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eQTLs are key players in the integration 
of genomic and transcriptomic data 
for phenotype prediction
Abdou Rahmane Wade1, Harold Duruflé1, Leopoldo Sanchez1† and Vincent Segura2*†    

Abstract 

Background:  Multi-omics represent a promising link between phenotypes and genome variation. Few studies yet 
address their integration to understand genetic architecture and improve predictability.

Results:  Our study used 241 poplar genotypes, phenotyped in two common gardens, with xylem and cambium RNA 
sequenced at one site, yielding large phenotypic, genomic (SNP), and transcriptomic datasets. Prediction models for 
each trait were built separately for SNPs and transcripts, and compared to a third model integrated by concatenation 
of both omics. The advantage of integration varied across traits and, to understand such differences, an eQTL analy-
sis was performed to characterize the interplay between the genome and transcriptome and classify the predicting 
features into cis or trans relationships. A strong, significant negative correlation was found between the change in 
predictability and the change in predictor ranking for trans eQTLs for traits evaluated in the site of transcriptomic 
sampling.

Conclusions:  Consequently, beneficial integration happens when the redundancy of predictors is decreased, likely 
leaving the stage to other less prominent but complementary predictors. An additional gene ontology (GO) enrich-
ment analysis appeared to corroborate such statistical output. To our knowledge, this is a novel finding delineating a 
promising method to explore data integration.
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Background
Genomic prediction, the prediction of phenotypes with 
genome-wide polymorphisms, has become a key tool for 
plant and animal breeders. This approach relies on sta-
tistical modelling to infer the effect of genomic variants, 
with many different modelling alternatives proposed in 
the literature [1, 2]. These models are mostly devised to 
predict the additive and transmissible contribution to 

individual genetic values, although dominance and epi-
static interactions can also be accounted for [2]. Despite 
their success in identifying relevant effects and predicting 
phenotypes accurately, even in their most complex for-
mulations, these models do not capture per se the genetic 
architecture of complex traits [3]. Beyond the statistics, 
it is the use of biological and functional information 
from the different organizational layers between the raw 
sequence and the organismal phenotype that will likely 
provide the required insights into genetic architectures. 
Layers such as DNA methylation (Epigenome), tran-
scripts (Transcriptome), proteins (Proteome) or metabo-
lites (Metabolome), are nowadays becoming increasingly 
accessible for many species, opening prospects for a 
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better understanding of the genetic architecture of com-
plex traits [4–6].

In order to simultaneously account for these different 
layers of data in phenotype prediction, several integra-
tion approaches have been proposed [7]. Among these, 
the most frequently used is transformation or kernel-
based integration, which consists of transforming each 
omic data into an intermediate form, usually taking the 
shape of a relationship matrix between the individuals 
[8–11]. Effects owing to different omics can then be inte-
grated into a single analytical model, each effect being 
associated to a given kernel. Eventually, kernels can be 
further combined by the Hadamard product to add extra 
interaction terms between effects [8, 11]. Integration can 
also be carried out across models, in what is known as 
model-based integration [7]. Such integration can hap-
pen for a given omic type over different datasets or popu-
lations, each one summarized by its own model, with a 
final global model utilizing the top features contributed 
by each of the initial models. Another variant of the same 
model-based integration proceeds through a multistage 
approach, combining sequentially different omics for a 
given population [12]. One of the simplest integration 
approaches, however, remains data concatenation [13], 
by which multiple omics are placed side by side into a 
single large input matrix. Unlike kernels, whose results 
are produced at the individual level, the concatenation 
allows for the effects of multiple features at each omic to 
be estimated, whether they are SNPs, transcripts or any 
other omic. Another advantage, derived from that atomi-
zation of effects, is that interactions between omics can 
be more easily captured, without the risk of being lost by 
intermediate transformations.

Most of the studies dealing with omics integration for 
phenotypic prediction have focused on gauging predic-
tive abilities. To that level, the reported benefits are con-
text dependent across studies and, in general, amounting 
to small differences when compared to single omics 
counterparts. A series of published comparisons in maize 
illustrates this point. Using kernels to integrate genomic 
and transcriptomic data, Guo et  al. [8] found improved 
accuracies over single omic approaches for most of the 11 
economically important traits under study. In contrast, 
Schrag et al. [9] found no benefit in integration on a simi-
lar set of production-related traits. For Azodi et al. [13], 
however, using concatenation of genomic and transcrip-
tomic data for three maize traits yielded benefits for only 
one trait. Studies on other biological models also showed 
similar context dependent results. Based on the Dros-
ophila melanogaster Reference Panel and different tran-
scriptomic datasets, Li et al. [10] and Morgante et al. [11] 
found no advantage of integration following a multiple 
kernel approach in terms of predictive abilities, and over 

different sets of fitness-related traits. When the integra-
tion included a gene ontology (GO) category as an addi-
tional layer of information, accuracies were surprisingly 
improved [8]. Using the same Drosophila panel, Ye et al. 
[12] also found some benefit in following a model-based 
integration approach, with an initial modelling stage aim-
ing to detect SNP associated with transcripts (eQTLs), 
and a subsequent prediction model focused on result-
ing eQTLs. The number of studies, however, is not yet 
high enough to draw general conclusions. Benefits may 
depend jointly on methods of integration and targeted 
traits, reflecting the complexity of underlying architec-
tures and conditions of studied populations.

Currently, there are still few studies available that focus 
on the possible causes underlying the benefits brought 
by omics integration to prediction. Already, at the sta-
tistical level, omics such as sequence polymorphisms 
and transcriptomics are likely non-orthogonal to some 
extent. Many studies have already illustrated this depend-
ence [14–18], by testing associations between transcript 
expressions and DNA polymorphisms at given positions 
(eQTL), and suggesting underlying regulatory mecha-
nisms from the latter. If such dependancy is not con-
veniently handled at the model level, one can expect 
inaccurate estimation of effects and impaired predic-
tion accuracy as a result [7, 19]. Redundancy between 
genomic and transcriptomic data has been addressed 
in several studies, typically by gauging the amount of 
extra variance captured by the different integration 
models compared to single-omic versions. For instance, 
the successful integration described by Guo et  al. [8] 
was systematically accompanied by extra levels of cap-
tured variance, suggesting that each additional layer 
added to the model contributed to some extent to non-
redundant information, thus improving the prediction. 
Conversely, the opposite behaviour is described in Mor-
gante et  al. [11], with integrative models showing simi-
lar levels of captured variance to those of single-omic, 
indicating high levels of redundancy. It is interesting to 
note here that for this latter study, redundancy was not 
found between GO terms, the only layer bringing ben-
efits to integration in the study. The most explanatory 
GO terms with genomic data were different from those 
detected for transcriptomic data. Another, more biologi-
cal, approach is to look to what extent the most impor-
tant features in both omics show simultaneously mutual 
associations, in other words, if relevant SNPs are associ-
ated or not to relevant transcripts for a given phenotype. 
Azodi et al. [13] showed, in maize, that the transcriptome 
provides information on the phenotype that is different 
from that brought by genomic polymorphisms. More 
precisely, they highlighted that the information carried 
by the most important transcripts to predict flowering 
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time is not redundant with that of the most important 
SNPs. In mice, two independent studies used a Bayes-
ian approach to model the phenotype with both genomic 
and transcriptomic data [20, 21]. These studies showed 
that specific SNPs (eQTLs) associated with gene expres-
sion profiles can contribute to the observed redundancy 
between the two data sources, which is reflected by the 
fact that their importance for phenotype prediction was 
substantially affected under the integrative approach.

Further research is needed in the area of data integra-
tion. It is clear that the mechanisms by which integra-
tion is successful when predicting phenotypes are still 
not precisely known over a wide range of conditions and 
species, with the hypothesis of redundancy being one of 
the possible explanations. To some extent, redundancy 
reflects the high level of interconnectivity going from 
the raw genomic sequence to the organismal phenotype. 
Both redundancy and interactivity are key to under-
standing genetic architecture beyond the simple list of 
effects that is typically provided by genomic approaches. 
Most studies on data integration involve various species 
such as drosophila, maize, or humans but here, we pro-
pose new insights on data integration for black poplar 
(Populus nigra L.), using one of the simplest integration 
alternatives (concatenation), combined with one of the 
most popular prediction approaches (ridge regression). 
We aimed to evaluate the factors affecting prediction 
accuracy when integrating genomic and transcriptomic 
data for phenotype prediction. Using a large number of 
diverse phenotypes collected from black poplars in two 
common gardens, we specifically analyzed the change 
in ranking of effects of potentially redundant predictors 
(eQTLs and their target genes) between multi- and sin-
gle-omic model, together with prediction accuracy. For 
a more functional point of view, we further studied the 
redundancy using a GO enrichment analysis.

Results
Multi‑omic model displays performance advantages 
over the single‑omic models for specific functional types 
of traits
Twenty-one traits were phenotyped (Table  1) on 241 
poplars grown in two common garden experiments 
located at contrasting sites (Orleans, France, and Savigli-
ano, Italy). RNA sequencing analysis was also performed 
on young differentiating xylem and cambium tissues of 
the entire set of genotypes sampled at the Orleans site, 
resulting in large genomic (428,836 SNPs) and tran-
scriptomic (34,229 transcripts) datasets. For each phe-
notypic trait, three ridge regression models were built: 
firstly, with genotypic data as predictors (denoted G), 
secondly, with transcriptomic data as predictors (T), and 
thirdly, with integration by concatenation of both omics 

data (G + T). The prediction accuracies (R2) for the three 
models varied across trait types, with growth, pathogen 
tolerance and phenology traits having average perfor-
mances above 0.5 at both testing sites, while biochemi-
cal and architectural traits showed average performances 
below 0.5 (Fig. 1).

We compared the prediction accuracies of single- and 
multi-omic models for each trait, and tested for sig-
nificant differences with a paired Wilcoxon signed-rank 
test. For all traits, the differences between the average 
accuracy of multi-omic model compared to the single-
omic ranged from -0.025 to 0.054. Seven of the 21 traits 
showed a significant gain with the multi-omics model. 
These 7 traits included all the growth traits, the patho-
gen resistance trait, as well as 3 of the 14 biochemical 
traits (S.G_ORL, Extractives_ORL and Extractives_SAV). 
It is noteworthy that most of these traits (5/7) were 
measured in Orleans, the site where transcriptomics 
data were also collected. The only 2 traits for which the 
multi-omic model was advantageous at Savigliano (Circ 
and Extractives) also benefited from the multi-omic 
model at Orleans. Some traits showed a significant loss 
of accuracy with the multi-omic model, two when the 
comparison was against the G counterpart (Lignin_ORL, 
Lignin_SAV), and four with the T model (Lignin_ORL, 

Table 1  List of phenotypic traits

List of phenotypic traits used in the study with their abbreviations, classified by 
functional type, with site of measurement and year

Functional types Trait Abbreviation Site Year

Growth Height Ht ORL 2011

Circumference Circ ORL 2011

SAV 2009

Pathogen Tolerance Tolerance to rust Rust ORL 2009

Phenology Date of bud flush BudFlush ORL 2009

SAV 2011

Architecture Branching angle BrAngl ORL 2009

Biochemical H/G lignin ratio H.G ORL 2011

SAV 2009

S/G lignin ratio S.G ORL 2011

SAV 2009

Lignin content Lignin ORL 2011

SAV 2009

Glucose content Glucose ORL 2011

SAV 2009

Xylose to glucose 
ratio

Xyl.Glu ORL 2011

SAV 2009

5C/6C carbon sugar 
ratio

C5.C6 ORL 2011

SAV 2009

Extractives content Extractives ORL 2011

SAV 2009
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Lignin_SAV, Glucose_SAV and C5.C6_SAV). Of note, 
all these traits displaying a decrease in accuracy with the 
multi-omics model were biochemical traits, had low pre-
diction accuracies and were more often than not meas-
ured in Savigliano (3 in Savigliano versus 1 in Orleans).

In summary, the multi-omic model showed perfor-
mance advantages over the single-omic models in 7 of the 
21 traits, more frequently on traits measured in Orleans 
where transcriptomic data were collected than in Savigli-
ano. The multi-omic model underperformed compared 
to the single-omic models on 4 occasions, corresponding 
to 3 traits measured in Savigliano and one in Orleans. For 
the 10 remaining traits, no differences between models 
were detected (Fig. 1, Table S1).

eQTL analysis sheds light into the interplay 
between the genome and the transcriptome
To gain further insight into the interplay between the two 
omic layers for phenotype prediction, we studied their 
relationships through an eQTL analysis. Such analysis 
was performed with a multi-locus mixed-model approach 
which accounted for linkage disequilibrium between 
SNPs [22]. The resulting eQTLs were further classified 
into cis and trans regulatory elements according to their 
genomic proximity to the transcripts to which they were 
associated (for more details see the method section). Fig-
ure 2 presents a map of these associations with dot size 

reflecting the eQTL score (-log10 of the p-value of the 
association test). The darkened diagonal includes all cis 
mediated associations, while the off-diagonal dots repre-
sent trans-eQTLs. It is important to note that some posi-
tions at the marker axis present highly populated vertical 
trails across the genome, corresponding to important 
regulatory hubs.

We found a total of 18,248 eQTLs for 10,242 out of the 
34,229 transcripts available in the transcriptomic dataset. 
Of these 18,248 eQTLs, 7,845 (43%) were located in cis, 
and 10,403 (57%) were located in trans (Fig. S1A). Cis-
eQTLs displayed on average a larger effect than trans-
eQTLs (Fig. S1B). The maximum distance between a 
cis-eQTL and its associated gene was 12 kb.

The ranking of predictor effects was more affected 
for traits displaying a predictive advantage 
with integration
To gain insight into the factors explaining the gain or 
loss in predictive ability when using two omics rather 
than a single omic, we looked more closely at the vari-
ation in ranking of effects of the individual predictors 
over the two types of predictive models. For each of the 
three models, the rank was established based on squared 
effects from the ridge regression models (denoted rank 
hereafter).

Fig. 1  Prediction accuracies. Violin plots of prediction accuracies (R2) for 21 traits in the poplar dataset according to three models: genotypic data 
only (G model coloured in dark brown to the left in the panels), transcriptomic data only (T model coloured in dark blue), and concatenating both 
genotypic and transcriptomic data (G + T model coloured in light brown to the right). Distribution of accuracies resulted from a cross-validation 
scheme. Significance from paired tests is shown for comparisons between models, with a sign indicating if the accuracy was increased (+) or 
decreased (-) in the multi-omic model in comparison with the single-omic. Some traits were evaluated at two sites (“ORL” standing for Orleans in 
France and “SAV” for Savigliano in Italy). The white and black dots show the median and mean of the precision distributions, respectively. The dark 
brown and dark blue horizontal lines represent the mean of precision distributions of G and T models, respectively
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We looked at correlations between the rank of predic-
tors across single- and multi-omic models, splitting the 
predictors into categories determined by the eQTL anal-
ysis: trans-eQTLs (10,403 associations), cis-eQTLS (7,845 
associations), not eQTL (419,414 SNPs), trans- regulated 
transcripts (6,305 transcripts with at least an eQTL in 
trans), cis-regulated transcripts (3,573 transcripts with 
at least an eQTL in cis) and no eQTL transcripts (22,796 
transcripts for which no eQTL was detected). We looked 
particularly at how changes in rank occurred across these 
categories of predictors (Fig. S2). For SNPs, the correla-
tion between the ranks ranged from 0.58 to 0.99 across 
traits and predictor categories (cis- or trans- eQTLs 
and regulated transcripts, Fig. S2B). They were gener-
ally lower for the traits that also showed advantages with 
the G + T model over single-omic models, and for those 
measured in Orleans. Rust resistance, for instance, had 
the lowest correlations across the different categories 
among all measured traits (0.58, 0.62 and 0.64, respec-
tively for trans-eQTLs, cis-eQTLs and non-eQTLS). 
Also, growth traits showed relatively low correlations 
compared to other traits, although this happened only 
for measurements in Orleans (Ht_ORL, Circ_ORL), with 

those in Savigliano (Circ_SAV) being much higher and 
comparable to the top correlations. For the remaining 
traits, correlations between ranks remained high, gener-
ally above 0.9 but with a few values close to 0.8 (Fig. S2B). 
The correlations between transcript ranks were generally 
lower than those for SNPs, varying between 0.51 and 0.9 
across traits and predictor categories (Fig. S2D). Follow-
ing a similar pattern as for SNPs, the traits showing the 
lowest correlations were also those for which the multi-
omic models displayed a predictive advantage over sin-
gle omic models, as well as those measured in Orleans. 
Growth and rust resistance showed the lowest correla-
tions. Although with small differences, cis-regulated 
transcripts showed lower correlations than those from 
trans-regulated counterparts, across traits and sites.

Trans‑eQTLs show the most important changes of squared 
effect rank between multi‑ and single‑omic models
Previous correlations pointed to changes in rank in 
some of the categories of predictors. Thus, we decided 
to compute differences in rank between the multi-omic 
model and that of the single-omic model (either T or G, 
for transcripts and SNPs, respectively) in order to gain 
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Fig. 2  eQTL map between SNPs and transcripts. Map of associations (dots) between SNPs (x axis) and transcripts (y axis) through an eQTLs analysis 
with a multi-locus model. Dot size reflects the association score (-log10 of the p-value of the test) and dot positions correspond to genomic 
locations of transcripts and SNPs on the 19 chromosomes of the Populus trichocarpa reference genome (v3.0). The darkened diagonal includes all cis 
mediated associations, while the off-diagonal dots represent the trans associations
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insights into how this could affect trait predictability (see 
Methods for details).

When looking at the variation of the differences in 
rank (Fig. S3, Fig. S4), the amounts were much larger for 
eQTLs (G + T versus G) than for targeted transcripts 
(G + T versus T). Higher variations were also found for 
trans-eQTLs than for cis counterparts, and for traits 
phenotyped at Orleans compared to those phenotyped 
in Savigliano. Thus, changes in rank occurred with more 
intensity for eQTLs with a TRANS regulation, and when 
linked to traits measured where the transcripts were 
sampled.

An alternative way of visualizing these changes is rep-
resented in Fig.  3. Here, changes were averaged for a 
given trait and the resulting distribution of averages rep-
resented by predictor category and site. Patterns were 
very different between eQTLs and targeted transcripts, 
and also between sites. The most important changes in 
ranking happened at the Orleans site. With respect to 
predictor typologies, it was trans-eQTLs that showed the 
most significant changes, with an overall decrease in rank 
when switching to the G + T model, notably for the traits 
benefiting the most in performance from concatenation 
(growth and rust resistance). Less conspicuous were the 

changes for cis-eQTLs, which were negative overall but 
of lesser magnitude. Non-eQTLs showed generally small 
changes across traits. For targeted transcripts, the most 
impacted typology was CIS regulated genes, with an 
overall loss in ranking across traits.

A negative relationship exists between the change 
in ranking of trans‑eQTLs and cis‑regulated transcripts 
and the predictive ability of the integrated multi‑omic 
model
Figure  4 represents the link across traits evaluated in 
Orleans between average change in rank of predictors 
and advantage in performance of the multi-omic model 
over its single-omic counterpart. In the case of trans-
eQTLs, generally the most affected predictors follow-
ing concatenation, a significant relationship (r = -0.91, 
p = 3.6e-05) was able to be drawn where gains in pre-
diction occurred at the expense of decreases in ranking 
of predictors. The opposite was found for SNPs that did 
not display any association with transcripts (non-eQTLs) 
with a positive and significant correlation (r = 0.89, 
p = 1e-04). When we categorized all SNPs within a 
500 bp around the top SNPs in the same way as the top 
SNPs themselves, these correlations remained significant 

Fig. 3  Distribution of change in predictor rank. Boxplot of the average change in rank of SNPs (panels A) and transcripts (panels B). Each dot 
represents the average difference per trait, per site of the predictor ranks between the multi-omic model (G + T) and the single-omic models (G 
for SNPs and T for transcripts). The red and blue boxplots show the distribution of the average rank change for the trans-eQTLs and cis-eQTLs (A) or 
trans regulated transcripts and cis regulated transcripts (B), respectively. The boxplot in black shows the distribution for the predictors that have not 
been found to be associated in the eQTL analysis
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and a significant negative correlation was also found for 
cis-eQTLs. However, this correlation for cis-eQTLs was 
found only for a 500 bp window and not for larger ones, 
while the significant correlations for trans-eQTLs and 
not eQTLs were maintained with windows as large as 
5 and 25  kb, respectively (Fig. S5). A similar pattern to 
trans-eQTLs, although of lesser magnitude, was found 
for cis-regulated transcripts (r = -0.65, p = 0.021). On the 
opposite, a significant positive link was found when con-
sidering trans-regulated transcripts at Orleans, while at 
Savigliano no significant link could be detected across all 
categories of predictors (Fig. S6).

Gene ontology analysis suggests that top targeted 
transcripts or eQTLs are trait specific
We further selected the transcripts or eQTLs whose 
ranks were most affected by data integration, by focus-
ing on the 2.5% percentile at each extreme of the distri-
butions, and carried out an enrichment analysis in GO 
terms on the selected features. The complete GO analy-
ses for all traits, with complete terms and IDs are avail-
able in Table S2.

The analyses of enrichment terms offered the following 
outcomes, depending on traits and features involved. For 

all the analysed traits, both those gaining from the multi-
omic approach and those without gains or losses, we 
detected enrichment in GO terms from general processes 
for those eQTLs (e.g. “regulation of RNA export”, “regula-
tion of nucleobase”, “positive regulation of RNA export”, 
lipoprotein catabolic process”) and targeted transcripts 
(e.g. "DNA dealkylation" or "DNA demethylation" for 
Circ_ORL, or "cellular localization" and "RNA process-
ing" for Lignin_ORL) having the most negative impacts 
on their ranking during integration (leftmost and lower 
lists in Fig. 5A and Fig. 5B, below 2.5% on horizontal and 
vertical axes).

For traits gaining from the multi-omic approach, how-
ever, we identified enrichment in GO terms that were 
specific to the trait and for those features, eQTLs and 
targeted genes, that showed the most positive impacts 
on their ranking during integration (rightmost and upper 
lists in Fig.  5A, above 97.5% on horizontal and vertical 
axes). Some examples of such specific GO terms identi-
fied for Circ_Orl were:, "pectin biosynthetic process" or 
"acetyl-CoA biosynthetic process" for targeted genes, and 
“regulation of glucose metabolic process” or “negative 
regulation of cellular carbohydrate metabolic process” for 
eQTL (Fig. 5A).

Fig. 4  Relationship between change in predictor rank and muti-omic prediction advantage. Regression across traits measured at Orleans between 
average change in rank of predictors and advantage in performance of the multi-omic model (G + T) over the single-omic counterpart (G for SNPs 
and T for transcripts). The top panel (A) shows the regression obtained with the eQTLs (trans-eQTLs on the left, cis-eQTLs in the middle, and SNPs 
not detected as eQTL on the right). The bottom panel (B) shows the regression obtained with the regulated transcripts (trans on the left, cis in the 
middle, and not found to be associated with eQTLs on the right)
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Finally, for the traits not showing a benefit from the 
multi-omic approach we captured enrichment in GO 
terms from general processes for those eQTLs and 

targeted transcripts having the most positive impacts on 
their ranking during integration (rightmost and upper 
lists in Fig.  5B, above 97.5% on horizontal and vertical 

Fig. 5  Gene ontology (GO) terms enrichment analysis. Schematic representation of the enriched GO terms among the top targeted transcripts or 
eQTL gene models list for A) the circumference of the tree trunk or B) the lignin content, both evaluated at Orleans. Font size and grey intensity are 
proportional to -log10(p) of the top 10 GO terms
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axes). Examples of such enrichments for Lignin_ORL 
were: "RNA processing" or "regulation of vesicle-medi-
ated transport" for targeted genes, and "catabolic process 
" or "monosaccharide catabolic process" for eQTL..

In summary, only the features with positive impacts 
on their ranking for traits benefiting from multi-omic 
showed a different behaviour from the other scenarios, 
with enrichment in GO terms that seemed to be spe-
cific to those traits, and therefore potentially useful for 
prediction.

Discussion
In this study, we used 21 traits to compare the relative 
advantages of integrating genomic and transcriptomic 
data for phenotype prediction versus using each omic 
separately. This relative advantage of integration over a 
single-omic approach varied across traits. For such traits 
as growth and pathogen resistance, integration yielded 
more accurate predictions than the single-omic counter-
parts. For most of the other traits, principally biochemi-
cal traits, concatenation gave no advantage or even, in 
few cases, poorer performance than using a single omic. 
By using a simple modelling approach like ridge regres-
sion, we showed that the gains in the traits that ben-
efited from integration were associated with systematic 
changes in rank for some specific predictors, and that 
those predictors were involved in the interplay between 
SNP polymorphisms and transcripts, thus pinpointing 
adjustments in effects due possibly to redundancies. Such 
findings at the statistical level were also strengthened by 
a subsequent biological analysis of GO terms.

In order to better understand the reasons underly-
ing trait differences in the benefits of concatenation, we 
sought to evaluate the interplay between the genomic 
and transcriptomic data, by making use of an eQTL 
analysis. Such analysis allowed us firstly to categorize 
the predictors into cis-eQTLs, trans-eQTLs, not-eQTLs, 
cis regulated transcripts, trans regulated transcripts and 
transcripts with no eQTL detected. Secondly, based on 
this categorization, we could quantify the changes in pre-
dictor rank within each of these categories when using 
the multi-omic model through comparison with the sin-
gle-omic models.

Across all the traits under study, we found a strong, 
negative and significant correlation between the rela-
tive advantage of the multi-omic model compared to 
the single-omic and the decrease in rank (importance) 
of the predictors mostly for trans-eQTLs (r = -0.91) and 
to a lesser extent for cis-eQTLs (r = -0.6 when using a 
500  bp window around the top SNP) and cis-regulated 
transcripts (r = -0.65). Such a relationship could be inter-
preted in terms of redundancy between predictors com-
ing from different omics. Indeed, the traits that benefited 

the most from concatenation were also those for which 
strong falls in ranking for trans-eQTLs were observed in 
the combined predictive model compared to the single-
omic counterparts. Therefore, those predictors already 
involved in associations between SNPs and transcripts 
(eQTLs and their target genes) were also the ones mostly 
affected at the integrative model, when their covariation 
or redundancy with other features could have under-
mined their contribution to prediction. Redundancy, per 
se, would not necessarily explain gains or loss in perfor-
mance, but down weighting redundant predictors could 
allow other minor predictors, otherwise silenced, to 
increase their rank in such a way that the concatenation 
model improves in predictability. This point is underlined 
by the positive correlation detected between change in 
rank of SNPs not found to be associated with transcripts 
and a trait prediction advantage with multi- over single-
omic models.

To our knowledge, this study is the first to establish 
such a relationship between integration success and 
change in rank of effects from interconnected omic lay-
ers, pointing eQTLs as key players in such interplay. It 
is worth mentioning that we could establish such a rela-
tionship because of the relatively large number of traits 
under study, compared to previous works [8–11, 13, 20, 
21]. The relative gains from integration, estimated in R2 
between observed and predicted values, ranged from 
-0.02 to 0.05 across all 21 traits. These gains are indeed 
small, but consistent with the state of the art. Despite the 
small advantages, differences between traits were suffi-
ciently important to reveal discriminant patterns in the 
ranking of important predictors before and after inte-
gration. Our objective here was to better understand the 
factors that underlie this change in ranking and produce 
new knowledge that will allow us to further improve the 
benefits of integration in more consequential ways with 
other methods.

A gain of integration was mainly found for traits related 
to growth and for traits evaluated in the same location 
as transcriptomics
We observed a significant advantage of multi-omic over 
single-omic models for all growth-related traits (Ht_ORL, 
Circ_ORL and Circ_SAV). Since growth results from cell 
division and expansion in the apical and cambial meris-
tems (xylem and cambium) [23] this relationship between 
the tissues from which we extracted transcripts and the 
growth traits (circumference and height) may explain 
the significant integration advantage observed for these 
traits.

The advantage of integration over the single-omic mod-
els was also observed for leaf rust resistance. Although 
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xylem and cambium, the tissues sampled for RNA 
sequencing, seem disconnected to a phenomenon occur-
ring at the leaf level, the relationship here is likely indi-
rect since links between resistance and growth have been 
reported by other studies [24–26]. Following the same 
reasoning, phenology and architectural traits considered 
here do not show clear relationships with cambial meris-
tems or with growth-related traits, and therefore support 
the lack of benefits observed for them in the concatena-
tion models.

For the majority of wood biochemical traits, the multi-
omic integration model performed similarly or worse 
than the single-omic model. It is noteworthy that these 
traits are overall not well predicted with either model. 
One of the reasons for that poor performance could be 
that these traits are in fact near infrared spectroscopy 
predictions, which may include some extra noise that 
affects their prediction.

These series of observations across traits also point to 
the idea that transcripts capture some new information 
not necessarily available for SNPs. These may include 
non-additive (gene–gene) or genotype-environment 
interactions occurring in the specific tissue sampled for 
transcriptomics, both of which are not explicitly mod-
elled when using exclusively SNPs as predictors.

Among the 21 analysed traits, we observed that the 
benefits of the concatenation model were more common 
for traits measured in the same location as transcrip-
tomic data collection (Orleans). This advantage can be 
interpreted in terms of genotype-environment interac-
tions being effectively captured by the transcripts [27, 
28]. Conversely, for phenotypes evaluated at Savigliano, 
the transcriptomic data was more likely to provide infor-
mation already provided by that of the SNPs, thus negat-
ing any advantage of multi-omic integration.

Negative change in rank between the two models implies 
a decrease in importance
Our goal was to identify factors that influence the suc-
cess of genomic and transcriptomic data integration for 
phenotype prediction. To this end, we chose a simple 
integration method that allowed us to track rank changes 
of each variable between the integration and the single-
omic models, with decreasing ranks implying losses in 
importance. As described in Ritchie et al. [7] and Zamp-
ieri et al. [29], there are several ways to integrate multi-
omic data, the simplest being the concatenation method. 
Using a ridge regression model, concatenation allows 
direct estimation of each predictor effect, accounting for 
all other variables (SNPs and transcripts), unlike LASSO 
and elastic-net where some degree of variable selec-
tion is applied, while trying to minimize the covariation 
between the predictors’ effects. This method allowed us 

to track the evolution of predictor ranks in the multi-
omic compared to the single-omic models, thereby infer-
ring potential redundancies by the changes in rank. Since 
the number of SNPs was about 12.5 times higher than the 
number of transcripts, the effects of SNPs or transcripts 
between the two models were not at the same scale. We 
thus needed a scale-free system for making comparisons. 
A simple and efficient way to do this was to work with 
ranks of the squared effects of predictors.

Comparing the changes in rank between the multi- 
and single-omic models was indicative of the gain or 
loss of importance of each predictor. A predictor will 
have a positive change in rank when it has low impor-
tance (low rank) under the single-omic models and ends 
up with high importance (high rank) in the multi-omic 
model. Conversely, a negative change in rank between 
the two models implies a decrease in importance. No 
rank change corresponds to a predictor that keeps the 
same importance between the two models. Using the 
average change in rank between models would not work 
if we were considering all predicting features together as 
this would remain constant over traits. However, we were 
focusing on distinct subsets of predictors determined by 
the eQTL analysis, and this yielded some variation across 
traits, which seems useful to better understand their 
predictability.

Integration success is driven by the fall in rank 
of predictors involved in covariation between genomics 
and transcriptomics
Our main hypothesis was that reducing the sources 
of redundancy between SNPs and transcripts plays an 
important role in the success of integration. The eQTLs 
are an ideal source of redundancy between SNPs and 
transcripts, so we performed an eQTL analysis to identify 
these within our dataset. It is important to recall that the 
SNPs were derived from RNAseq, thus capturing SNPs 
from mainly the intragenic spaces. While, this might 
have affected our ability to detect some trans-eQTLs, our 
multi-locus analysis showed that trans-eQTLs remained 
the majority, with some hotspots or hub loci associated 
with a fairly large number of transcripts. Such overabun-
dance of trans—eQTLs has previously been reported in 
other species such as yeast [17], maize [30, 31], or tomato 
[16], although cases with similar or fewer occurrences 
also exist [14, 18].

The main results of our study are the strong, negative 
and significant correlation found between the relative 
advantage of the multi-omic model over the single-omic 
and the average fall in ranking (loss in importance) of the 
trans-eQTLs and to a lesser extent the cis-regulated tran-
scripts. To our knowledge, this study is the first to estab-
lish this direct relationship between integration success 
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and changes in ranking of eQTLs and regulated genes. 
This relationship was possible to determine due to the 
relatively large number of diverse traits that we used.

Previous studies have suggested a key role of eQTLs 
for multi-omic integration between genomics and tran-
scriptomics. Ehsani et  al. [20] observed in mice losses 
in importance of eQTLs in the combined genom-
ics and transcriptomics model versus the model with 
only genomics for a phenotype showing an advantage 
of integration (body mass). Such behaviour of eQTLs 
in this study was observed only for a single phenotype 
with low resolution genotyping data. Also, Ye et al. [12] 
were successful in improving the performance of phe-
notype prediction in Drosophila using genotypes of 
eQTLs regulating genes important for the phenotype. 
They proceeded with successive selection steps involv-
ing a transcriptome wide association study (TWAS) 
with an eQTLs analysis for the TWAS significant genes, 
while optimizing the detection thresholds of these two 
analyses. Their results suggest a key role of eQTLs for 
the integration between genomics and transcriptomics. 
Azodi et  al. [13] observed in maize that concatenation 
between genomic and transcriptomic data improved the 
prediction of one out of 3 studied phenotypes. For this 
phenotype, they showed the most important SNPs and 
transcripts were not redundant in the sense that they 
were not located in the same genomic regions, nor were 
they regulators of important transcripts.

The observed redundancy may be explained by biological 
processes
Until now, we have shown statistically that certain pre-
dictors involved in covariation between omics were 
penalized with a fall in rank under integration. Our GO 
enrichment analysis seemed to provide a more biological 
point of view with further evidence of the role of redun-
dancy. Overall, genes representing general ubiquitous 
biological processes were more likely to be a source of 
redundancy, while those associated with specific pro-
cesses provided more useful information to the predic-
tion process. The GO analysis showed that eQTLs and 
targeted genes lowering their rank under integration 
were by and large associated with specialized processes 
relevant to the predicted phenotype. This pattern was 
observed particularly for traits which also benefited the 
most from integration. In contrast, the eQTLs and tar-
geted genes whose rank was most heavily affected under 
integration showed a characteristic enrichment of terms 
linked to general ubiquitous biological processes, such as 
cell cycle. As the transcriptomic data came from young 
differentiating xylem and cambium tissues, the redun-
dancy (and complementarity) we observed was strongly 
associated with phenotypes related to wood production, 

e.g. trunk circumference. This interpretation may also 
apply to the loss of prediction accuracy for traits whose 
genes were unlikely to be represented in our transcrip-
tome, such as rust resistance. One eventual validation 
could be to complement the transcriptomic data with a 
tissue less connected to xylem and cambium, e.g. leaves, 
and focus on traits more specifically expressed in that 
tissue, such as rust resistance. If the genes associated 
with general biological processes are found to be sources 
of redundancy through GO analysis, one strategy to 
improve prediction could be to reduce or minimize their 
contribution to the models.

Perspectives
For the sake of simplicity, our study could not take the 
extra step to devise a novel alternative to account for 
such redundancies in the prediction model. However, 
here we outline a basic strategy whereby the contribu-
tion of predictors to the prediction model is penalized 
based on how redundant they are within the remaining 
data. Under kernel-based integration, for instance, some 
kind of optimization of composition in features included 
in the relatedness matrices could be devised so that the 
resulting kernels bring complementary information. 
Under a model-based integration, a multistage approach 
could be devised where associations between all involved 
omics are firstly carried out, so that the features contrib-
uting the most to the associations can be subsequently 
penalized to some degree or filtered out when it comes to 
construct a consensual model. More research is required 
to devise and test a strategy to derive robust weightings.

It would be essential to gather further information on 
the beneficial role of multiple omics, collected at differ-
ent development stages or distinct tissues, to enable link-
ingto different traits. Despite being a costly endeavour, 
such integration studies on specific training populations 
would allow us to identify important hubs in the genetic 
architecture of traits, and enable differential weighting on 
other, related populations with no or basic access to addi-
tional omic layers.

Conclusions
One of the main findings of this study was the fact that 
certain predictors with ubiquitous connections seem 
to be made redundant when integration took place. An 
additional gene ontology (GO) enrichment analysis 
appeared to corroborate this statistical output. These 
two complementary approaches showed empirically over 
a series of traits how the best predicting scenarios are 
built, excluding certain features while promoting others 
according to their redundancies within the data. To our 
knowledge, this is a novel finding delineating a promising 
method to explore data integration.
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Methods
Plant material, experimental design and phenotypic 
evaluation
We studied 241 genotypes of Populus nigra originat-
ingd from 11 major river catchments across 4 countries 
and representative of the species range in Western 
Europe. More details on the origin of these genotypes 
including their depositary are available in the GnpIS 
Information System [32] via the FAIDARE data por-
tal (https://​urgi.​versa​illes.​inra.​fr/​faida​re/), using the 
keys "Black poplar" and "POPULUS NIGRA RNASEQ 
PANEL" for the fields "Crops" and "Germplasm list", 
respectively. These poplars were evaluated in com-
mon garden experiments located on 2 contrasting sites 
(Orleans, denoted ORL and Savigliano, denoted SAV), 
as underlined by large differences in growth [33, 34]. 
At each site, the experimental design consisted of a 
randomized complete block design with 6 blocks, and 
thus 6 repetitions per genotype. Twelve traits were 
evaluated on the 2 sites, as previously described [34, 
35]. We considered traits measured at the 2 sites as dif-
ferent traits, leading to a total of 21 traits (detailed in 
Table 1). These traits can be categorized into 5 types: 
growth, pathogen tolerance, phenology, architecture, 
and biochemistry. At Orleans, the trees were grown 
through 3 successive cycles: 2008–2009, 2010–2011 
and 2012–2015. During the first growth cycle (2009), 
rust tolerance (Rust) was assessed with a discrete score 
from 1 (no symptoms) to 8 (generalized symptoms), 
as detailed in [36]. Average branch angle (BrAngl) was 
evaluated with a score on proleptic shoots from 1 to 4 
(score 1: between 0° and 30°; score 2: between 30° and 
40°; score 3: between 40° and 55°; score 4: and between 
55°and 90°). During the second growth cycle, height 
(Ht) and circumference at 1-m above the ground (Circ) 
were measured on 2  year-old trees (winter 2011). At 
Savigliano, trees went through two cycles: 2008–2009 
and 2009–2010. Only Circ was measured during the 
second growth cycle on 2 year-old trees (winter 2010). 
Biochemical traits consisted of predictions of several 
chemical compounds obtained from near-infrared 
spectra on wood samples collected in the same years 
as growth traits and at both sites, as described in Guet 
et al. [33]. Biochemical traits included: extractives con-
tent (Extractives), total lignin content (Lignin), ratios 
between different lignin components like p-hydroxy-
phenyl (H), guaiacyl (G) and syringyl (S) (H.G, S.G), 
total Glucose content (Glucose), ratio between xylose 
and glucose content (XylGlu) and the ratio between 5 
and 6 carbon sugars (C5.C6). One phenological trait 
was also measured, BudFlush as discrete scores for a 
given day of the year, measured on the apical bud [37].

Phenotype adjustments
All 21 traits were independently adjusted to field micro-
environmental heterogeneity using the breedR pack-
age [38]. The model included blocks and spatial effects 
(autoregressive residuals function) to account for micro-
environmental heterogeneity. A model selection was 
also carried out using the AIC to select the effects to be 
included in the model and to adjust the autoregressive 
parameters. The genotypic adjusted means from these 
models were used as the phenotypes for this study.

Genotype and transcriptomic data
RNA sequencing was carried out in 2015 on young differ-
entiating xylem and cambium tissues collected from two 
replicates of the 241 genotypes located in two blocks of 
the Orleans design [. These two tissues corresponded to 
the location in the tree where wood production and dif-
ferentiation occur. We obtained sequencing reads for 459 
samples corresponding to 218 genotypes with two repli-
cates and 23 genotypes with 1 replicate. These sequenc-
ing reads were used to provide both transcriptomic and 
genomic data.

For transcriptomic data, the reads were mapped on the 
Populus trichocarpa v3.0 primary transcripts using bow-
tie2 v2.4.1 [39] and read counts were retrieved for 41,335 
transcripts with home made scripts. Only transcripts 
with at least 1 count in 10% of the individuals were kept, 
yielding 34,229 features. The raw count data were normal-
ized by Trimmed Mean of M-values using the R package 
edgeR v3.26.4 [40] and we calculated the counts per mil-
lions [41]. To make the CPM data fit a Gaussian distribu-
tion, we computed a log2(n + 1) instead of a log2(n + 0.5) 
typically used in a voom analysis [41], to avoid negative 
values, which are problematic for the rest of the analysis. 
For each transcript the log2(n + 1) of the CPM were fitted 
with a mixed model including experimental (batch) and 
genetic effects to extract their genotypic BLUPs (Best Lin-
ear Unbiased Predictors). These genotypic BLUPs of tran-
scripts were used for the rest of our analysis.

The full details of SNP discovery and genotyping are 
given in Rogier et  al. [42], including software used for 
the different steps, data filtering criteria and final SNP 
selection (see Fig. 1 in Rogier et al. [42] for a schematic 
representation of the pipeline). Briefly, genotyping data 
was obtained, first by mapping the RNAseq reads on the 
P. trichocarpa reference genome (v3.0) [43] using BWA-
MEM v0.7.12 [44]. After mapping, the SNPs were called 
using 4 callers. In order to generate a high-confidence 
SNP set we selected only the SNPs identified by at least 3 
of the 4 callers and with less than 50% of missing values. 
Remaining missing values were imputed using comple-
mentary genotyping data obtained with a 12  k Illumina 

https://urgi.versailles.inra.fr/faidare/
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Infinium Bead-Chip array [45]. We then detected 874,923 
SNPs. From these, 428,836 SNPs were retained for this 
study after filtering for a minimum allele frequency of 
0.05.

eQTLs analysis
eQTLs analysis was performed using the Multi-Loci 
Mixed-Model (MLMM) approach] and implemented in 
the R package MLMM v0.1.1. MLMM uses a step-by-step 
forward inclusion and backward elimination approach 
under a mixed-model framework which accounts for the 
confounding usually attributed to population structure 
with a random polygenic effect. For each of the 34,229 
transcripts we ran MLMM for up to 10 steps and identi-
fied the optimal model according to the mBonf criterion 
(all selected SNPs are significant at a 5% Bonferroni cor-
rected threshold).Based on the positional proximity of 
the genes, the significant SNPs detected with MLMM 
were classified as cis regulatory elements (DNA variation 
regulating the transcription of neighboring genes), and/
or as trans regulatory elements (regulating the transcrip-
tion of distant genes), according to the following rules:

–	 all SNPs associated with the expression of a gene 
located in a different chromosome are classified as 
trans, and the targeted gene is classified as a trans 
regulated gene;

–	 all SNPs located on the same locus as the gene they 
target, according to the genome annotation, are clas-
sified as cis, and the targeted gene is also classified as 
cis regulated gene;

–	 the remaining SNPs whose target gene is on the 
same chromosome but not on the same locus, were 
split into cis or trans according to their distance to 
the middle of the gene they target. We estimated the 
maximum distance between the cis-eQTLs identified 
in the previous step and the middle of the gene they 
target as 12 kb (eQTL being on the same position as 
its target gene). If the distance between SNPs and the 
gene they target is greater than 12 kb they were clas-
sified as trans-eQTLs and target gene trans. Other-
wise, the SNPs and the target gene were classified as 
cis.

Models, prediction accuracy and cross‑validation
Two ridge regression models were built for each trait 
with a single omic as predictor: genotypic data (G 
model), or transcriptomic data (T model), respectively 
with p = 428,836 SNPs and q = 34,229 transcripts’ expres-
sion levels variables. A third multi-omic was also built 
with integration by concatenation of both omics data 
(G + T model). These 3 models can be written as:

where for models G,T and G + T, X represent the 
genotyping matrix (n × p), the transcript expression 
level matrix for the genes (n × q) and the concatenated 
transcript expression level and genotyping matrix 
(n × (p + q)). With the same logic, β represents the vec-
tor of effect sizes of variables of those matrices. Y is the 
vector of phenotype, and ϵ the vector of residual errors of 
the model.

The models were computed using the R package glm-
net [46] in a 10 inner-fold and 5 outer-fold nested cross-
validation framework [47]. The sampling process for the 
different folds was repeated 50 times. Each cross-valida-
tion sample was used across all traits, for all three mod-
els. Paired t-tests in R (rstatix package version 0.7.0) [48] 
were used for comparisons of model performance.

The model performances were measured using R2 
between observed and predicted values.

SNPs and transcript effects ranking
In order to study the changes operated for each feature 
(SNP or gene) when changing prediction models from 
single-omic to the concatenated counterpart, we com-
pared the change in ranking of the effects across models. 
Ranks were obtained for each predicting model and trait 
from the ordering of squared effect sizes.

For each variant category, the estimated effect rank was 
compared between the single-omic model (G or T) and 
the multi-omic model (G + T) with a paired Wilcoxon 
test and a Pearson correlation.

The difference in effect ranking between the models 
was calculated for the different sets of predictors (cis- or 
trans-eQTLs or regulated transcripts, and not eQTLs). 
We also considered windows of increasing sizes around 
significant SNPs to evaluate the robustness of our find-
ings when extending the cis- and trans-eQTL categories 
to neighbouring SNPs. This ranking difference was then 
averaged for each trait and regressed with the concatena-
tion advantage of each trait, which is the average accu-
racy difference between the concatenation model and 
single-omic models:

where predictor represents either SNPs or transcripts, 
R is the ranking vector of squared effect sizes of the given 
predictor, ω is the number of predictors (p for SNPs and 
q for transcripts), �predictor is the average difference in 
effect ranking between the multi-omic model and single-
omic model by trait for the given set of predictors.

(1)Y = Xβ + ǫ

(2)�predictor =
1

ω

ω

i=1

Ri

(G + T )
−

Ri

(GorT )
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GO analysis
Functional enrichment was conducted based on the 
gene ontology (GO) terms associated with the best 
Arabidopsis thaliana homolog and based on the Phyto-
zome v12.1.6 database (32). GO analysis was conducted 
using R package topGO 2.44.0 [49] and Fisher’s exact 
test with ‘elim’ used to correct for multiple comparisons 
using only the xylem/cambium expressed genes. The 
p-value significance threshold for GO terms was 0.05.

Abbreviations
AIC: Akaike Information Criterion; cis: DNA variation regulating the transcrip-
tion of neighboring genes; CPM: Count Per Million; DNA: Deoxyribonucleic 
Acid; eQTL: Expression Quantitative Trait Loci; G: SNP based ridge regression 
model; G + T: SNP and Transcript based ridge regression model; GO: Gene 
Ontology; LASSO: Least Absolute Shrinkage and Selection Operator; MLMM: 
Multi-locus mixed-model; ORL: Orleans; RNA: Ribonucleic acid; RNAseq: 
Ribonucleic acid sequencing; SAV: Savigliano; SNPs: Single Nucleotide 
Polymorphism; Step_0: Initial association scan of MLMM; Step_opt: Optimal 
association model from MLMM; T: Transcript based ridge regression model; 
trans: DNA variation regulating the transcription of non-neighboring genes; 
TWAS: Transcriptome wide association.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​08690-7.

Additional file 1: FigureS1. Proportion and score of cis- and trans-eQTLs. 
Proportions(A) and scores (B) of cis- and trans-eQTLs detectedwith the 
multi-locus approach. Scores correspond to the -log10 ofthe p-value of 
the test.

Additional file 2: Figure S2. Comparison between the rank of predic-
tors across single- and multi-omic models. Panels A and C represent the 
boxplots of SNPs and transcripts rank, according to the traits and sites. 
Features are grouped into the following categories determined after the 
eQTL analysis: cis or trans eQTL or regulated transcripts and not eQTLs. 
Panels B (SNPs) and C (transcripts) represent the correlations between the 
ranks of predictors across single- and multi-omic models, splitting the 
predictors into the same previous categories, determined from the eQTL 
analysis. Ranks were computed from squared effects of features in the 
ridge-regression models.

Additional file 3: Figure S3. Variation of the change in rank of the eQTLs 
and targeted transcripts. Barplot of the variance of change in rank of 
eQTLs (top) and targeted transcripts (bottom) for each trait (panel) and 
site (dark grey: Orleans ; light grey: Savigliano). Ranks were computed from 
squared effects of features in the ridge-regression models.

Additional file 4: Figure S4. Change in rank of the eQTLs and their cor-
responding targeted transcripts. Scatter plots of the changes in rank of the 
eQTLs and their corresponding targeted transcripts for each trait. Ranks 
were computed from squared effects of features in the ridge-regression 
models. The red and blue dots represent the regulation in transand cis, 
respectively.

Additional file 5: Figure S5. Stability of the relationships between change 
in predictorrank and muti-omic prediction advantage for traits measured 
at Orleans. The relationship is measured as the correlation coefficient 
between change in rank and relative advantage in prediction with the 
multi-omic model over the single-omic counterpart. The stability of the 
relationship is evaluated with respect to the categorization of eQTLs into 
cis, trans, or not eQTLs, being defined according to windows of increasing 
size in bp around the SNPs detected with the multi-locus model.

Additional file 6: Figure S6. Relationship between change in predictor 
rankand muti-omic prediction advantage for traits measured at Savigliano. 
Regression across traitsmeasured at Savigliano between average change 
in predictor rank and advantage in performance of the multi-omic model 
(G+T) over the single-omic counterpart. Ranks were computed from 
squared effects of features in the ridge-regression models. The top panel 
(A) shows the regression obtained with the eQTLs (trans-eQTLs on the left, 
cis-eQTLs in the middle, and SNPs not detected as eQTL on the right). The 
bottom panel (B) shows the regression obtained with the regulated tran-
scripts (trans on the left, cis in the middle, and not found to be associated 
with eQTLs on the right).

Additional file 7: Table S1. Prediction accuracies compared between 
multi-and single-omic models.

Additional file 8: Table S2. Complete gene ontology analysis of all traits.
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