-scalar, we could analyse the effect of different types of droughts (Vicente-266 

Serrano, 2010) and discriminate between short and frequent water deficits (shortest 267 

timescales) and long and infrequent water deficits (longest timescales). 268 

To address our objectives, we modified the classic SPEI in two ways. First, changes in 269 

grassland growth and conditions due to drought and precipitation occur at daily temporal 270 

scales (Salehnia et al., 2018; Wang et al., 2015). Consequently, the impacts of short-duration 271 

droughts (i.e., fewer than 30 days) will not be properly estimated by the monthly classic SPEI, 272 

especially when such brief drought events are distributed between two consecutive months. 273 

Accordingly, we used daily climate data and integrated for a given day the difference between 274 

P and PET over the 15, 30, 60, 90, or 120 preceding days. Second, the small number of D 275 

observations can lead to a weak goodness-of-fit in the probability distribution step. In climate 276 

studies, the World Meteorological Organization (WMO) recommended a 30-year period of 277 

climatic data when establishing climatic normal (Marchi et al., 2020; Rigal et al. 2019). 278 

However, the climatic water balance across the years rarely exhibits a good and smooth 279 

distribution. Thus, instances with the classic SPEI may result in abrupt changes between 280 
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months or large differences with two adjacent months. For the modification, encouragement 281 

was found from Russo et al. (2014) by defining a new set of data, Ad, in the following:  282 

 283 

 284 

         (Equation 2) 285 

 286 

with d, a given day, and Dy,i, the water balance of day i in year y. This new set of data A 287 

(Equation 2) exhibits an increase in the number of observations, which helps improve the 288 

goodness-of-fit of the log-logistic distribution used for the standardization procedure of the 289 

SPEI.  290 

We demonstrate in Figure 2 the differences between the classic and modified SPEI using 291 

the 2003 and 2018 drought years in Europe (Buras et al., 2020). Both SPEIs are expressed in a 292 

one-month or 30-day timescale, and both are based on a 34-year climatic water balance time 293 

series within our study site. In relation to the concerns expressed in the previous section, we 294 

first reveal a more detailed trajectory of drought severity along the dates of the modified 295 

SPEI. By shifting from the use of monthly to daily climatic water balance data, the modified 296 

SPEI captured the minor drying and wetting events. Consequently, better transitions between 297 

the months are prominent in the modified SPEI as compared to the classic SPEI.  298 
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 299 

Figure 2. Comparison of the classic (left) and modified (right) SPEI using the 300 

2003 (top) and 2018 (bottom) drought years in Europe.  301 

 302 

2.2.2. Standardized anomalies of vegetation reflectance over the 1985–2019 period 303 

Similar to the estimation of drought severity with a modified version of the SPEI, we 304 

computed the standardized anomalies of local vegetation reflectance indices. We first 305 

extracted the reflectance bands of Landsat 4, 5, 7, and 8 over the period of 1985–2019 for 306 

each of the 394 vegetation plots from Google Earth Engine (Gorelick et al., 2017) using the 307 

reticulate package in R (Ushey et al., 2022). Landsat images offer a sufficiently fine spatial 308 

resolution (30 m x 30 m) to account for vegetation heterogeneity – in other words, they 309 

discriminate between different vegetation plots within the same parcel, as depicted in Figure 310 

II - 1, and temporal resolution (16 days) to monitor vegetation reflectance changes over the 311 

course of a growing season. These extractions resulted in a mean number of 519 cloud- and 312 

snow-free images per vegetation plot. 313 

We then computed the standardized reflectance anomalies of all 24 VIs (Appendix B) 314 

related to vegetation properties, such as greenness, cover, moisture-content, and senescence 315 
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(Bajgain et al., 2015; Davidson et al., 2006; Wu, 2014). Here, we adapted the same 316 

standardization procedure of our modified SPEI to quantify the deviation of VIs of a given 317 

clear day – in other words, free of clouds or snow cover – to the statistical distribution of VIs 318 

of the same day plus the 15 days before and after over the period of 1985–2019. This 319 

standardization allowed the spatio-temporal comparisons among plots. 320 

 321 

2.2.3. Local properties of the grasslands 322 

The local descriptions of the 394 vegetation plots were inherited from several past projects 323 

that collected information on management activities, botanical composition, soil properties, 324 

and topographic conditions between 2008 and 2019 (Galliot et al., 2020; Hulin et al., 2019).  325 

 326 

2.2.3.1. Pedoclimate 327 

At the parcel level, the soil properties were assessed with a total of 11 physical and 328 

chemical parameters. We considered direct soil measures such as the pH; carbon: nitrogen 329 

ratio; concentration of phosphorus, potassium, and magnesium; soil organic carbon; and soil 330 

organic nitrogen. We further derived variables that are well-recognized to influence the 331 

response of vegetation to meteorological drought. First, we computed the soil water holding 332 

capacity (SWHC) from the measured percentage of clay, percentage of sand, and bulk density 333 

using a pedotransfer function developed and validated for French soils (Román Dobarco et al., 334 

2019). Second, we derived the aspect (expressed as 0 to 180 degrees from north to south, 335 

respectively), elevation (in metres above sea level), and the Terrain Wetness Index (TWI; 336 

Beven and Kirkby, 1979; Böhner and Selige, 2006) of the vegetation plots from the 25 m x 25 337 

m spatial resolution digital elevation model from the Copernicus Land Monitoring Service. 338 

 339 

2.2.3.2. Agricultural management  340 
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Management information was collected in two phases; the first was in 2008–2009, then in 341 

2016–2017. This information included the amount of nitrogen (N) fertilization, specific dates 342 

of use, and type of use. We assumed from field experience and some farmer interviews that 343 

these agricultural practices had seen minimal changes over the past 30 years, especially the 344 

use of herbage, and, therefore, may be representative of grassland management for the entire 345 

period of 1985–2019. We then summarized these data to obtain: (i) the total amount of 346 

nitrogen fertilization from the applied organic and inorganic nitrogen, expressed in kg ha
-1

; 347 

(ii) the average number of uses per year based on the number of grazing rotations and 348 

harvesting dates; (iii) the prominent type of use, computed as the difference between the total 349 

number of grazing and mowing events for a two-year period, with positive values indicating 350 

the predominance of grazing, negative values the predominance of mowing, and zero equal 351 

numbers of grazing and mowing events; and (iv) the date of first use expressed in cumulative 352 

growing degree days. This was computed as the sum of the growing degree days of the date of 353 

first grazing or mowing event recorded for two years of monitoring and then averaged. 354 

Expressing the date of first use in thermal time instead of Julian days allowed the comparison 355 

between vegetation plots distributed along a large elevation gradient (Perronne et al., 2019), 356 

and minimize the effect of between-year variability of meteorological conditions. Indeed, the 357 

farmers manage their parcels according to the grass growth which may lead to variation in 358 

calendar dates of management events between years but not in cumulative growing degree 359 

days, or at least to a lesser extent.  360 

 361 

2.2.3.3. Vegetation diversity 362 

Botanical surveys were conducted at the level of vegetation plots, in which all species were 363 

identified, and their local abundances were estimated visually. From these relevés (surveys), 364 

we first derived taxonomic diversity indices: species richness, the Shannon diversity index, 365 
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and Simpson’s diversity index. Then, we used a trait database compiled for 1,300 plant 366 

species of open habitats of the Massif central (Baseflor in Julve, 1998; DIVGRASS in 367 

Carboni et al., 2016; Choler et al., 2014), together with the plot botanical records, to assess 368 

local functional indices. We considered plant traits associated with growth syndromes 369 

(specific leaf area [SLA] and plant height), phenology (first flowering and length of flowering 370 

periods in months), and reproductive ability (seed mass). We computed the community 371 

weighted mean (CWM) of each trait, which is recognized to be associated with ecosystem 372 

functions (Garnier et al., 2004; Grime, 1998) and grassland response to drought (Pérez-Ramos 373 

et al., 2012). We further assessed the functional diversity, which has been linked to the 374 

ecosystem stability (Hallett et al., 2017), of each vegetation plot. We used the functional 375 

dispersion index (Nunes et al., 2017) of each trait, plus a two-dimensional functional space 376 

composed of plant height and SLA to summarize plant growth syndromes. 377 

 378 

2.3. Statistical analyses 379 

The simplified workflow indicating the various analytical stages needed to quantify 380 

grassland sensitivity to drought and to identify its drivers is presented in Figure 3. It includes 381 

variable calculation and the variable selection procedure in the candidate statistical models. 382 
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 383 

Figure 3. Simplified workflow for assessing grassland sensitivity and its drivers. Grassland 384 

sensitivity to drought, from Objective 1, was used as the response variable for Objective 385 

2. The selected diversity, pedoclimate, and management factors from the respective sub-386 

models served as the explanatory variables. 387 

 388 

2.3.1. Computing remotely sensed grassland sensitivity to drought 389 

Some studies have used statistical inference methods to relate grassland response with 390 

climatic variables (De Keersmaecker et al., 2016; Nanzad et al., 2019; Thoma et al., 2019) or 391 

drought severity (Jiao et al., 2019; Jiao et al., 2021; Li et al., 2015; Li et al. 2022; Maurer et 392 

al., 2020). Similar to these studies, we assessed the grassland sensitivity to drought as the 393 

slope of the linear relationship between the standardized VI anomalies and the modified SPEI 394 

(Li et al., 2022). As depicted in Figure 4, in the case of vegetation insensitive to drought, we 395 

Response variable: vegetation plot sensitivity to drought 

Vegetation Indices 

(VI) 

Landsat reflectance 

values (1985-2019) 

Meteorological data / 
SAFRAN (1985-2019) 

modified SPEI 

(at five timescales) 

Sensitivity to drought 
[Slope of the linear relationship 

between the standardized VI 
anomalies and modified SPEI during 

the growing season (Mar to Nov)] 
 

Standardized VI 

Anomalies 
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expect this slope to be not significantly different from zero and positive in the case of 396 

sensitive vegetation to drought. This was done for each of the 394 vegetation plots using time 397 

series data in the period 1985–2019 (Appendix C). The slopes per plot were estimated with a 398 

mean number of 519 paired values of the standardized VI anomalies and the modified SPEI 399 

falling within the growing season from March to November. The use of standardized indices 400 

allowed the comparison of sensitivities among vegetation plots. 401 

 402 

 403 

Figure 4. Low and high grassland sensitivities to drought for two selected timescales of 404 

different sample plots. (The threshold for low sensitivity or insensitivity is below 0.1.) 405 

 406 

The process described above was repeated for the 24 VIs across the five drought 407 

timescales, specifically, for 15, 30, 60, 90, and 120 days. We then assessed how the various 408 

VIs and drought timescales affected the estimated sensitivities to drought. To do so, we 409 

performed a two-way ANOVA with VIs and timescales as factors. The variance of the 410 

residuals, therefore, indicates the fluctuation among plots amid the variation due to 411 

methodological choices. 412 
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The slope of the linear relationship between the standardized VI anomaly and the modified 413 

SPEI, used as an estimate of grassland sensitivity to drought, was assigned as the dependent 414 

variable in the subsequent analyses that sought to identify the drivers of grassland response to 415 

drought. 416 

 417 

2.3.2. Statistical modelling of grassland sensitivity to drought 418 

We conducted a linear model selection procedure to quantify the influence of pedoclimatic 419 

characteristics, agricultural management, and vegetation diversity on the sensitivity to drought 420 

of the 394 vegetation plots. We assigned the grassland sensitivity to drought – in other words, 421 

the slope of the linear relationship between the VI anomaly and the modified SPEI – as the 422 

response variable and the pedoclimate, management, and diversity factors as the explanatory 423 

variables (Figure 3). We compiled a total of 29 candidate variables (Table 1), all of which 424 

were pre-selected based on their biological meaning and possible effect on grassland response 425 

to drought, as described in the local properties section (2.2.3). To avoid possible 426 

multicollinearity, we first computed pairs correlation between the 29 variables. For pairs with 427 

a Pearson correlation greater than 0.5, which is more conservative than the recommended 0.7 428 

threshold (Graham, 2003), we removed the variable with the less tangible biological meaning. 429 

Then, we conducted a two-stage selection procedure to seek the most explanatory model of 430 

vegetation plot sensitivity to drought. The first stage entailed selecting sub-models for each of 431 

the three categories of explanatory variables, where vegetation plot sensitivities were also 432 

used as the response variable. In doing so, we optimized the inclusion of the best predictors in 433 

the final model with similar weight between each category. The second stage consisted of 434 

selecting the final linear model with all categories of the previously selected predictors. For 435 

both stages, we performed backward and forward stepwise selection based on the Akaike 436 

Information Criterion (AIC), which aims to maximize the goodness-of-fit of the final model 437 
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and minimize its complexity (Venables and Ripley, 2002). Such a procedure may lead to 438 

competing models, with similar complexity and close explanatory power but a different 439 

combination of predictors. These models have differences in AIC of less than 4 (Burnham and 440 

Anderson, 2004). Among these models, we selected the ones with the greatest power of 441 

prediction to detect all significant drivers. To compare the effect size of various predictors, we 442 

computed the beta coefficients from the selected models. Finally, we partitioned the variance 443 

explained by pedoclimate, management, and vegetation diversity factors by partial regressions 444 

of the final model. The partitions explained by the explanatory categories were assessed with 445 

the unbiased adjusted R² (Peres-Neto et al., 2006). 446 

Note that these analyses were repeated for the most responsive VI-derived sensitivities and 447 

at five different timescales of the modified SPEI. Since these analyses were conducted in the 448 

linear regression framework, we visually checked for homogeneity of variances and normality 449 

of the residuals (Appendix D).  450 

Lastly, all analyses were performed within the R environment (R core Team 2021). 451 

 452 

Table 1. List of the 29 grassland local properties used to predict grassland sensitivity to 453 

drought of the vegetation plots in the Massif central region, France.  454 

Type Variable Unit Definition 
Level of 

measurement 

P
ed

o
cl

im
at

e 

SWHC cm
3
 cm

-3
 Total water amount that the soil can store for plant 

use, computed using a pedotransfer function 

Parcel* 

C:N - Ratio of carbon and nitrogen contents in the soil Parcel* 

K20 % of fine 

dry soil 

Soil potassium content available for plants Parcel* 

MgO % of fine 

dry soil 

Soil magnesium content available for plants Parcel* 

P2O5 % of fine 

dry soil 

Soil phosphorus content available for plants Parcel* 

pH - Acidity or alkalinity of the soil Parcel* 

SON % Nitrogen content available in the soil organic 

matter 

Parcel* 
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 SOC % Carbon content available in the soil organic matter Parcel* 

TWI - Topographic wetness index, this was extracted 

using the SAGA TWI algorithm in QGIS 

Plot** 

North- or south-

facing slopes (or 

aspect) 

degree Azimuth direction of land surface exposure Plot** 

Altitude m.a.s.l. Vertical distance from the Earth’s surface to a 

point of interest 

Plot** 

A
g

ri
cu

lt
u

ra
l 

 

m
an

ag
em

en
t 

Date of first use degree Actual date of first defoliation or harvest; variable 

expressed in cumulative growing degree days  

Parcel*** 

Type of use count Number of uses as either more grazing (+), more 

mowing (-), or equal number (zero) 

Parcel*** 

Mean number of 

uses 

count Mean of the total number of mowing and grazing 

dates 

Parcel*** 

Nitrogen 

fertilization 

g.ha
-1

 Total organic and inorganic nitrogen applied in 

the field 

Parcel*** 

V
eg

et
at

io
n

 d
iv

er
si

ty
 

CWM length of 

flowering 

month Community weighted mean of flowering period 

duration 

Plot**** 

CWM first 

flowering 

month Community weighted mean of start of flowering 

period 

Plot**** 

CWM seed mass mg Community weighted mean of seed mass Plot**** 

CWM plant 

height 

m Community weighted mean of plant height Plot**** 

CWM SLA m².kg
-1

 Community weighted mean of specific leaf area  Plot**** 

Fdis length of 

flowering 

- Functional dispersion of flowering period duration  Plot**** 

Fdis first 

flowering 

- Functional dispersion of start of flowering 

duration 

Plot**** 

Fdis seed mass - Functional dispersion of seed mass  Plot**** 

Fdis plant height - Functional dispersion of plant height Plot**** 

Fdis SLA - Functional dispersion of specific leaf area Plot**** 

Fdis growth - Functional dispersion of growth syndromes  Plot**** 

Species richness - Number of individual species in a community Plot**** 

Simpson's 

diversity index 

- Taxonomic measure relative to abundance within 

a community 

Plot**** 

Shannon 

diversity index 

- Taxonomic measure of diversity within a 

community 

Plot**** 

*  Field measurements 455 

**  European Union Digital Elevation Model 456 

***  Farmer interview 457 

**** Botanic relevés and trait database. 458 

 459 
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3.  Results 460 

 461 

3.1. Variations of grassland sensitivity to drought  462 

The estimated grassland sensitivity to drought differed according to multiple sources of 463 

variation, which could be decomposed between (i) the influence of the VI being used to assess 464 

vegetation reflectance anomalies, (ii) the timescale of computation of the modified SPEI, and 465 

(iii) the variability between vegetation plots, in other words, geographic variability. A two-466 

way ANOVA revealed a significant effect of the VI being used (F [24, 49,224] = 2,643, p < 467 

0.001) with a sum of squares of 589.46 and a significant effect of the timescale (F [1, 49,224] 468 

= 4,358, p < 0.001) with a sum of square of 40.5. The sum of squares of the residuals, 469 

corresponding to the geographic variation between vegetation plots, was 454.4. From this 470 

analysis we can conclude that the VI being used was the most important source of variation of 471 

the estimated sensitivities to drought in our study, closely followed by geographic variability, 472 

while the timescale was a far less important source of variation. 473 

Among the 24 VIs used to quantify grassland sensitivity to drought, the NDWI and the 474 

Global Vegetation Moisture Index (GVMI) exhibited the highest slopes and goodness-of-fit 475 

between the standardized VI anomalies and the modified SPEI (Figure 5). This indicates that 476 

both VIs were the best to reveal vegetation response to variation in the climatic water balance. 477 

The slope values between the NDWI and the GVMI were highly correlated (r = 0.98) and 478 

ranged between -0.1 and 0.58. However, values between -0.1 and 0.1 were not significantly 479 

different from 0. Therefore, slopes below or equal to 0.1 are interpreted as insensitivity to 480 

drought. Slope values above 0.1 indicate that negative values of the modified SPEI – in other 481 

words, climatic water balance lower than the normal expectation – are associated with 482 

negative NDWI or GVMI anomalies – in other words, the NDWI or the GVMI lower than the 483 

normal expectation. Therefore, positive slopes above 0.1 are interpreted as a negative 484 
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response (i.e., sensitivity) of vegetation to drought (Figure 4). Despite the high responsiveness 485 

of the anomalies of these two moisture-based indices with the modified SPEI, their maximum 486 

R
2
 values were 0.35.  487 

 488 

Figure 5. Comparison of grassland sensitivity to drought estimated from a number of 489 

satellite-based VIs. The variability represented by the violin plots includes the 490 

fluctuation among the 394 vegetation plots and the five drought timescales. The 491 

descriptions of the VIs are available in Appendix B. Grouping labels at the top of the 492 

graphs are Tukey test results. 493 

 494 

The vegetation sensitivity to drought, as estimated with the NDWI or the GVMI, varied 495 

somewhat between the timescales of calculation of the modified SPEI (Figure 6). The mean 496 
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sensitivity increased from 15 days to 60 days, and then slightly decreased for 90 and 120 497 

days. Then, the geographic variation of sensitivity to drought (i.e., between vegetation plots) 498 

was similar between all timescales with a standard deviation ranging from +/- 0.07 to 0.093. 499 

 500 

 501 

Figure 6. Variability of grassland sensitivity to drought, as estimated from the linear 502 

relationship between the standardized reflectance anomaly, using the NDWI (top) 503 

and the GVMI (bottom), and standardized meteorological water balance index 504 

(modified SPEI), compared among the different drought timescales. Variability was 505 

measured with the standard deviation (std) among the vegetation plots (n = 394) per 506 

timescale computation. Grouping labels at the top of the graphs are Tukey test 507 

results. 508 

 509 

3.2. Drivers of grassland sensitivity to drought  510 
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The best models depicting the effect of the pedoclimatic factors, management, and 511 

vegetation diversity on grassland sensitivity to drought estimated either with the NDWI or the 512 

GVMI were very close (Appendix E). The obtained R
2
 for the NDWI and the GVMI ranged 513 

from 0.35 to 0.62 and 0.37 to 0.59, respectively, depending on the timescale of calculation of 514 

the modified SPEI. For both indices, the highest R
2
 values were obtained from the short 515 

timescales of 30 and 15 days, while R
2
 values below 0.5 were obtained for the timescale > 60 516 

days.  517 

Hereinafter, we present the averaged model beta coefficients and averaged variance 518 

partitions between the two selected indices in Figure 7 and Figure 8, respectively. Overall, we 519 

found different sets of selected explanatory variables and explanatory powers depending on 520 

the timescale of calculation of the modified SPEI.  521 

We distinguished among three groups of predictors based on the beta coefficients across 522 

the five timescales. The first group included four variables with similar effects, whatever the 523 

timescale considered. The date of first use by farmers had a strong (beta coefficient >0.35) 524 

positive effect on grassland sensitivity to drought, with delayed use in the growing season 525 

associated with high sensitivity to drought. The type of use – dominance of mowing or 526 

grazing – had a moderate and positive effect (0.10 < beta coefficient < 0.35), except for the 15 527 

days timescale. This must be interpreted as a greater sensitivity to drought in grazed than in 528 

mown grasslands. The nitrogen fertilization had a moderate but negative or mitigating effect 529 

(-0.35 < beta coefficient < -0.10) on sensitivity except for the 120 days timescale. It also 530 

exhibited a slightly more negative beta coefficient for the 15 days timescale.  531 

The second group included predictors with a clearly stronger effect at short timescales of 532 

15 and 30 days. The most important in terms of effect size was the SWHC, which exhibited 533 

the strongest mitigating effect on grassland sensitivity to drought (-0.58 and -0.56). South-534 

facing slopes, a radiation exposure parameter, had a moderate positive effect (0.26 and 0.19), 535 



 

28 
 

while the CWM seed mass had a moderate but negative effect (-0.17 and -0.14) for the short 536 

timescales. Finally, the soil content of MgO had a moderate positive effect (0.25) for the 537 

shortest timescale of 15 days and a weak effect (below 0.1) for other timescales.  538 

The third group involved five predictors with higher effects for long timescales. However, 539 

these predictors had an overall weak (beta coefficient <|0.10|) to moderate effect on grassland 540 

sensitivity. Four of them were descriptors of vegetation diversity. In order of importance, the 541 

functional dispersion of growth syndromes (Fdis (growth)), had an increasing but moderate 542 

negative effect (-0.35 < beta coefficient < -0.10) on sensitivity as the timescale increased. The 543 

CWM SLA had constant weak and negative effects from the 60 to 120 days timescales. The 544 

CWM plant height also had a weak negative effect (-0.09) but only for the 120 days 545 

timescale, and the Shannon diversity index had a weak positive effect (0.08) for the 90 and 546 

120 days timescales. The fifth predictor of this group was the TWI with a weak (-0.07) and 547 

moderate (-0.14) negative effect on grassland sensitivity for 60 and 120 days timescales, 548 

respectively. Finally, the soil pH revealed an opposite weak effect for long timescales. 549 
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 550 

Figure 7. Beta coefficients of model predictors of grassland sensitivity to drought, averaged 551 

between the NDWI- and GVMI-based models at different timescales. Negative beta 552 

coefficients reduce sensitivity to drought, while positive values increase sensitivity. 553 

 554 

The highlighted variations in effect size with timescale of the calculation of the SPEI 555 

translated into changes in the partitions of variance explained by the pedoclimate, 556 

management, and diversity of vegetation plots (Figure 8; Appendix F). The pure partition of 557 

the pedoclimate was the most important for the short timescales of 15 and 30 days with 558 
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32.59% and 38.02%, respectively. These led to the higher explanatory power of the final 559 

models with 57.57% and 68.69% of the variation of sensitivity to drought explained at the 15 560 

and 30 days timescales, respectively, compared with the 36.06%, 22.21%, and 38.22% 561 

explained total variances at the timescales of 60, 90, and 120 days. Other pure partitions did 562 

not change noticeably across the five timescales. The pure management effect explained 563 

approximately 15% of the total variance for all timescales. Then the partitions associated with 564 

diversity effects summed between 10% and 20% over the timescales but were largely shared 565 

with the management effect.  566 

 567 

 568 

Figure 8. Variance partitioning of the model predictors of grassland sensitivity to drought. 569 

The average NDWI- and GVMI-based model values at different timescales were used. 570 

Model predictors were grouped into pedoclimate, management, and diversity categories. 571 

 572 

4.  Discussion 573 
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Using long-term satellite image time series and meteorological data, we demonstrated the 574 

significant variability of grassland sensitivity to drought over a vast geographic region 575 

dominated by open habitats maintained for cattle and sheep grazing. We further quantified the 576 

influence of a set of factors related to the pedoclimate, agricultural management, and 577 

vegetation diversity on the assessed vegetation responses. We found that their relative effect 578 

and explanatory power varied with the duration and frequency of drought events.  579 

 580 

4.1. Quantifying geographic variations of grassland sensitivity to drought 581 

We improved the current satellite-based methods of quantification of vegetation response 582 

to drought in two ways. First, we demonstrated, based on the comparison of 24 VIs, that 583 

indices accounting for SWIR bands (shortwave infrared bands between 1.57 and 1.65 584 

nanometres (nm) for SWIR1 and between 2.11 and 2.29 nm for SWIR2) outperformed other 585 

indices for detecting the effects of meteorological drought on vegetated surfaces. Indeed, 586 

indices such as the NDWI and the GVMI were specifically developed for remote sensing of 587 

vegetation water content (Ceccato et al., 2002; Gao 1996;) and have an immediate response to 588 

moisture changes, while greenness indices – specifically, NDVI – exhibit lagged effects (Liu 589 

et al., 2017; Tong et al., 2017) and are not directly related to the hydric status of vegetation, 590 

especially during moderate drought intensity (Bajgain et al., 2015; Chandrasekar et al., 2010; 591 

Gu et al., 2007). Although many studies have proved the usefulness of greenness indices such 592 

as NDVI (Catorci et al., 2021; De Keersmaecker et al., 2016; Ji and Peters, 2003; Nanzad et 593 

al., 2019) or EVI (Cabello et al., 2012; Cartwright et al., 2020; Munson et al., 2016; Zhou et 594 

al., 2019), these were outperformed by moisture-based indices in this study. Second, we 595 

highlighted the importance of the timescale of calculation of standardized drought severity 596 

indices such as the SPEI. The estimated sensitivities differed significantly between timescales 597 

ranging from 15 to 120 days. Generally, previous studies have considered only one timescale 598 
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(Horion et al., 2019; Hossain and Li, 2021; Lu et al., 2021; Maurer et al., 2020). Other studies 599 

that scrutinized multiple timescales considered much coarser ones, than we did, with monthly 600 

meteorological data (Almeida-Ñauñay et al., 2022; Li et al., 2015; Liu et al., 2017; Xu et al., 601 

2021).  602 

Despite recent developments, satellite-based assessments of vegetation response to drought 603 

may still suffer from a few limitations. First, the relationships between VI anomalies and the 604 

modified SPEI were noisy overall. Indeed, anomalies of grassland reflectance may arise from 605 

multiple natural phenomena, including pest attacks (e.g., voles increasing bare soil), 606 

vegetation diseases, or compositional changes in the vegetation. Anomalies of the climatic 607 

water balance index (SPEI) were computed from the SAFRAN data with fine daily temporal 608 

resolution but coarse spatial resolution (8 km x 8 km grid). Despite the high correlation with 609 

field meteorological stations (Appendix A), our estimates of the modified SPEI still may not 610 

fully capture the fine-scale climatic variations, especially in mountainous regions. Second, our 611 

procedure for calculating the long-term normal reflectance of each day and each vegetation 612 

plot tolerates the 30-day variation of grazing and mowing events between years. We assumed 613 

that management practices were closely similar from 1985 to 2019, however, we cannot 614 

guarantee that sporadic changes in management over time have not occurred. Further 615 

developments may address this issue in two ways: (i) detection of management events with 616 

fine temporal resolution satellite products (e.g., Sentinel 1 and 2; Griffiths et al., 2020; 617 

Kolecka et al., 2018; Lobert et al., 2021), despite the fact that the temporal extents of Sentinel 618 

images are currently too short – in other words, eight years for Sentinel 1 and seven years for 619 

Sentinel 2 – to estimate the normal vegetation reflectance along the growing season, or (ii) 620 

precise recording of the daily sequence of practices along the growing season with the help of 621 

farmers. Regarding other sources of disturbance, new RS techniques should be developed to 622 

better discriminate the spectral signature of drought from other natural or anthropogenic 623 
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disturbances and stresses (McDowell et al., 2015). Despite these methodological limitations, 624 

we argue that our procedure provided at least an unbiased, although noisy, estimate of 625 

grassland sensitivity to drought. This allowed us to provide better understanding of its main 626 

drivers. 627 

 628 

4.2. The strong pedoclimatic influence prevails at short timescales 629 

We revealed the buffering effects of the soil water holding capacity (SWHC; Buttler et al., 630 

2019; Thoma et al., 2019) and topographic exposure to solar radiation (Gharun et al., 2020; 631 

Jiao et al., 2021; Yang et al., 2020) on vegetation sensitivity to climatic water balance deficit, 632 

as demonstrated by previous studies. Obviously, these were highly expected. However, our 633 

findings further indicated that these strong buffering effects hold true only for short and 634 

frequent droughts, then completely vanish from the 60 days timescale (Bodner et al., 2015; 635 

Finn et al., 2018). Interestingly, for longer timescales, our results revealed the emerging but 636 

moderate role of the TWI. This indicates that large-scale hydrological processes related to 637 

land surface topography may relay local pedoclimatic buffers when the water deficit becomes 638 

too long, which may have implications for the management of agricultural drains. Indeed, 639 

such land preparation either hampers or promotes horizontal movements of water in soils. 640 

Depending on the topographic context, the removal of an existing drain or the installation of 641 

new ones may thus help mitigate the impact of drought on grasslands. 642 

The influence of soil chemical properties also prevailed for the short timescale. High 643 

values of MgO and C:N ratio increased sensitivity to drought, especially for the 15-day 644 

timescale, but the MgO influence was still significant for longer timescales. Magnesium 645 

limitation is recognized to impede several ecophysiological processes that enhance drought 646 

tolerance (Shao et al., 2021; Tränkner and Jaghdani, 2019; Waraich et al., 2011). In this 647 

respect our results are contradictory. A first alternative explanation is that the selection of soil 648 
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magnesium (Mg) concentration in our model does not reflect an effect of this chemical 649 

component on vegetation sensitivity to drought but is a consequence of repeated droughts in 650 

some of the vegetation plots. Indeed, it has been demonstrated that, under water deficit 651 

conditions, Mg accumulates in the soil because of a reduced plant uptake (Sardans et al., 652 

2008). A second alternative explanation is the influence of an unknown factor correlated with 653 

soil Mg concentration. The soil C:N ratio response is directly modified by N fertilization 654 

(Soussana and Lemaire, 2014), and it is expected to mirror fertilization response to drought 655 

sensitivity, but in the opposite way because N is the denominator. 656 

 657 

4.3. On the importance of herbage use 658 

The date of first use by farmers was the primary management factor explaining grassland 659 

sensitivity to drought for whatever timescale of SPEI considered. This was expressed in 660 

thermal time (cumulative growing degree days). Doing so, the date of first use better reflects 661 

grassland phenology than calendar dates and allows comparisons among plots located at 662 

different altitudes while it minimizes the influence of between-year variation of 663 

meteorological conditions. Our results indicated that late agricultural uses during the growing 664 

season were associated with higher sensitivity to drought. The effect of the date of first use on 665 

grassland sensitivity to drought has not been tested in isolation thus far; instead, it is often 666 

mixed with cutting frequency (Zwick et al., 2013). We may still interpret our result in light of 667 

the timing of herbage use and the occurrence of droughts during the growing season. The 668 

timing of drought occurrence has already been highlighted to play a key role in drought 669 

impacts on grasslands (Denton et al., 2017; Edwards and Chapman, 2011; Hahn et al., 2021). 670 

Although droughts do not have identical occurrences between years, they often occur in late 671 

spring and summer in the Massif central. Thus, late uses are more likely to coincide with 672 

strong water deficits. However, it is well recognized that defoliation combined with water 673 
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stress depletes carbohydrate reserves on which plant regrowth and stress tolerance depend 674 

(Kahmen et al., 2005; Volaire et al., 1994) and lessens the maintenance of aboveground 675 

productivity (Ma et al., 2020). Additionally, the influence of the date of use of farmers may 676 

also arise indirectly from its effect on plant community structure, as we discuss in the next 677 

section.  678 

We further found strong evidence of greater sensitivity of vegetation to drought in 679 

preferentially grazed paddocks than in preferentially mown ones. It should be noted that 680 

usually mown grasslands may be grazed early in spring or during the autumn regrowth. Our 681 

results confirm previous findings from grassland experiments (Deléglise et al., 2015). The 682 

role of repeated defoliation by grazers along the course of the growing season, compared to 683 

sudden cuts, tends to maintain grassland vegetation in the vegetative phase (Bloor et al., 2020; 684 

Lei et al., 2016). As a result, plants allocate fixed carbon to leaf regrowth at the expense of 685 

carbohydrate storage and root growth necessary to ensure soil water and nutrient uptake, 686 

which can reduce their tolerance to drought (Amiard et al., 2003; Frank, 2007; Xu et al., 687 

2013). Nevertheless, further research is needed to determine whether grazing pressure has 688 

additive or combined effects on the drought response of grasslands (Ruppert et al., 2015). 689 

 690 

4.4. The joint influence of vegetation diversity and agricultural management 691 

Overall, vegetation diversity explained a substantial part of the variance of grassland 692 

sensitivity to drought. Several descriptors had weak to moderate individual effects, but once 693 

they were summed together, they had substantial effects, especially for longer timescales. 694 

Such effects were largely shared with agricultural management. In this respect, we interpret 695 

the role of vegetation diversity on grassland sensitivity to drought together with the effect of 696 

N fertilization and the date of first use. 697 
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Our results suggest a complex cascade of effects involving the influence of N fertilization 698 

on vegetation diversity and the influence of vegetation diversity on drought tolerance. We 699 

found that the Shannon diversity index increased grassland sensitivity to drought, whereas 700 

functional diversity and N fertilization had the opposite effect. Regarding taxonomic diversity 701 

and N fertilization, our findings seem to contradict those of several grassland experiments 702 

(Kübert et al., 2019; Bharath et al., 2020; Meng et al., 2021). However, N fertilization is also 703 

recognized to reduce taxonomic diversity (Humbert et al., 2016; Louault et al., 2017; Niu et 704 

al., 2014; Socher et al., 2013) but, at the same time, increase functional diversity of growth 705 

syndromes and the CWM SLA (Louault et al., 2017; Niu et al., 2014). Nevertheless, greater 706 

functional diversity of growth syndromes may result in greater asynchrony of species 707 

responses to drought, which has been related to better grassland resilience (Loreau and de 708 

Mazancourt, 2013; Muraina et al., 2021). The role of functional diversity has even been 709 

suggested to be more important than the potential effect of taxonomic diversity on grassland 710 

stability (Valencia et al., 2020). Therefore, the positive effect of the Shannon diversity index 711 

that emerged from our results may be interpreted as a spurious effect. We must warn that this 712 

conclusion should be taken with caution for management recommendations. Indeed, the effect 713 

of N fertilization in other contexts or at much higher levels of application may reduce species 714 

richness to a greater extent and result in a reduction of grassland functional diversity and, 715 

ultimately, an increase in grassland sensitivity to drought.  716 

Beyond the direct influence of the date of first use on sensitivity to drought, as discussed in 717 

the preceding section, the greater sensitivity of late-use grasslands may also be mediated by 718 

changes in vegetation. However, our results do not allow to infer the underlying causal 719 

relationships. Delays in mowing or grazing have been demonstrated to increase taxonomic 720 

diversity when postponed from early to late spring or summer (Humbert et al., 2012). 721 

However, taxonomic diversity had only a weak effect in our study and, thus far, the 722 
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consequences of delaying mowing or grazing on functional diversity remain unknown. 723 

Otherwise, delayed mowing or grazing may favor species with late phenology and reduce 724 

light use efficiency (Gaujour et al., 2012), which may result in a lower CWM SLA. This is 725 

consistent with our finding that lower drought sensitivity was associated with high SLA. 726 

However, SLA reduction usually works as a phenotypic adjustment to water stress (Wellstein 727 

et al., 2017), which contradicts our results. 728 

Finally, we found that plant communities with heavier seeds were associated with lesser 729 

sensitivity to drought. This has already been reported in semi-arid grasslands (Martínez-López 730 

et al., 2020) dominated by annual species. Indeed, in stressful conditions, the post-drought 731 

establishment and survival of seedlings are more successful for large seeds that contain more 732 

reserves. Regeneration in permanent grasslands is mostly clonal and, in normal conditions, 733 

depends more on buds than seeds (Benson and Hartnett, 2006). However, in a long-term 734 

drought experiment conducted in mountainous grasslands dominated by perennials, Stampfli 735 

and Zeiter (2004) found that post-drought vegetation dynamics were driven largely by 736 

recruitment from seeds. We were unable to clearly discriminate how the CWM seed mass was 737 

influenced by agricultural practices. Our result highlights the need to conduct new studies on 738 

drought mitigation through agricultural management, with an explicit focus on how different 739 

practices influence the composition and diversity of the regeneration syndromes of grassland 740 

species. 741 

 742 

5.  Conclusions 743 

Our study revealed high variability of satellite-based vegetation sensitivity to drought, at 744 

different timescales, across a wide geographic region dominated by permanent grasslands 745 

maintained for cattle and sheep breeding, using moisture-based reflectance indices retrieved 746 

from Landsat images. Through the indices, vegetation was most responsive to drought for the 747 
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60 and 90 days timescales. We demonstrated that variations of satellite-based sensitivity to 748 

drought within and between grassland parcels can be explained by pedoclimatic, agricultural 749 

management, and vegetation diversity factors. We underlined that the soil water holding 750 

capacity (SWHC) worked logically as a strong buffer for meteorological droughts but only for 751 

the shortest time scales of fewer than 30 days. Additionally, agricultural management had also 752 

a strong influence, either independent or largely shared with vegetation diversity. This 753 

suggests complex indirect effects involving changes in functional composition and diversity 754 

of the grassland plant communities. Accordingly, such complexity may be disentangled by 755 

future experimental studies focusing on the ecological consequences of the timing of herbage 756 

use, tests of interactions between several management practices, and analyses of multivariate 757 

causal relationships. Finally, better RS-based assessment of vegetation sensitivity to drought 758 

is required to discriminate between drought events and other types of disturbances, whether 759 

natural or agricultural. 760 
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Appendices 782 

 783 

Appendix A. Precipitation, potential evapotranspiration, and mean temperature correlation 784 

between the SAFRAN and field meteorological stations within the Massif central region. 785 

Climatic variables R
2
 Slope Intercept 

Precipitation (P) 0.80 0.84 0.25 mm 

Potential evapotranspiration (PET) 0.88 0.90 0.24 mm 

Mean temperature 0.96 0.90 -1.33 °C 

 786 

 787 

Appendix B. Satellite reflectance indices used in the study. Input bands were the blue (B), 788 

green (G), red (R), near infrared (NIR), and shortwave infrared (SWIR) 1 and 2. 789 

Index Formula Purpose / Description References 

NDVI (NIR - R) / (NIR + R) Commonly used for vegetation 

biomass (green)  

Rouse et al., 

1974 

ARVI (NIR – [(2 * R) - B]) / 

(NIR + [(2 * R) - B]) 

Less sensitive to atmospheric 

effects compared to NDVI 

Kaufman and 

Tanré, 1992 

DVI NIR – R Differentiates vegetation and 

soil.   

Richardson and 

Wiegand, 1977 

EVI 2.5 * ([NIR - R] / 

[NIR + 6 * R - 7.5 * B + 1]) 

For canopy condition in high 

biomass areas 

Huete et. al., 

2002 

EVI2 2.5 * ([NIR - R] / 

[NIR + (2.4 * R) + 1]) 
EVI without the blue band Jiang et al., 

2008 

GCI (NIR / G) - 1 For chlorophyll estimation Gitelson et al., 

2003 

GEMI n * (1 - 0.25 * n) – [(R - 0.125) / (1 - 

R)] 

where, n = [2 * (NIR
2 
- R

2
) + (1.5 * 

NIR) + (0.5 * R)] / (NIR + R + 0.5) 

For vegetation cover; non-linear 

index 

Pinty and 

Verstraete, 1992 

GNDVI (NIR - G)] / (NIR + G) For chlorophyll estimation; 

NDVI using the Green instead 

of Red band 

Gitelson et al., 

1996 

GVMI ([NIR + 0.1] – [SWIR2 + 0.02]) / 

([NIR + 0.1] + [SWIR2 + 0.02]) 
For vegetation water content Ceccato et al. 

(2002) 

IPVI NIR / (NIR + R) For vegetation biomass Crippen, 1990 
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MSR ([NIR / R] - 1) / sqrt([NIR / R] + 1) For biophysical parameters Chen, 1996 

MTVI2 (1.5 * [1.2 * (NIR - G)] – [2.5 * (R - 

G)]) / sqrt([(2 * NIR) + 1]
2
 – [6 * 

NIR - (5 * sqrt(R)) - 0.5]) 

For green leaf area index (LAI) 

estimation 

Haboudane et 

al., 2004 

NDSVI (SWIR1 - R) / (SWIR1 + R) For senescence detection Qi et al., 2002 

NDWI (NIR - SWIR1) / (NIR + SWIR1) For vegetation liquid water 

content; similar formula with 

Land Surface Water Index 

(LSWI) 

Gao, 1996; Xiao 

et al., 2004 

NLI (NIR
2
 - R) / (NIR

2
 + R) For vegetation cover; accounts 

for leaf angle distribution 

Goel and Quin, 

1994 

NMDI (NIR – [SWIR1 - SWIR2]) / (NIR + 

[SWIR1 - SWIR2]) 
For soil and vegetation moisture Wang and Qu, 

2007 

NRI (G - R) / (G + R) For plant nitrogen status Filella et al., 

1995 

OSAVI (NIR - R) / (NIR + R + 0.16) For vegetation health; minimizes 

soil effect; standardized 

vegetation condition of 0.16 

Rondeaux et al., 

1996 

SAVI (1 + L) * ([NIR – R] / [NIR + R + L]) 

Vegetation: Low (L = 1) 

Intermediate (L = 0.5) 

High (L = 0.25) 

For vegetation health; minimizes 

soil effect 

Huete, 1988 

SIPI (NIR - B) / (NIR + B) For vegetation phenology (bulk 

carotenoids to chlorophyll ratio) 

Penuelas et al., 

2011 

SLAVI NIR / (R + SWIR2) For specific leaf area Lymburner et 

al., 2000 

SRVI or SR NIR / R For leaf area index Jordan, 1969 

TVI sqrt (NDVI + 0.5) For green leaf area index (LAI) 

estimation 

McDaniel and 

Haas, 1982 

VARI (G - R) / (G + R - B) Less sensitive to atmospheric 

effects; based on ARVI 

Gitelson et al., 

2002 

  790 
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Appendix C. Time series of drought (top) and vegetation (bottom) conditions from 1985 to 791 

2019 of one sample plot. 792 

 793 

794 
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Appendix D. Plots for the visual tests of the homogeneity of variances and normality of the 795 

residuals of the final NDWI- and GVMI-based models. 796 

 797 

798 
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Appendix E. NDWI- and GVMI-based model summaries and beta coefficients 799 

 800 

Modified SPEI 15 days  NDWI    GVMI  

Predictors Beta coefficient t value Pr(>|t|) 
 

Beta coefficient t value Pr(>|t|) 

Date of first use 0.4391 5.546 0  0.3758 5.344 0 

Type of use 0.0989 1.05 0.2956  - - - 

Nitrogen fertilization -0.1905 -2.517 0.0131  -0.2872 -3.953 0.0001 

Mean number of uses 0.1063 1.372 0.1725  0.1226 1.538 0.1267 

SWHC -0.4728 -6.714 0  -0.6793 -7.757 0 

MgO 0.1673 2.188 0.0305  0.3356 4.189 0.0001 

C:N - - -  0.3815 3.859 0.0002 

TWI -0.0576 -0.84 0.4025  -0.0885 -1.291 0.1993 

South-facing slope 0.2393 3.562 0.0005  0.2729 3.936 0.0001 

CWM (seed mass) -0.1614 -1.964 0.0518  -0.1932 -2.422 0.0169 

CWM (height) -0.1173 -1.404 0.1629  -0.1123 -1.367 0.1741 

CWM (SLA) - - -  0.0736 0.934 0.3523 

Fdis (growth) -0.0782 -1.003 0.3177  -0.1011 -1.296 0.1974 

Shannon diversity index -0.1253 -1.522 0.1306  -0.0934 -1.126 0.2625 

 R
2
:   0.519   R

2
:   0.5235  

 Adjusted R
2
: 0.4724   Adjusted R

2
: 0.4731  

 

 

       

Modified SPEI 30 days  NDWI    GVMI  

Predictors Beta coefficient t value Pr(>|t|) 
 

Beta coefficient t value Pr(>|t|) 

Date of first use 0.4628 6.446 0  0.4442 5.803 0 

Type of use 0.221 2.648 0.0091  0.2269 2.434 0.0164 

Nitrogen fertilization -0.1645 -2.285 0.024  -0.177 -2.388 0.0185 

Mean number of uses 0.1109 1.618 0.1083  0.0774 1.072 0.286 

SWHC -0.5526 -8.839 0  -0.5577 -8.532 0 

pH 0.0562 0.839 0.4032  0.0729 1.031 0.3044 

MgO 0.1144 1.625 0.1067  0.1579 2.174 0.0316 

South-facing slope 0.2006 3.373 0.001  0.188 3.058 0.0027 

CWM (seed mass) -0.1538 -2.322 0.0219  -0.1426 -2.079 0.0397 

CWM (SLA) - - -  -0.0841 -1.184 0.2387 

Fdis (seed) -0.1466 -2.49 0.0141  - - - 

Fdis (growth) -0.0893 -1.341 0.1825  -0.0613 -0.906 0.3669 

Shannon diversity index -0.0488 -0.684 0.4953  -0.0867 -1.168 0.245 

 R
2
:   0.62   R

2
:   0.5955  

 Adjusted R
2
: 0.5833   Adjusted R

2
: 0.5563  

        

Modified SPEI 60 days  NDWI    GVMI  

Predictors Beta coefficient t value Pr(>|t|) 
 

Beta coefficient t value Pr(>|t|) 

Date of first use 0.3587 3.971 0.0001  0.3748 4.202 0.0001 

Type of use 0.1982 1.773 0.0786  0.2625 2.362 0.0197 

Nitrogen fertilization -0.1708 -1.894 0.0605  -0.1732 -1.903 0.0593 

pH 0.1435 1.642 0.1031  0.1798 2.141 0.0342 

MgO 0.1363 1.667 0.0979  0.1086 1.301 0.1957 

C:N - - -  -0.1223 -1.422 0.1575 

TWI - - -  -0.1348 -1.821 0.071 

CWM (seed mass) -0.2145 -2.469 0.0149  -0.1494 -1.834 0.069 

CWM (SLA) -0.0817 -0.901 0.3694  -0.1698 -1.868 0.0641 

Fdis lengthflow 0.0711 0.79 0.4312  - - - 

Fdis (growth) -0.1606 -1.819 0.0714  -0.0823 -1.005 0.3169 

Shannon diversity index 0.1009 1.128 0.2615  0.0499 0.55 0.5836 

 R
2
:   0.3709   R

2
:   0.4039  
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 Adjusted R
2
: 0.321   Adjusted R

2
: 0.3514  

  

 

      

Modified SPEI 90 days  NDWI    GVMI  

Predictors Beta coefficient t value Pr(>|t|) 
 

Beta coefficient t value Pr(>|t|) 

Date of first use 0.394 4.374 0  0.3875 4.311 0 

Type of use 0.1533 1.355 0.178  0.2089 1.927 0.0562 

Nitrogen fertilization -0.1206 -1.407 0.1618  -0.1759 -1.94 0.0546 

Mean number of uses -0.0922 -1.016 0.3118  -0.0876 -0.957 0.3405 

pH - - -  0.0768 0.884 0.3786 

MgO 0.1078 1.263 0.2089  0.1064 1.244 0.2159 

TWI - - -  -0.119 -1.549 0.124 

CWM (seed mass) -0.0992 -1.058 0.2922  - - - 

CWM (height) -0.1471 -1.547 0.1243  -0.1107 -1.304 0.1946 

CWM (SLA) -0.1027 -1.204 0.2307  -0.1722 -2.004 0.0472 

Fdis (growth) -0.2052 -2.353 0.0202  -0.1495 -1.736 0.0851 

Shannon diversity index 0.1652 1.809 0.0729  0.1166 1.25 0.2137 

 R
2
:   0.3531   R

2
:   0.3755  

 Adjusted R
2
: 0.3018   Adjusted R

2
: 0.3206  

 

 

       

Modified SPEI 120 days  NDWI    GVMI  

Predictors Beta coefficient t value Pr(>|t|) 
 

Beta coefficient t value Pr(>|t|) 

Date of first use 0.5767 6.859 0  0.5008 5.793 0 

Type of use 0.2317 2.272 0.0248  0.2372 2.274 0.0247 

Nitrogen fertilization - - -  -0.1021 -1.168 0.2449 

Mean number of uses -0.0714 -0.807 0.4213  -0.0796 -0.904 0.3676 

SWHC -0.138 -1.807 0.0731  - - - 

pH -0.1856 -2.302 0.023  -0.115 -1.376 0.1712 

MgO 0.1643 1.975 0.0505  0.123 1.495 0.1374 

TWI -0.1372 -1.815 0.072  -0.1413 -1.908 0.0587 

CWM (seed mass) -0.0859 -0.966 0.3362  - - - 

CWM (height) -0.19 -1.943 0.0543  -0.1135 -1.314 0.1913 

CWM (firstflow) 0.0899 1.031 0.3046  - - - 

Fdis (seed) -0.0783 -1.058 0.2919  -0.0416 -0.551 0.5828 

Fdis (growth) -0.2099 -2.582 0.011  -0.1531 -1.844 0.0676 

Shannon diversity index 0.1714 1.989 0.049  0.113 1.245 0.2154 

 R
2
:   0.4541   R

2
:   0.4285  

 Adjusted R
2
: 0.3965   Adjusted R

2
: 0.3732  

  801 
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Appendix F. Variance partitioning of NDWI- and GVMI-based models across timescales. 802 

 803 

 804 

 805 
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